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1 Introduction and summary

In renormalizable field theories, the entanglement entropy (EE) for a spatial region is

divergent in the continuum limit, with the leading divergence given by the so-called area

law [2, 3]:

S(Σ) = #
AΣ

δd−1
+ · · · , (1.1)

where δ is a short-distance cutoff, d is the number of spacetime dimensions, AΣ is the area

of the entangling surface Σ, and the dots stand for less singular terms. Equation (1.1) can

be interpreted as coming from degrees of freedom at the cutoff scale δ near Σ.

More generally, for a smooth Σ, one expects that local contributions (including all

divergences) near Σ to the entanglement entropy can be written in terms of local geometric

invariants of Σ [1, 4]

S
(Σ)
local =

∫
Σ
dd−2σ

√
hF (Kab, hab) (1.2)

where σ denotes coordinates on Σ, F is a sum of all possible local geometric invariants

formed from the induced metric hab and extrinsic curvature Kab of Σ. For a scalable surface

Σ of size R,1 the local contribution (1.2) should then have the following geometric expansion

S
(Σ)
local = a1R

d−2 + a2R
d−4 + · · · (1.3)

with the first term coinciding with (1.1). In (1.3) terms with positive exponents of R

are expected to be divergent,2 while an is finite, when the corresponding exponent of R

is negative.

The area law (1.1) and other subleading divergences in (1.3) indicate that EE is domi-

nated by physics at the cutoff scale and thus is not a well defined observable in the contin-

uum limit. This UV-sensitivity makes it difficult to extract long range correlations from EE.

A standard practice is to subtract the divergent part by hand. This may not be sufficient to

remove all the short-distance dependence, and is often ambiguous. For example, consider

the entanglement entropy of a disk of radius R in the vacuum of a (2+1)-dimensional free

massive scalar field theory. It was obtained in [5, 6] that for mR � 1, the entanglement

entropy has the behavior

S(R) = #
R

δ
− π

6
mR− π

240

1

mR
+ · · · . (1.4)

1A scalable surface can be specified by a size R and a number of dimensionless parameters characterizing

the shape.
2We assume a continuous regularization in which the size R can unambiguously defined.
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Subtracting the divergent #R
δ piece by hand, from the second term in (1.4) one finds that

in the IR limit (R → ∞), the resulting expression approaches −∞. This result appears

to be in conflict with the expectation that in the IR limit the system should have no

correlations. Ideally, we would have liked EE to go to zero. To understand what is going

on, note that the second term in (1.4) also has the form of an area law R/δ̃ with δ̃ ∼ 1
m ,

and thus can be interpreted as coming from physics at scale 1
m , which is still short-scale

physics compared to the IR scale R → ∞. A related observation is that the second term

in (1.4) is in fact ambiguous in the continuum limit, as its coefficient can be modified by

the following redefinition of δ

δ → δ (1 + cmδ + · · ·) (1.5)

with c some constant.

In [1] we introduced the renormalized entanglement entropy (REE)

S(Σ)
d (R) =


1

(d− 2)!!

(
R
d

dR
− 1

)(
R
d

dR
− 3

)
· · ·
(
R
d

dR
− (d− 2)

)
S(Σ)(R) d odd

1

(d− 2)!!
R
d

dR

(
R
d

dR
− 2

)
· · ·
(
R
d

dR
− (d− 2)

)
S(Σ)(R) d even

(1.6)

which was designed to remove all divergent terms in (1.3). It was shown there that the

REE has the following desired properties:3

1. It is unambiguously defined in the continuum limit.

2. For a CFT it is given by a R-independent constant s
(Σ)
d .

3. For a renormalizable quantum field theory, it interpolates between the values s
(Σ,UV)
d

and s
(Σ,IR)
d of the UV and IR fixed points as R is increased from zero to infinity.

