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1 Introduction

Noncommutativity is an intriguing concept that has repeatedly appeared in mathematics

and physics. It was realized, perhaps first in [1], that quantum field theories can be defined

on a noncommutative geometry where the position coordinates do not commute. Based on

a conventional Lagrangian description, the primary ingredient to define such a theory is an

associative but not necessarily commutative algebra. Perhaps the most familiar example

of such an algebra is the commutation relation between the space-coordinates[
xi, xj

]
= iθij , (1.1)

where θij is the noncommutativity tensor.

Hallmark of a noncommutative theory is the inherent non-locality associated with the

description. One key motivation behind studying such noncommutative theories is that
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they come equipped with a natural infra-red (IR) ultraviolet (UV) connection which is a

profound property of any theory of quantum gravity. In string theory noncommutative

theories do appear rather naturally, of which the BFSS [2] and the IKKT [3] matrix the-

ories have been widely studied in the literature. On the other hand, non-locality posits

conceptual challenges even for simple quantum field theories. Thus it will be a fruitful

exercise to understand the simple non-local quantum field theories, which may eventually

be relevant for a theory of quantum gravity.

In the current article we will attempt to investigate aspects of entanglement entropy

in a noncommutative field theory. We will consider the noncommutative version of the

N = 4 super Yang-Mills theory, where we just need to replace every commutative product

by the star-product

(f ? g)(x) ≡ e
i
2
θij ∂

∂yi
∂

∂zj f(y)g(z)

∣∣∣∣
y=z=x

, (1.2)

where f(y) and g(z) are two arbitrary functions.

Before proceeding further, let us briefly introduce the notion of entanglement entropy.

In a given quantum field theory defined on a manifold, we imagine an entangling surface

that divides the entire manifold in two sub-manifolds at a given instant in time. Let

us denote the corresponding sub-systems by A and Ac respectively. Consequently, the

total Hilbert space factorizes: Htot = HA ⊗ HAc . Now we can define a reduced density

matrix for the sub-system A by tracing over the degrees of freedom in Ac: ρA = trAc [ρ].

Finally we can use the von Neumann definition SA = −tr [ρA log ρA], which defines the

entanglement entropy.

The astute reader will immediately notice potential subtleties in defining such a quan-

tity in a noncommutative field theory. One obvious issue is how to define a sharp entangling

surface in a fuzzy manifold, which is also tied to the issue whether in a noncommutative

theory Htot = HA ⊗ HAc factorization is sensible. At this point we can appeal to Bohr’s

correspondence principle and declare that we can define an entangling surface provided

we promote the classical algebraic equation defining such a surface as a statement on the

corresponding operator and its eigenvalues.1 The issue is now to carry out a computation.

We will not attempt to perform a weakly coupled field theory computation. Instead,

we will make a detour via the AdS/CFT correspondence [4] to analyze the issue in a large

N noncommutative gauge theory. By virtue of the gauge-gravity duality, we will need to

perform a classical gravity computation in a geometric background obtained in [5, 6]. In

gauge-gravity duality, entanglement entropy is calculated using the Ryu-Takayanagi (RT)

formula proposed in [8]. According to this proposal, entanglement entropy of a region A is

given by

SA =
Area(γA)

4G
(d+1)
N

, (1.3)

where G
(d+1)
N is the (d + 1)-dimensional Newton’s constant, γA denotes the minimal area

surface whose boundary coincides with the boundary of region A: ∂A = ∂γA.

1We have elaborated more on this issue in the following sections.
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In the case of a noncommutative gauge theory defined on the boundary of the bulk

geometry, this raises another subtlety: as we have argued before, ∂A does not necessarily

have a well-defined meaning in a fuzzy geometry. Perhaps the simplest generalization is

to make sense of the boundary curve as an operator, denoted by ∂̂A, and define spatial

regions as bounds on the eigenvalues of this operator.2 Thus there is no straightforward

way to construct an interpolating bulk minimal area surface for such a spatial region.

We will assume that, since the bulk geometry is still a classical one, the corresponding

minimal area surface with the classical boundary ∂A, if exists, provides a definition for

entanglement entropy. Henceforth we will investigate this quantity, both at zero and at

finite temperature. Perhaps most intriguingly, the RT-formula — as applied within our

scheme of the prescription for a subregion residing entirely on the noncommutative plane

— does allow us to define a sensible entanglement. However, the corresponding minimal

area surfaces have rather peculiar properties.

Let us now mull over why entanglement entropy may be a potentially interesting ob-

servable for such a theory. First, note that it is non-trivial to define a gauge-invariant

operator in such a theory [9] and subsequently it is subtle to compare the correspond-

ing results with an ordinary theory. Entanglement entropy, modulo the above-mentioned

issues, can be an interesting probe for such theories. In the large temperature limit, en-

tanglement entropy reduces to thermal entropy which is still a gauge-invariant concept

for noncommutative theories. Therefore we expect that the entanglement entropy is also a

gauge-invariant observable. Furthermore, this exercise may also shed light on the role of an

inherent non-locality on quantum entanglement. It is expected that entanglement entropy

obeys a universal area-law [10] for a local field theory with nearest neighbour interaction,3

since quantum entanglement occurs primarily across the common boundary. In a non-local

theory this may not necessarily be true. We will find in several examples that there is a

violation of the area law below a certain length-scale; however we will further argue that

it may not be meaningful to probe the theory below this scale.4

The above feature is more prominent in the so called mutual information, which is a

derived quantity that has some advantages over entanglement entropy. Mutual information

between two disjoint, separated sub-systems A and B is defined as

I(A,B) = SA + SB − SA∪B ,

where SY denotes the entanglement entropy of the region Y . It can be proved under general

considerations that mutual information is always bounded by the area of the boundary of A

and/or B [12]. It is, however, not immediately clear whether in a gauge theory the analogue

of this theorem can tolerate some non-locality.5 We will find that mutual information is

always an area-worth quantity, when it is finite. This area-worth and finite behaviour can

be violated below a certain length scale, where the entanglement entropy also deviates from

2We will discuss this in detail in section 2.3.
3Note that even for a gauge theory, where the interactions are not nearest neighbour type, such an area

law may hold. Although there is no general proof of this statement.
4We will discuss this in detail in a later section. For earlier related studies, see [11].
5We would like to thank Matthew Hastings for correspondences on this issue.
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an area-law. Furthermore, it undergoes the familiar [13, 14] entanglement/disentanglement

transition as observed in generic large N gauge theories. Perhaps more importantly, we

will also show that mutual information is the right quantity to compare the results of the

noncommutative theory with the corresponding commutative one.