4. It is most sensitive to degrees of freedom at scale R.

For example, applying (1.6) to (1.4) we find that the differential operator in (1.6) (for

d = 3) removes the first two terms in (1.4) and changes the sign of the last term, resulting

S3(R) = +
π

120

1

mR
+ · · · , mR→∞ (1.7)

which monotonically decreases to zero at large distances as desired.

For a general quantum field theory the REE can be interpreted as characterizing en-

tanglement at scale R. In particular, the R-dependence can be interpreted as describing

the renormalization group (RG) flow of entanglement entropy with distance scale. In [1],

it was conjectured that in three spacetime dimension the REE for a sphere Ssphere
3 is

monotonically decreasing and non-negative for the vacuum of Lorentz invariant, unitary

QFTs, providing a central function for the F-theorem conjectured previously in [7–11]. The

3The differential operator (1.6) can be applied to the Rényi entropies and the following statements also

apply to renormalized Rényi entropies.
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monotonic nature of Ssphere
3 , and thus the F-theorem, was subsequently proved in [12]. In

(1 + 1)-dimension, S2 reduces to an expression previously considered in [13, 14], where its

monotonicity was also established. There are, however, some indications [1] that in four

spacetime dimensions Ssphere
4 is neither monotonic nor non-negative.

More generally, regardless of whether it is monotonic, REE provides a new set of

observables to probe RG flows.4 From REE, one can introduce an “entropic function”

defined in the space of couplings (or in other words the space of theories)

C(Σ)(ga(Λ)) ≡ S(Σ) (RΛ, ga(Λ))
∣∣
R= 1

Λ
= S(Σ) (1, ga(Λ)) (1.8)

where ga(Λ) denotes collectively all couplings and Λ is the RG energy scale. Given that

S(Σ) is a measurable quantity, it should satisfy the Callan-Symanzik equation

Λ
dS(Σ) (RΛ, ga(Λ))

dΛ
= 0 , (1.9)

which leads to

Λ
dC(Σ)(ga(Λ))

dΛ
= −RdS

(Σ) (RΛ, ga(Λ))

dR

∣∣∣∣
R= 1

Λ

. (1.10)

The R-dependence of S(Σ) is translated into the running of C(Σ)(g(Λ)) in the space of

couplings, with R → 0 and R → ∞ limits correspond to approaching UV and IR fixed

points of RG flows. At a fixed point g∗, C(Σ)(g∗) = s
(Σ)
d and the monotonicity of S(Σ) with

respect to R translates to the monotonicity of C(Σ) with respect to Λ.

For Σ being a sphere, some partial results were obtained earlier in [1, 15] for the small

and large R behavior of REE (or equivalently for C near a UV and IR fixed point) in

holographic theories. From now on we will focus on a spherical region and suppress the

superscript (Σ) on S and C. For a (UV) fixed point perturbed by a relevant operator of

dimension ∆ < d, it was found that

Sd(R) = s
(UV)
d −A(∆)(µR)2(d−∆) + · · · , R→ 0 (1.11)

where µ is a mass scale with the relevant (dimensional) coupling given by g = µd−∆, and

A(∆) is some positive constant. The above equation leads to an entropic function given by

Cd(g) = s
(UV)
d −A(∆)g2

eff(Λ), Λ→∞ (1.12)

where geff(Λ) = gΛ∆−d is the effective dimensionless coupling at scale Λ. Equation (1.12)

has a simple interpretation that the leading UV behavior of the entropic function is con-

trolled by the two-point correlation function of the corresponding relevant operator. We

expect this result to be valid also outside holographic systems. This appears to be also

consistent with general arguments from conformal perturbation theory [18]. It is curious,

however, that low dimensional free theories defy this expectation. For example in d = 2,

as R→ 0 [19–21]

free scalar : S2(R) =
1

3
+

1

log (m2R2)
+ · · · (1.13)

Dirac fermion : S2(R) =
1

3
− 4m2R2 log2

(
m2R2

)
+ · · · , (1.14)

4See [16, 17] for other ideas for probing RG flows using entanglement entropy.
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while for a d = 3 free massive scalar [22] ruled out the m4R4 short distance behavior

based on numerics.5 It is interesting that the logarithmic terms in (1.13), (1.14) do not

appear in holographic theories. The physical origin of these terms is not fully understood,

and it would be desirable to have a field theory computation that reproduces both (1.11)

and (1.13), (1.14).

Near an IR fixed point, it was argued in [1] that the large R behavior of S(R) should

have the form

2Sd(R) = s
(IR)
d +

B(∆̃)

(µ̃R)2(∆̃−d)
· · ·

+


s1

µ̃R
+

s3

(µ̃R)3
+ · · · odd d

s2

(µ̃R)2
+

s4

(µ̃R)4
+ · · · even d

, R→∞ , (1.15)

where ∆̃ > d is the dimension of the leading irrelevant operator, µ̃ is a mass scale char-

acterizing the irrelevant perturbation, and B(∆̃) is a constant. The first line, similar

to (1.11), has a natural interpretation in terms of conformal perturbations of the IR fixed

point. The coefficient B(∆̃) is expected to depend only on physics of the IR fixed point.

In terms of irrelevant coupling g̃ = µ̃d−∆ corresponding to the leading irrelevant operator,

equation (1.15) leads to

C(Λ) = s
(IR)
d +B(∆̃)g̃2

eff(Λ) + · · ·

+


s1g̃

1
∆̃−d
eff (Λ) + · · · odd d

s2g̃
2

∆̃−d
eff (Λ) + · · · even d

, Λ→∞ , (1.16)

where g̃eff(Λ) = g̃Λ∆̃−d is the effective dimensionless coupling at scale Λ. It is amusing

that the “analytic” contributions in 1/R in (1.15) lead to non-analytic dependence on

the coupling while non-analytic contributions in 1/R lead to analytic dependence on the

coupling. Note the first line dominates for

∆̃ <

d+
1

2
odd d

d+ 1 even d
(1.17)

i.e. if the leading irrelevant operator is not too irrelevant. Note in this range B(∆̃) > 0. The

second line of (1.15)–(1.16) can be expected from (1.3): the contributions of any degrees of

freedom at some lengths scale `� R should have an expansion of the form (1.3). Thus the

coefficients sn are expected to depend on the RG trajectory from the cutoff scale δ to R.6

Support for (1.15) was provided in [1] by examining holographic RG flows between

two closely separated fixed points. In this paper we prove (1.15) for all Lorentz invariant

5Note that the relevant deformation of the massless scalar UV fixed point, φ2 has dimension ∆ = 1,

hence (1.11) would predict an m4R4 behavior.
6Since here we consider the R→∞ limit sn should thus depend on the full RG trajectory from δ to ∞.
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holographic flows with an IR conformal fixed point, which is described on the gravity

side by a domain wall geometry interpolating between two AdS spacetimes of different

cosmological constant. In particular, we show that B(∆̃) is the same as that obtained

earlier for RG flows between two closely separated fixed points; this is consistent with the

expectation that it should only depend on the physics at the IR fixed point. We obtain

a general expression for s1 in d = 3 in terms of an integral of the spacetime metric over

the full spacetime. With more diligence, other coefficients in generic d dimensions can be

straightforwardly obtained using our techniques, although we will not determine them here.

In addition to domain wall geometries, we also consider a class of geometries, which

are singular in the IR. These correspond to either gapped systems, or systems whose IR

fixed point does not have a gravity description (or has degrees of freedom smaller than

O(N2)). We will see that for these geometries the asymptotic behavior of REE provides a

simple diagnostic of IR gapless degrees of freedom.