This article is divided in the following sections: we begin with a brief review of the

noncommutative gauge theory and its holographic dual geometry. Within the same section

we then discuss one possible way to define sub-regions of various possible shapes on a

noncommutative geometry. We then discuss features of entanglement entropy and mutual

information for a “rectangular strip” geometry both at vanishing and at finite temperature

in section 3 and 4 respectively. After this, we discuss some features of entanglement for

more general shapes: a commutative cylinder in section 5 and a noncommutative cylinder

in section 6. Finally we conclude in section 7.

2 Noncommutative Yang-Mills

2.1 Holographic dual

A mild form of non-locality can be realized by considering noncommutative gauge theories.

In this section, we will consider a four-dimensional maximally supersymmetric SU(N) super

Yang-Mills theory on a spacetime R2
θ × R1+1, where noncommutativity parameter is non-

zero only in the R2
θ plane. R2

θ plane is defined by a Moyal algebra

[x2, x3] = iθ . (2.1)

At large N and strong ’t Hooft coupling, a holographic description of this theory can be

given which, in the string frame, reads [5, 6]6

ds2 = R2

[
−u2f(u)dt2 + u2dx2

1 + u2h(u)
(
dx2

2 + dx2
3

)
+

du2

u2f(u)
+ dΩ2

5

]
, (2.2)

B23 = R2a2u4h(u) , e2Φ = g2
sh(u) , (2.3)

F0123u =
4R4

gs
u3h(u) , C01 =

R2a2

gs
u4 . (2.4)

Here R denotes the radius of curvature of the background geometry, x1 and t represent the

R1,1-directions, whereas {x2, x3} represents the R2
θ-plane. The radial coordinate is denoted

by u; the ultraviolet (boundary) is located at u→ ub, where ub is a momentum cut-off that

is taken to be large. Also, gs denotes the string coupling which is related to the radius of

the geometry via, R4 = 4πgsNα
′2, where α′ is the string tension. Finally, dΩ2

5 denotes the

metric on an unit 5-sphere.

Note that, the background in (2.2) is also characterized by two functions, denoted by

f(u) and h(u) respectively. These functions are explicitly given by

f(u) = 1−
(uH
u

)4
, h(u) =

1

1 + a4u4
. (2.5)

6Note that the simplest way to understand why this corresponds to a noncommutative gauge theory is to

consider an open string in the corresponding background, which yields the commutation relation in (2.1) [7].
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The function f(u) represents the existence of a black hole in the geometry and h(u) bears

the signature that the dual gauge theory is noncommutative. Here uH denotes the location

of the event horizon and a is related to the noncommutativity parameter through: a =

λ1/4
√
θ, where λ is the ’t Hooft coupling defined as λ = 4πgs. The parameter a can be

thought of as the “renormalized” noncommutativity at strong coupling, since this is the

parameter that will enter in every holographic computation.

Before proceeding further, a few comments are in order: first, note that when there is

no black hole present in the background, i.e. uH = 0, the infrared limit of the geometry is

obtained by sending u → 0. In this limit, we recover an AdS-space. On the other hand

if we send ub → ∞, h(u) → 0 and thus the geometry degenerates. Hence we need to

impose ub <∞.

Also note that the background in (2.2) can be simply obtained by a chain of T-duality

transformations on the familiar AdS-Schwarzschild×S5-background. The non-trivial B-

field and the dilaton are generated as a consequence of this chain of duality transformations.

Hence we can view the {x2, x3}-directions as a 2-torus T2
θ
∼= R2

θ/Z2. The strict limit of

ub →∞ can also be viewed as the degeneration of this 2-torus.

2.2 Regime of validity

We can trust the supergravity solution only when the scalar curvature of the background is

small compare to ∼ 1/α′ = 1/l2s , where ls is the string length. This leads to the condition

aub �
2√
λ
, (2.6)

which is trivially satisfied for large ’t Hooft coupling. The UV cut-off ub can also be thought

as the momentum cut-off. Another constraint comes from the fact that proper distance —

as measured by the metric in (2.2) — of a coordinate distance l along R2
θ or T2

θ is larger

than ls:

l

a
� (uba)1/2

λ1/4
. (2.7)

Therefore, if ε is the short distance cutoff then

ε

a
∼ (uba)1/2

λ1/4
. (2.8)

Finally, as explained before, we also need to impose the constraint that the R2
θ or T2

θ — as

measured by the metric in (2.2) — does not degenerate. To sharpen this constraint, let us

introduce the following dimensionless “cut-off”

α = aub . (2.9)

Later we will observe that this “cut-off” does play an important role in the divergence

structure of entanglement entropy.
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2.3 Noncommutativity and entanglement entropy

Let us begin with an elementary discussion of defining regions using entangling surfaces

in a noncommutative geometry. We will consider a (3 + 1)-dimensional noncommutative

spacetime of the form R1,1⊗R2
θ or R1,1⊗T2

θ. Let us take x2 and x3 to be the noncommutative

directions. In analogy with quantum mechanics, we should treat x2 and x3 as operators with

[x̂2, x̂3] = iθ . (2.10)

In the commutative case, an entangling surface can be defined as an algebraic equation

F (x1, x2, x3) = 0 , (2.11)

which defines two sub-regions denoted by A and B respectively

A = {(x1, x2, x3) |F (x1, x2, x3) ≤ 0} , (2.12)

B = {(x1, x2, x3) |F (x1, x2, x3) ≥ 0} . (2.13)

In the noncommutative case, following the correspondence principle the function F should

be promoted to an operator

F → F̂ (x̂1, x̂2, x̂3) = F̂ (x1, x̂2, x̂3) . (2.14)

The eigenstates of F̂ (x1, x̂2, x̂3) form a complete basis

F̂ (x1, x̂2, x̂3)|F 〉 = F |F 〉 . (2.15)

Now the system can be divided in two sub-regions in a unique way:

A = {|F 〉 |F ≤ 0} (2.16)

B = {|F 〉 |F ≥ 0} . (2.17)

For a given function F , this division is unique.