While in this paper we focus on the vacuum flows, the techniques we develop can

be used to obtain the large R expansion of the entanglement entropy for generic static

holographic geometries, including nonzero temperature and chemical potential. As an

illustration we study the behavior of extremal surfaces in a general black hole geometry in

the large size limit. We also show that, in this limit, for any shape of the entangling surface

the leading behavior of the EE is the thermal entropy. While this result is anticipated, a

general holographic proof appears to be lacking so far.

For d = 2, 3, the monotonicity of Sd in R leads to a monotonic Cd in coupling space,

i.e. Cd is a c-function. Equations (1.13)–(1.14) show that for a free massive field, C2 is not

stationary near the UV fixed point, and neither is C3 for a free massive scalar field, as

pointed out in [22]. From (1.16) we see that Cd is in fact generically non-stationary near an

IR fixed point for ∆̃− d > 1
2 (∆̃− d > 1) for odd (even) dimensions. The physical reason

behind the non-stationarity is simple: while the contribution from degrees of freedom at

short length scales are suppressed in Sd, they are only suppressed as a fixed inverse power

of R, and are the dominant subleading contribution, when the leading irrelevant operator

is sufficiently irrelevant. The non-stationarity of S (or C) is independent of the monotonic

nature of S (or C) and should not affect the validity of c- or F-theorems. In contrast to the

Zamolodchikov c-function [23], which is stationary, in our opinion, the non-stationarity of

C should be considered as an advantage, as it provides a more sensitive probe of RG flows.

For example, from (1.16) by merely examining the leading approach to an IR fixed point,

one could put constraints on the dimension of the leading irrelevant operator.

While in this paper we will be mainly interested in taking the entangling surface to be

a sphere of radius R, for comparison we also examine the IR behavior for a strip. Since

the boundary of a strip is not scalable, the definition (1.6) has to be modified. Consider

a strip

x1 ∈ (−R,R), xi ∈ (0, `), i = 2, · · · , d− 1 (1.18)

where for convenience we have put other spatial directions to have a finite size `→∞. Note

that due to translational symmetries of the entangled region in xi directions, the EE should

have an extensive dependence on `, i.e. it should be proportional to `d−2. Furthermore, for

– 5 –
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the boundary of a strip the extrinsic curvature and all tangential derivatives vanish. Hence

we conclude that the only divergence is the area term

Sstrip(R) = `d−2

(
#

δd−2
+ finite

)
. (1.19)

In particular, the divergent term should be R-independent. This thus motivates us to

consider R dS
dR , which should be finite and devoid of any cutoff dependent ambiguities.

Given that all the dependence in S on ` comes from the over factor `d−2, it is convenient

to introduce dimensionless quantity Rd defined by

R
dS

dR
≡ `d−2

Rd−2
Rd(R) . (1.20)

This quantity was considered earlier in [24, 25]. For a CFT there is no scale other than

R, hence Rd should be a R-independent constant, which can be readily extracted from

expressions in [25, 26]. For a general QFT, Rd should be a dimensionless combination of

R and other possible mass scales of the system.

Calculating Rd for a domain wall geometry describing flows among two conformal fixed

points, we find an interesting surprise. The second line of (1.15) can be understood from

a local curvature expansion associated with a spherical entangling surface. Such curvature

invariants altogether vanish for a strip and thus one may expect that for a strip only the

first line of (1.15) should be present. We find instead find that Rd has the large R behavior

Rd(R) = R(IR)
d + c(∆̃)(µ̃R)−2(∆̃−d) + . . .

+td(µ̃R)−d + . . . , (1.21)

where R(IR)
d is R-independent constant characterizing the IR fixed point, c(∆̃) is a constant

which depends only on the IR data, while the constant td involves an integral over the whole

radial direction, signaling that this term receives contributions from degrees of freedom of

all length scales. Note that similarly to the sphere case, the terms in the second line is the

leading approach to the IR fixed point value for ∆̃ > 3d/2. Note that the terms we find

come from the following terms in Sstrip(R):

Sstrip(R) = `d−2

(
#

δd−2
−

R(IR)
d

(d− 2)Rd−2
− c(∆̃)

(2∆̃− d− 2)µ̃2(∆̃−d)
R−(2∆̃−d−2) + . . .

− td
2(d− 1)µ̃d

(µ̃R)−2(d−1) + . . .

)
. (1.22)

It would be interesting to see, whether it is possible to identify a geometric origin for the

terms in the second line.

The paper is organized as follows. In section 2 we discuss the holographic geometries

to be considered, and outline a general strategy to obtain the large R expansion of REE for

a spherical region for generic holographic geometries. In section 3 we consider holographic

theories which are gapped or whose IR fixed point does not have a good gravity descrip-

tion. In section 4 we elaborate more on the physical interpretation of such geometries and

consider some explicit examples. In section 5 we consider domain wall geometries with an

IR conformal fixed point. We conclude in section 6 with some applications of the formalism

to the black hole geometry.

– 6 –
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2 Setup of the calculation and general strategy

In this section we describe the basic setup for our calculations and outline the

general strategy.

2.1 The metric

The RG flow of a Lorentz-invariant holographic system in the vacuum can be described by

a metric of the form

ds2 =
L2

z2

(
−dt2 + d~x2 +

dz2

f(z)

)
, (2.1)

where L is the AdS radius and near the boundary

f(z)→ 1, z → 0 . (2.2)

The null energy condition requires f to be monotonically increasing. The IR behavior, as

z →∞ can then have the following two possibilities:

1. f approaches a finite constant

f(z)→ L2

L2
IR

≡ f∞ > 1, z →∞ . (2.3)

In this case, the IR geometry is given by AdS with radius LIR < L, and thus the

system flows to an IR conformal fixed point. Near the IR fixed point, i.e. z →∞, f

can be expanded as

f(z) = f∞

(
1− 1

(µ̃z)2α̃
+ · · ·

)
, (2.4)

where α̃ = ∆̃ − d, with ∆̃ being the dimension of the leading irrelevant per-

turbing operator at the IR fixed point, and µ̃ is a mass scale characterizing

irrelevant perturbations.

2. The spacetime becomes singular at z =∞:

f(z) = azn + · · · , a > 0, n > 0 . (2.5)

Due to the singularity at z =∞, one might be concerned, whether one could trust the

holographic entanglement entropy obtained in such a geometry. We will see, however,

that the results obtained in this paper only depend on the existence of the scaling

behavior (2.5) for a certain range of z and are insensitive to how the singularity at

z =∞ is resolved.

Since n > 0, the singularity lies at a finite proper distance away and the naive

expectation is the corresponding IR phase should be gapped. As we will discuss

later, it turns out this is only true for n > 2, an example of which is the GPPZ

flow [27]. For n < 2, the story is more intricate and there exist gapless modes in the

IR. Below we will refer to n < 2 geometries scaling geometries, examples of which

include the near horizon geometries of D1, D2 and D4-branes. In these examples, the

– 7 –
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IR fixed point either does not have a good gravity description (like in the case of D1

or D4 branes) or the number of degrees of freedom at the IR fixed point scales with N

with a lower power than N2 (like in the case of D2 branes, where the IR description

is in terms of M2 branes giving N3/2 degrees of freedom). Thus one should interpret

the scaling region (2.5) as describing an intermediate scaling regime of the boundary

theory before the true IR phase is reached.

In our subsequent discussion we will assume that there exists a crossover scale zCO such

that (2.4) or (2.5) is valid for

z � zCO . (2.6)

While in this paper we will be focusing on vacuum solutions (i.e. with Lorentz sym-

metry), since the holographic computation of the entanglement entropy for a static system

only depends on the spatial part of the metric [26], the techniques we develop in this paper

for calculating the large R behavior of the REE also apply to a more general class of metrics

of the form

ds2 =
L2

z2

(
−g(z)dt2 + d~x2 +

dz2

f(z)

)
. (2.7)