Now, we can ask the following general question: if we choose a function F (x1, x2, x3)

on the boundary and use the bulk geometry to calculate the RT-entropy

SRT(F ) =
Area(γF )

4G
(4+1)
N

∂γF = F , (2.18)

what does it correspond to when the boundary theory is defined on a non-

commutative background?

2.3.1 F (x1, x2, x3) = F (x1, x2)

This is the simplest case. In this case, the answer is straight forward since the sub-regions

have a boundary ∂A or ∂B that lies entirely in the commutative submanifold: ∂A, ∂B ∈
Mcom, whereMcom ⊂ R⊗R2

θ. In the boundary theory, we should look at F̂ (x1, x̂2). Now,

F̂ and x̂2 commute and we can work in the |x2〉 basis:

F̂ (x1, x̂2)|x2〉 = F (x1, x2)|x2〉 . (2.19)

– 6 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
7

Therefore, the RT-entropy SRT(F ) gives the geometric entropy between spatial regions A

and B:

A = {(x1, x2) |F (x1, x2) ≤ 0} (2.20)

B = {(x1, x2) |F (x1, x2) ≥ 0} . (2.21)

2.3.2 General case

When, F is a function of both x2 and x3, then in the boundary theory the function

F (x1, x2, x3) does not have a well-defined meaning since we cannot draw a sharp curve in

the fuzzy R2
θ-plane. In the bulk theory however, we still can calculate SRT(F ) following

the usual bulk prescription.

Although an entangling surface cannot be drawn in the general case, for any function

F (x1, x2, x3) in the bulk theory, there is a unique decomposition in the boundary theory:

A = {|F 〉 |F ≤ 0} (2.22)

B = {|F 〉 |F ≥ 0} . (2.23)

Thus in this case, the operator F̂ defines the quantum analogue of an entangling surface. It

is therefore interesting to investigate whether SRT(F ) is the entanglement entropy between

subsystems A and B: SRT(F ) = S(A).

3 Infinite rectangular strip

In this section we will investigate one particular example for which we can easily perform

the explicit computations. In particular, we will take the “infinite strip” geometry. The

background in (2.2) is written in the string frame, hence we will use the generalized RT-

formula for the 10-dimensional geometry with a varying dilation

SA =
1

4G
(10)
N

∫
d8σe−2Φ

√
G

(8)
ind =

A
4G

(5)
N

, (3.1)

where G
(10)
N = 8π6α′4, σ parametrizes the worldvolume of the minimal surface and the

5-dimensional Newton’s constant G
(5)
N is proportional to G

(10)
N up to a volume factor.

3.1 Commutative rectangular strip

Let us choose

X ≡ x1 ∈
[
− l

2
,
l

2

]
, x2, x3 ∈

[
−L

2
,
L

2

]
, (3.2)

with L → ∞. The extremal surface is translationally invariant along x2, x3 and the area

of the extremal surface (in the Einstein frame) is simply given by

A =
L2R3

g2
s

∫
duu3

√
X ′2 +

1

u4f(u)
. (3.3)

The above expression coincides with the corresponding expression in a pure AdS-

Schwarzschild background. Hence, the entanglement entropy is the same as that for the

N = 4 SYM case.

– 7 –
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3.2 Non-commutative rectangular strip

We will begin with the case when there is no black hole in the geometry, i.e. by setting

f(u) = 1. Let us now compute the entanglement entropy for an infinite strip specified by

X ≡ x2 ∈
[
− l

2
,
l

2

]
, x1, x3 ∈

[
−L

2
,
L

2

]
. (3.4)

with L→∞. The corresponding extremal surface is translationally invariant along x1, x3

and the profile of the surface in the bulk is given by X(u). Area of this surface (in the

Einstein frame) is given by

A =
L2R3

g2
s

∫
duu3

√
X ′2 +

1

u4h(u)
. (3.5)

One crucial comment is in order: the bulk metric in (2.2) is anisotropic in {x2, x3} and x1-

directions. Naively, it looks like the physical distance along x2 or x3 should be ∼ l
√
h(ub)

at a given cut-off u = ub. However, the relevant metric one should use to compute physical

distances is not the bulk metric, but the open-string metric. One can check that the open-

string metric for the background in (2.2) is still AdS and hence the physical distance is the

same as the coordinate distance.

Now we will go ahead and obtain the equation of motion using action (3.5)

dX

du
= ± u3

c

u5

√(
1− u6c

u6

)
h(u)

, (3.6)

where, uc is an integral of motion and u = uc represents the point of closest approach of

the extremal surface. Such surfaces have two branches,7 joined smoothly at (u = uc, X =

0, X ′ →∞) and uc can be determined using the boundary conditions:

X(ub) = ± l
2
, (3.7)

which leads to

l

2
=

∫ ub

uc

u3
cdu

u5

√(
1− u6c

u6

)
h(u)

(3.8)

and finally the area functional is

A =
2L2R3

g2
s

∫ ub

uc

udu√(
1− u6c

u6

)
h(u)

. (3.9)

This area is divergent and using the UV-cutoff ub, we can write

7For convenience, we will refer to these as the U-shaped profiles. We also note our results here are

consistent with [11].
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a

Figure 1. Variation of l with uc for U-shaped profiles. The curve has a minimum at uca ∼ 0.8, la ∼
1.6. For l

a > 1.6, two U-shaped solutions exist for each l. For l
a < 1.6, U-shaped solution does

not exist.