This is in fact the most general metric describing a translational and rotational invariant

boundary system including all finite temperature and finite chemical potential solutions. g

does not directly enters the computation of the REE. Its presence is felt in the more general

behavior allowed for f ; the null energy condition no longer requires f to be monotonically

increasing. For example, for a black hole solution f decreases from the boundary value 1

to zero at the horizon. The null energy condition also allows n < 0 in (2.5) for certain

g. One such example is the hyperscaling violating solution [28–32] (at T = 0), where the

metric functions have the scaling form

g(z) = bzm f(z) = azn, z →∞ . (2.8)

We will discuss the black hole case in section 6.

2.2 Holographic entanglement entropy: strip

We first discuss the holographic entanglement entropy of the strip region (1.18). It is

obtained by minimizing the action:

Sstrip(R) =
Ld−1

4GN
`d−2A (2.9)

where GN is the bulk Newton constant and A is the area functional [26, 33]. If the

spacetime is singular, as in the case of (2.5), the minimal surface can become disconnected.

In this case, the minimal surface consists of two disconnected straight planes x(z) = ±R.

The minimal surface area is independent from R due to the translational symmetry of the

problem. If the surface is connected, its area is given by

A =

∫ R

−R
dx

1

zd−1

√
1 +

z′2

f(z)
. (2.10)

– 8 –
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The shape of the entangling surface is specified by the boundary conditions

z(x = R) = 0, z′(x = 0) = 0 . (2.11)

Since the action has no implicit dependence on x, we have an associated conserved quantity:

1

zd−1

1√
1 + z′2

f

= const . (2.12)

This reduces the equation of motion to first order:

z′ = − 1

zd−1

√
f(z)

(
z

2(d−1)
t − z2(d−1)

)
, (2.13)

where zt = z(x = 0) gives the tip of the minimal surface. zt is determined by requiring

z(R) = 0. I.e.

R =

∫ zt

0
du

ud−1√
f(u)

(
z

2(d−1)
t − u2(d−1)

) = zt

∫ 1

0
dv

vd−1√
f(ztv)(1− v2(d−1))

. (2.14)

Inverting this implicit equation gives the relation zt(R). Using (2.13) we can also

write (2.10) as

A =
2

zd−2
t

∫ 1

δ
zt

dv

vd−1

1√
f(ztv)(1− v2(d−1))

(2.15)

where δ is a UV cutoff.

Expanding (2.13) near the boundary z = 0, we find the expansion

x(z) = R− zd

d zd−1
t

+ · · · . (2.16)

Varying (2.10) with respect to R and using (2.16), we find that

Rd−1 dA

dR
= 2

(
R

zt

)d−1

(2.17)

which implies that Rd(R) defined in (1.20) is given by

Rd =
Ld−1

2GN

(
R

zt

)d−1

. (2.18)

Thus to find Rd it is enough to invert (2.14) to obtain zt(R). (2.18) was obtained before

in [24].
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2.3 Holographic entanglement entropy: sphere

Writing d~x2 = dρ2 +ρ2dΩ2
d−2 in polar coordinates, the entanglement entropy for a spherical

region of radius R can be written as

S(R) =
Ld−1

4GN
ωd−2A ≡ KA , (2.19)

where ωd−2 is the area of a unit (d−2)-dimensional sphere and A is obtained by minimizing

the surface area

A =

∫ R

0
dρ

ρd−2

zd−1

√
1 +

z′2

f(z)
=

∫ zt

0
dz

ρd−2

zd−1

√
ρ′2 +

1

f(z)
, (2.20)

where zt denotes the tip of the minimal surface. The boundary conditions are

ρ(z = 0) = R, ρ(zt) = 0, ρ′(zt) =∞ . (2.21)

As discussed in [1], for (2.5) it is also possible for the minimal surface to have the cylinder

topology, for which zt =∞ and the IR boundary conditions become

ρ(z)→ ρ0, ρ′(z)→ 0, z →∞ , (2.22)

with ρ0 a finite constant. The equation of motion can be written as

(d− 2)
1

f
+ (d− 1)