A = Adiv +Afinite . (3.10)

For the case in hand we get

Adiv =
2L2R3a2

g2
s

(
u4
b

4
+

1

2a4
ln(aub)

)
, (3.11)

whereas Afinite can be calculated from the equation (3.9). But before we proceed, a few

comments are in order. The U-shaped profile exists only for l ≥ l0 ∼ 1.6a. In fact for

l > l0, two U-shaped solutions exist for each l; however the solution with uca < 0.8 has

smaller area.

There is another solution to the extremal surface equation: u = ub, which does not pen-

etrate the bulk at all. For this class of solutions, we get the following divergence structure

Adeg =
L2lR3u3

b

g2
s

. (3.12)

Comparing the leading behaviours in (3.11) and (3.12), we can conclude that the u = ub
is the minimum area solution only when l < lc, where,

lc =
a2ub

2
+

1

a2u3
b

ln(aub) ∼
a2ub

2
. (3.13)

Let us now comment on why l < lc is not a sensible regime, although the entanglement

entropy for this particular case is still a perfectly well-defined quantity even for l < lc. It

is well-known that in a noncommutative theory with noncommutativity parameter θ and

a momentum cut-off Λ, the transverse (to the momentum) direction stretches to ∼ θΛ. In

our case, the parameter (a2) plays the role of a renormalized noncommutativity parameter

and the bulk radial cut-off ub plays the role of a momentum cut-off. Thus for a momentum

p3 ∼ ub along x3, the uncertainty in the transverse direction becomes ∆x2 ∼ a2ub. Thus

– 9 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
7

for the noncommutative theory at this energy scale, though formally entanglement entropy

is still a well-defined quantity, it does not make sense to probe below the length scale

lc ∼ a2ub. Hence existence of u = ub solution, indicates that it is only sensible to consider

length scales l > lc. Here we should also note that we are interested in the regime uba� 1

where one can check that lc � l0 and hence we always have U-shaped solutions.

From the bulk point of view, the u = ub solutions are also rather peculiar. First of all,

note that the corresponding RT-surface does not probe the bulk geometry at all. Moreover,

unlike the other familiar well-defined RT-surfaces, which obey the boundary condition that

X ′ → 0 as u → ub, this particular kind of surface obeys X ′ → O(∞) at the boundary.

It is important to note that such solutions, for which X ′ diverges at the boundary, result

in an apparent volume dependence for entanglement entropy. This subsequently results in

a divergent mutual information. In a later section we will observe a stronger presence of

similar behaviour.

Thus we will discard the solutions u = ub henceforth.8 Let us now focus on the

divergence structure obtained in (3.11). Naively, it seems that the entanglement entropy

has a quartic divergence in ub, as opposed to the quadratic divergence in the ordinary

Yang-Mills case. This is evidently counter-intuitive. We cannot fit more than one degree

of freedom inside one Moyal cell, which implies that, at the very least, noncommutativity

should not worsen the divergence in a quantum field theory.

We will now argue that there is one way to reconcile with the above expectation. Let

us recall that we introduced a dimensionless “cut-off” α in (2.9). Using this additional

“cut-off” we can rewrite the divergent piece as

Adiv =
L2R3

2g2
s

α2u2
b +

L2R3

g2
sa

2
logα , (3.14)

which can be re-interpreted as having a familiar quadratic divergence in ub. Evidently

this comes at the cost of having to introduce an additional scheme-dependent quantity α.

Note however, that taking a naive a → 0 limit does not reproduce the known result for

ordinary Yang-Mills theory. At this level, we can make a curious observation: given the

background in (2.2), we can first perform an RT-computation and then take the a→ 0 limit.

Alternatively, we can also take the a → 0 limit and then perform the RT-computation.

These two processes do not yield the same result. This observation holds true for the finite

part of the entanglement entropy as well, which we will discuss now.

We can schematically write the entanglement entropy (l > lc) as

S = Sdiv +
N2

2π

(
L2

a2

)
s

(
l

a

)
. (3.15)

Where s(l/a) is a monotonically increasing finite-valued function of l/a and for l/a→∞, it

approaches s(l/a)→ 0.5966. Note that, in the ordinary large N Yang-Mills case, the finite

part of the entanglement entropy approaches zero as the length of the rectangular strip

asymptotes to infinity. This is clearly not the case here. This again makes the comparison

8In other words, we consider length scales that are greater than lc.
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Figure 2. Variation of s(l/a) with l/a.

between the commutative and the ordinary Yang-Mills theories subtle. We will show that

this subtlety is absent in the mutual information. Meanwhile, the functional behaviour of

s(l/a) can be evaluated numerically, which is shown in figure 2.

Before proceeding further in discussing aspects of mutual information, let us ponder

over a key aspect of entanglement entropy in this case. It is straightforward to observe

that the divergent piece in (3.11) is independent of the length of the interval l and thus

one can define a finite quantity derived from the entanglement entropy as follows

C(l) = l∂lS(l/a) =
N2

2π

(
L2

a2

)
l∂ls(l/a) . (3.16)

In an (1 + 1)-dim CFT, this defines a central charge function that can be shown to be

monotonically decreasing under an RG-flow [15] and hence measures the number of degrees

of freedom: l∂lC(l) ≤ 0. It is straightforward to check that the above inequality is satisfied

by (3.16) since the curve in figure 2 is a concave one.

In general the above result follows from three criteria: (i) Lorentz invariance, (ii)

unitarity and (iii) strong subadditivity of entanglement entropy. In our construction, the

full Lorentz invariance is broken, SO(3, 1) → SO(1, 1) × SO(2), where {t, x1} has the

SO(1, 1) symmetry and {x2, x3} has the SO(2) symmetry. Thus it is non-trivial that the

inequality l∂lC(l) ≤ 0 is still satisfied, since there is no “effective” Lorentz symmetry in

the {t, x2}-plane to protect it.

3.3 Mutual information

Let us now move on to discuss mutual information. To define this quantity we need to

consider two “rectangular strips” each of width l separated by a distance x along the x2-

direction. For a visual rendition of the set-up, see figure 3. The corresponding mutual
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Figure 3. A diagrammatic representation of the two rectangular strips which are used to analyze

the mutual information. Here X ≡ x2 and r ≡ u. Clearly, to compute the entanglement entropy of

the region A ∪B, we have two choices for the minimal area surface.

information between the sub-systems A and B is defined as

I(A,B) = SA + SB − SA∪B , (3.17)

where SY denotes the entanglement entropy of the region Y .

It is demonstrated in figure 3 that for the computation of entanglement entropy of

the region A ∪ B, we have two candidates for the corresponding minimal area surface.

This gives rise to an interesting “phase transition” for mutual information, which has been

discussed in details in [14]. Here we will observe a similar physics. In this case mutual

information is given by,9

I(A,B) =
N2

2π

(
L2

a2

)[
2s

(
l

a

)
− s

(x
a

)
− s

(
2l + x

a

)]
, x/l ≤ β , (3.18)

= 0 , x/l > β , (3.19)

where β depends on the non-commutative parameter a. The corresponding “phase dia-

gram” has been shown in figure 4(a). Note that β approaches the commutative result 0.732

for large x/a. A couple of comments are in order: first, we note that mutual information

again picks out the finite part of entanglement entropy. Second, it seems possible to recover

the results for ordinary Yang-Mills theory by setting a→ 0 (see figure 4(b)), which is not

the case for entanglement entropy.

To sharpen the latter statement, let us define the following quantity[
I(A,B)NCYM

I(A,B)SYM

]
l�x,a

, (3.20)

9We consider x, l > lc, as we have already mentioned. It can be checked easily that for x and/or l < lc,

mutual information is divergent.
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Figure 4. Panel (a): 2-dimensional parameter space for the (3+1)-dimensional NCYM boundary

theory. The mutual informational is non-zero only in the blue shaded region. Panel (b): variation

of I(A,B) with x for l = 4. Blue solid line is for a = 1 and red solid line is for a = 1.2. Dashed

black line shows the corresponding mutual information for the commutative case.
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Figure 5. Variation of mutual information (at large l limit) with a/x, indicating an increase of

correlations as we increase the noncommutativity of the theory. Also note that in the a → 0 we

recover the known result for pure SYM theory.

where “NCYM” stands for non-commutative Yang-Mills and “SYM” stands for super Yang-

Mills. which we have plotted in figure 5. Since mutual information encodes all possible

correlations, figure 5 implies that noncommutativity introduces more correlations between

two sub-systems of the full system.

4 Introducing finite temperature

We will now discuss the physics at finite temperature. To this end, we will now consider the

geometry in (2.2) with uH 6= 0. After Euclidean continuation and periodically identifying
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Figure 6. All possible extremal surfaces for an infinite rectangular strip. There are four solutions:

two U-shaped (U1, U2), one parallel (P ) and one constant (D) solutions.

the time-direction, the corresponding temperature of the background can be obtained to be

T =
uH
π

. (4.1)

Here we will confine ourselves to discuss the “rectangular strip” geometry that we have

been discussing so far.

4.1 Entanglement entropy of an infinite rectangular strip

Before we go ahead and calculate the entanglement entropy of a non-commutative infinite

rectangular strip specified by

X ≡ x2 ∈
[
− l

2
,
l

2

]
, x1, x3 ∈

[
−L

2
,
L

2

]
, L→∞ , (4.2)

let us discuss the nature of extremal surfaces for this particular geometric shape. Typically,

for a given length l, there are four solutions (see figure 6). Just like the zero temperature

case, there are two U-shaped solutions (U1, U2) when l > l0(aT ).10 The one that goes

deeper into the bulk has smaller area

A(U1) ≤ A(U2) . (4.3)

For l < l0(aT ), U-shaped solutions do not exist. It can be shown that at large temperature

(aT � 1)

l0(aT ) ≈ 2a2uH = 2πa2T . (4.4)

10Presence of the second U-shaped solution probably is the bulk reflection of the boundary UV/IR

connection. It is interesting to note that in the limit a → 0, solution U2 approaches the constant solution

D. When the noncommutativity is turned off completely, U2 coincides with D and we are left with only

one U-shaped solution.
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Figure 7. Variation of l0(aT ) (solid blue curve) with aT . Dashed black line corresponds to some

lc for a particular momentum cut-off ub. At low temperature lc � l0(aT ). At sufficiently high

temperature l0(aT ) can be larger than lc.

Similar to the commutative case, there exists a parallel solution (P ) which has larger area

A(U1) ≤ A(P ) (4.5)

and hence it can only be important when l < l0(aT ). As before, there is also a constant

solution(D): u = ub, that does not go inside the bulk at all. This solution becomes

important only when l < lc

A(D) < A(U1),A(U2),A(P ) , (4.6)

where, we will show later that lc ∼ 1
2a

2ub does not depend on temperature. As we argued

before, presence of this solution indicates that it does not make sense to probe below lc.

From the above discussion, it is clear that we have two length scales: l0(aT ) and lc.

At zero temperature, we saw that l0 ∼ 1.6a is a fundamental length scale that comes

from the noncommutative nature of the space-time. Whereas, lc is an effective cut-off that

appears only after we introduce a momentum cut-off ub. At zero temperature, lc is the

relevant cut-off scale because lc � l0. However, at high temperature, l0(aT ) grows linearly

with temperature (4.4) which probably indicates that the space-time becomes fuzzier at

finite temperature. It is possible to have l0(aT ) > lc only at sufficiently high temperature

(T & ub
4π ); this feature is schematically represented in figure 7. In this regime, there seems

to be a second order phase transition of entanglement entropy at l = l0(aT ) ∼ 2πa2T

from U1 to P . However, this phase transition can be an artifact of having temperature

T close to the momentum cut off ub; this should be investigated more carefully in future.

At temperature T , average momentum along any direction pi ∼ T and uncertainty along

noncommutative directions become ∆x2,3 ∼ a2T . Hence one perhaps can argue that this

phase transition is physically irrelevant because at very high temperature (T ∼ ub) it is

not sensible to probe below l ∼ l0(aT ).
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Figure 8. Variation of l with uc for u-shaped profiles at finite temperature. The black curve is for

zero temperature, blue and red lines are for uha = 0.5 and uha = 1 respectively.

Now we will compute the area of the physically relevant U-shaped solutions. Proceed-

ing as before, at finite temperature we obtain

l

2
=

∫ ∞
uc

u3
c

√
1 + a4u4du

u5

√(
1− u6c

u6

)(
1− u4H

u4

) , (4.7)

and

A =
2L2R3

g2
s

∫ ∞
uc

u
√

1 + a4u4du√(
1− u6c

u6

)(
1− u4H

u4

) . (4.8)

As we mentioned earlier, for any l above some l0(auH), there are two U-shaped solutions;

the one with smaller value of auc corresponds to smaller area. For increasing values of

auH , l0 monotonically increases and so does auc. This feature is pictorially represented in

figure 8.

Now, at finite temperature the divergence structure is slightly different:

Sdiv =
N2

2π

(
L2

a2

)(
u2
bα

2a2

2
+
(
1 + π4a4T 4

)
ln(α)

)
, (4.9)

which seems to receive an additional cut-off dependent term at finite temperature. Note

that this is rather unique, since usually finite temperature does not introduce additional

cut-off dependence in ordinary quantum field theories.

Similar to the zero temperature case, the constant solution(D) becomes important at

smaller value of l with a volume-worth of “area”

Adeg =
L2lR3u3

b

g2
s

(4.10)
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Figure 9. Variation of S(l/a, Ta) with l/a for Ta = 0 (black), Ta = 0.5
π (blue), Ta = 0.7

π (red),

Ta = 1
π (brown), Ta = 1.2

π (green).

for

l < lc =
a2ub

2
+

(
1 + π4a4T 4

a2u3
b

)
ln(aub) ∼

a2ub
2

. (4.11)

It is noteworthy that this lc does not receive strong contribution coming from the temper-

ature. As argued before, we will discard such solutions. For l > lc (and l0), we get

S =
N2

2π

(
L2

a2

)(
u2
bα

2

2
+
(
1 + π4a4T 4

)
ln(α)

)
+
N2

2π

(
L2

a2

)
S
(
l

a
, Ta

)
, (4.12)

where S is the finite part, which is pictorially represented in figure 9. For large lT the

finite part of the entanglement entropy becomes linear in l, exactly like the commutative

case. That means at large lT , the leading finite part of the entanglement entropy follows

a volume law. At high temperatures, the most dominant contribution to the finite part of

the entanglement entropy is expected to come from the near horizon part of the extremal

surface [16], and it is given by

S ∼ π2N2

2
V T 3 . (4.13)

which is independent of the noncommutativity parameter a.

4.2 Mutual information

Once again mutual information can be easily obtained from the entanglement entropy and

for the configuration shown in figure 3 it is given by

I(A,B) =
N2

2π

(
L2

a2

)[
2S
(
l

a
, Ta

)
− S

(x
a
, Ta

)
− S

(
2l + x

a
, Ta

)]
, x/l ≤ βT ,

= 0 , x/l > βT , (4.14)

– 17 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
7

1.8 2.0 2.2 2.4 2.6 2.8 3.0
x

0.2

0.4

0.6

0.8

1.0

1.2

2Π IHA,BLl2�HN2
L
2L

Figure 10. Variation of I(A,B) with x for l = 4 and a = 1 for different temperatures. Blue solid

line is for T = 0.1
π , brown line is for T = 0.15

π and red solid line is for T = 0.2
π . Dashed black line

shows the mutual information at T = 0.

where βT depends on the noncommutative parameter a and temperature T .11 In figure 10

we have pictorially shown how mutual information behaves. As in the the case of van-

ishing temperature, above the length-scale lc mutual information is again a well-defined

finite quantity which yields the ordinary Yang-Mills result in the limit a → 0. Mutual

information undergoes the expected [14] disentangling transition and the corresponding

“phase diagram” is shown in figure 11. As expected, we observe that a non-zero value of a

results in a larger region in the phase space where mutual information is non-zero.

5 More general shapes: commutative cylinder

So far we have studied the simplest geometry, namely the “infinite rectangular strip”.

The primary reason for this is technical simplicity. However, to gain intuition one needs

to consider more general shapes as we will see below. However, many of the explicit

computations become involved in such cases and we will not attempt a thorough analysis.

Rather, we will focus on some qualitative features henceforth. For these purposes, we will

consider the background at vanishing temperature.

5.1 Entanglement entropy

Let us begin by considering a cylinder: a circle with radius r in x1 − x2 plane and length

L along x3 and in the limit L→∞:

x1 = ±
√
r2 − x2

2 . (5.1)

11We have assumed that l, x > lc and T � ub. One can again check that for x and/or l < lc, mutual

information is divergent.
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Figure 11. 2-dimensional parameter space for the (3+1)-dimensional boundary theory. Mutual

informational is non-zero only in the shaded region. Mutual information is non-zero for the region

below the black curve for the commutative case and below the red curve for the noncommutative

case ( ax = 1
2 ).

Note that the above curve falls under the general category discussed in (2.19). The minimal

area surface can be parametrized by x1(u, x2).12 Near the boundary, the extremal surface

can be written in the following form:

F (u, x) ≡ x1(u, x2) = ±
√
r2 − x2 + F1(u, x) , (5.2)

with F1(ub, x)→ 0. The area functional is given by:

A =
R3L

g2
s

∫
ududx

√
1 + (a4u4 + 1)

(
∂F (u, x)

∂x

)2

+ u4

(
∂F (u, x)

∂u

)2

. (5.3)

Corresponding equation of motion is given by

u
(
a4u4 + 1

) ∂

∂x

(
1

L0

∂F (u, x)

∂x

)
+

∂

∂u

(
u5

L0

∂F (u, x)

∂u

)
= 0 , (5.4)

where

L0 =

√
1 + (a4u4 + 1)

(
∂F (u, x)

∂x

)2

+ u4

(
∂F (u, x)

∂u

)2

. (5.5)

The solution near the boundary is given by:

x1(u, x2) = F (u, x) = ±
√
r2 − x2 ∓ r2 log(ua)

2u2x2
√
r2 − x2

+ . . . (5.6)

12For our purposes, it is particularly convenient to consider Cartesian coordinates. In the bulk geometry

given in (2.2) representing a circle in the {x1, x2}-plane using a polar coordinate is inconvenient, since there

is a non-trivial warp factor h(u).
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Figure 12. Behavior of the extremal surface for the commutative cylinder near the boundary.

Radius of the cylinder is ra = 2 at the boundary (black curve). The red curve is at ua = 5 and

blue curve is for ua = 2.

The sub-leading piece of the solution is a consequence of the fact that the bulk metric is

anisotropic. Near the boundary the extremal surface can be represented as (see figure 12)

x2
2 −

√
(r2 − x2

1)2 − 2r2 log(ua)

u2
= 0 . (5.7)

The curve above clearly demonstrates that the circle gets squashed along the x1-direction

as we move along the bulk radial direction.

To obtain the corresponding entanglement entropy, we need to solve the equation

in (5.4) numerically. Here we will not attempt so, instead let us focus on the divergence

structure of the entanglement entropy which can be deduced from the leading order solution

near the boundary. The divergent part of the entanglement entropy is given by13

S(A)div =
N2L

2π

[
α2ru2

b +
α2

r
(c1 + c2 ln(α)) + c3

r

a2
ln(α)

]
. (5.8)

As we have argued before, the corresponding minimal area surface should have less area

13At finite temperature, similar to the infinite strip case, there will be an additional cut-off dependent

term ∼ N2a2T 4Lr lnα.
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than a degenerate surface at u = ub,
14 with “area” N2L

2π u3
bπr

2. This constraint sets a lower

bound for the value for the radius of the cylinder

r &
1

π
a2ub =

2

π
lc = rc . (5.9)

This is reminiscent of the similar constraint we encountered earlier for the rectangular

strip.

5.2 Mutual information

Here we will merely argue that mutual information is still a well-defined, finite and cut-off

independent quantity above a minimal length-scale O(rc). We can consider the case of

three concentric circles of various radii and consider the two sub-regions as:

Region A = {(x1, x2) |x2
1 + x2

2 ≤ r2
1} , (5.10)

Region B = {(x1, x2) | r2
2 ≤ x2

1 + x2
2 ≤ r2

3} , (5.11)

where r1 < r2 < r3. In this case, the computation of S(A ∪B) will be more involved since

there are many candidate minimal area surfaces. However, it is easy to check that just like

the N = 4 SYM case:

S(A ∪B)|div = S(A)|div + S(B)|div , (5.12)

and hence

I(A,B) = finite . (5.13)

Thus it is again possible to construct a well-defined quantity derived from the entanglement

entropy as evaluated using the RT-formula.

6 More general shapes: noncommutative cylinder

Now let us discuss potentially a more intriguing case. Let us consider constructing a circle

in the {x2, x3}-plane and define the region A by

A = {(x2, x3) |x2
2 + x2

3 ≤ r2} . (6.1)

We also imagine that x1 ∈ [−L/2, L/2] with L → ∞. Note that this case falls under the

category where we pretend to draw a sharp curve in the otherwise fuzzy plane to investigate

what the classical bulk RT-surface yields.

To proceed we define the corresponding polar coordinate in the plane via: dx2
2 +dx2

3 =

dρ2 + ρ2dθ2. The bulk interpolating minimal area surface can now be parametrized by

ρ(u). With this, the area functional is given by

A =
2πR3L

g2
s

∫
u3ρ(u)du

√
ρ′(u)2 +

1

u4h(u)
, (6.2)

14Note that u = ub is not an exact solution of (5.4). We are taking this surface to estimate a possible

lower bound on r.
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Figure 13. Extremal surfaces for the noncommutative cylinder for different r for uba = 10. The

black line corresponds to the leading behavior of the critical solution (6.6) and all the other U-

shaped solutions asymptotically approach this solution as (uba) is taken to infinity. The vertical

red line denotes the location of the boundary.

which yields the following equation of motion

d

du

(
u3ρ(u)ρ′(u)

L0

)
= u3L0 , (6.3)

where

L0 =

√
ρ′(u)2 +

1

u4h(u)
. (6.4)

Now it can be checked that

ρ(u) = r + g(u) with g(ua→∞)→ 0 (6.5)

is not a solution, indicating there is no well-behaved solution for this case. Note that, had

such a solution existed, it would mean ρ′(u)/a2 � 1 at the boundary which is the hallmark

of a well-behaved solution.

To investigate this case further we will find out the best possible solution to the equation

of motion (6.3) that does not satisfy the condition (6.5). This means that we allow ρ′/a2 ∼
O(1) at the boundary.15 With this condition, it can be shown that near the boundary

15Note that ρ′/a2 is a dimensionless quantity.
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(ua� 1) one solution of the equation of motion (6.3) behaves in the following way:

ρc(u) =
a2

√
3
u

[
1 +

1

2a4u4
− 1

8a8u8
+O

(
1

a12u12

)]
, (6.6)

Now imposing the boundary condition ρ(ub) = r, for this solution we obtain

rc =
a2

√
3
ub . (6.7)

This solution yields the following divergence

S(A)|div = N2L

[
2a4u5

b

15
+
ub
3

]
= N2L

[
2r2
cu

3
b

5
+
ub
3

]
. (6.8)

It looks like the entanglement entropy in this case has a volume divergence and is rem-

iniscent of the volume divergence that we have encountered before while considering the

rectangular strip or the commutative cylinder geometries earlier.

There are other U-shaped solutions for this case; we have showed them in figure 13.

These numerical solutions are obtained by solving the equation (6.3) with boundary con-

ditions:

ρ(ub) = r and ρ(uc) = 0 , ρ′(uc)→∞ , (6.9)

where, u = uc is the closest approach point that depends on the radius r. One can check

that for all these solutions at the boundary ρ′(u) ∼ O(a2) .

Note that we have previously encountered solutions with the following boundary be-

haviours: (i) X ′ → 0 or (ii) X ′ → ∞ as u → ub, where X(u) represents the profile of

the minimal area surface. For the class of solutions in (i), we obtain a familiar area-law

behaviour for entanglement entropy and a finite mutual information. On the other hand,

the degenerate minimal area surfaces in (ii), e.g. the ones given by u = ub that do not

probe the bulk geometry at all, result in divergent mutual information. The physics is

qualitatively different for the noncommutative cylinder and the minimal area surfaces with

the boundary behaviour ρ′(u) ∼ O(a2), probe the bulk geometry.

It is important to note that the solution in (6.6) is an attractor to all these solutions

and hence in the limit uba→∞ all solutions correspond to the same radius in the boundary.

Therefore, to make sense of the calculation of entanglement entropy and to allow ourselves

to have various values of the radius, it is essential to introduce a cut-off uba = α, which is

large (α� 1) but finite.

It is interesting to check the behavior of leading divergence for the U-shaped solutions.

An analytic answer is no longer available; hence we have used numerical techniques to

investigate the issue (see plot 14). From figure 14, it is clear that there is a transition at

r = rc. For r > rc, we recover the familiar area law

S(A)|div =
2
√

3

5
N2L

[
q(ra)α2ru2

b + sub-leading terms
]
, r > rc , (6.10)
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Figure 14. Variation of entanglement entropy S(A) for the noncommutative cylinder with ra for

uba = 10. For r > rc,
5S(A)

2
√
3N2Lu4

ba
2r
∼ 1, indicating an area law behavior.

where q(ra) is an O(1) function of r and it can be shown that q(rca) = 1 and q(ra→∞) ∼
1.08. For r < rc, figure 14 indicates a volume divergence,

S(A)|div ∼ N2L

[
p(ra)

2r2u3
b

5
+ sub-leading terms

]
, r < rc , (6.11)

where p(ra) is another O(1) function of r. The divergence structure heavily depends on

ρ′(u) at the boundary. Solution ρc(u) in (6.6) is a critical solution with ρ′(u) = a2/
√

3;

for r < rc, ρ
′(ub) > a2/

√
3 (see figure 13) and we have a volume divergence. This is also

reminiscent of the volume behavior that we have encountered before. For r > rc when

ρ′(ub) < a2/
√

3 and we recover an area law for entanglement entropy. Interestingly, it can

also be checked that for large r

S(A)|cyl−noncom

S(A)|cyl−com
=

4π
√

3q(ra)

5
> 1 , (6.12)

which implies that there is more entanglement for the noncommutative cylinder.

Before we conclude, a few comments are in order: let us try to connect these results

with the discussion of section 2.3 where

F̂ (x1, x̂2, x̂3) = x̂2
2 + x̂2

3 − r2 (6.13)

with eigenvalues Fn = (n + 1
2)a2 − r2.16 Thus, entanglement entropy S(r) obtained by

tracing out all |Fn〉 with Fn > 0 should be a step function of r with step size δr ∼
a2/2r. However, RT-prescription provides us with an entanglement entropy S(r) which

16Note that in our case, the parameter a2 plays the role of renormalized noncommutivity parameter.
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is a continuous function of r because the relevant length scale for these calculations is

r ∼ uba2 and hence (δr/r)� 1.

It is extremely difficult to compute mutual information on this noncommutative plane;

however, strong dependence of the divergent part of the entanglement entropy on ρ′(u) indi-

cates that mutual information defined in the usual way, may not yield a cut-off independent

behaviour even above r = rc.

7 Conclusions

In this article we investigated aspects of quantum entanglement in a large N noncommuta-

tive gauge theory using the AdS/CFT correspondence. We observed that the RT-formula

allows us to obtain well-defined entanglement observables for a class of regions, which do

not completely lie on the noncommutative plane. This comes at the cost of introducing

an additional cut-off, which in the bulk geometry is realized as the degeneration of the

noncommutative torus. The corresponding leading divergence structure in entanglement

entropy is not altered by noncommutativity.

We have also observed that the role of this additional cut-off is more crucial if we want

to define entanglement entropy, via the RT-prescription, for a region residing entirely on

the noncommutative plane. In this case, the corresponding minimal area surfaces have

distinctly peculiar properties, which may lead to a volume-law behaviour for entanglement

entropy and also result in a divergent mutual information. It is interesting to note that if

the violation of an area-law stems from the inherent non-locality of the theory, it is not

clear why this violation is necessarily of volume-worth, rather than anything else bigger

than the area.

Let us also note that in the large N limit the noncommutative Yang-Mills theory

does not differ from the ordinary Yang-Mills one for a number of observables, e.g. the

thermodynamics is identical in both cases [17]. This stems from the general result obtained

in [18], which states that all planar Feynman diagrams in a noncommutative Yang-Mills

and an ordinary Yang-Mills theory are the same, unless there is an external momentum.

In this article we have observed that entanglement entropy, as obtained using RT-formula

actually receives a non-trivial contribution from the noncommutativity even at large N

and thus falls outside the class of observables for which the result in [18] holds. In the

large temperature limit, however, we do recover the thermal entropy as expected.

There are various directions for future explorations. In this article we have only fo-

cussed on the divergent part of entanglement entropy for general shapes of the sub-regions.

It will be interesting to analyze and understand the finite part of the entanglement entropy

for such regions. For the “rectangular strip”, it will also be interesting to explore the pos-

sible second order phase transition of entanglement entropy at finite temperature, which

we alluded to in section 4.

Let us conclude by saying that our analysis here does not involve any perturbative

field theoretic computation. It will be interesting to consider analyzing entanglement en-

tropy in a weakly coupled noncommutative field theory, or in a more elementary quantum

mechanical set-up. It is well-known that noncommutative theories do play an important
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role in understanding physical phenomenon, such as the Quantum Hall Effect [19]. Thus it

may also be of direct physical relevance to entertain such questions, even though we may

not learn anything directly related to issues in quantum gravity. We leave these issues for

future explorations.
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