ρρ′

z
= ρ

√
ρ′2 +

1

f
∂z

 ρ′√
ρ′2 + 1

f

 (2.23)

or

fz′′ +

(
d− 2

ρ
z′ +

(d− 1)f

z

)(
f + z′2

)
− ∂zf

2
z′2 = 0 . (2.24)

In general, ρ(z) can be expanded near the boundary in small z as

ρ(z) = R− z2

2R
+ · · ·+ cd(R)zd + · · · , (2.25)

where all coefficients except cd(R) can be determined locally (or in terms of cd). One can

show that [1]
dA

dR
= −dRd−2cd(R)− ed

R
+ · · · , (2.26)

where · · · denotes non-universal terms which drop out when acted on with the differen-

tial operator in (1.6), and ed is a constant, which is nonvanishing only for d = 4, 8, · · · .
Using (2.26) one can express the REE (1.6) in terms of cd(R). For example, for d = 3

1

K
S3(R) = −3R2c3(R) + 3

∫ R

0
dRRc3(R) + C (2.27)

where C is determined by requiring that S3(R = 0) reduces to the value at the UV fixed

point, and for d = 4,
1

K
S4 = 1− 2R3c4(R)− 2R4dc4

dR
. (2.28)

One could also obtain Sd by directly evaluating the action (2.20) and then taking the

appropriate derivatives (1.6).
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2.4 Strategy for obtaining the entanglement entropy for a sphere

In general it is not possible to solve (2.23) or (2.24) exactly. Here we outline a strategy to

obtain the large R expansion of S(R) (or Sd(R)) via a matching procedure:

1. Expand ρ(R) in (2.23) in 1/R as

ρ(z) = R− ρ1(z)

R
− ρ3(z)

R3
+ · · · − ρ̂(z)

Rν
+ . . . . (2.29)

Note that the above expansion applies to the vacuum. For a black hole geometry one

should include all integer powers of 1/R as we will discuss in more detail in section 6.

The expansion (2.29) should be considered as an ansatz, motived by (1.15) one wants

to show, but should be ultimately confirmed by the mathematical consistency of the

expansion itself (and the matching described below).

Depending on the IR behavior of a system, the large R expansion (2.29) can contain

terms which are not odd powers of 1/R. We have denoted the exponent of the first

such term in (2.29) as ν, whose value will be determined later. The expansion is valid

for ρ(z) close to R, i.e. ρ1

R � R etc. It is clearly valid near the boundary (i.e. small z

where (2.25) applies), but depending on the configuration of the minimal surface it

may also apply to regions, where z is not small, as far as higher order terms in (2.29)

remain small compared to R.

2. Determine the IR part (i.e. in the region where (2.3) or (2.5) applies) of the minimal

surface in a large R expansion. This has to be done case by case, as the IR expansions

are different for different IR geometries.

3. Match the two solutions in the appropriate matching region. At the end of the

matching procedure all free constants get determined including cd(R) of (2.25).

See figure 1 for an illustration of the matching procedure and in figure 2 we show how the

minimal surfaces look for different IR geometries.

From (2.29) we see that cd(R) in (2.25) takes the following expansion

cd(R) = − b1
dR
− b3
dR3

+ · · · − b̂

dRν
+ · · · , (2.30)

where bn and b̂ are some R-independent constants. It follows from (2.26) and (1.6) that

a term proportional to 1/Rn in (2.30) contributes to Sd a term of order 1/Rn−d+1, whose

coefficient contains a factor (n−1)(n−3) · · · (n−(d−2)) for odd d, or (n−1)(n−3) · · · (n−
(d − 3)) for even d. Thus, among the integer powers of 1/R in (2.30), in odd d the first

possible nonvanishing contribution to Sd comes from bd giving a term proportional to 1/R,

and in even d the first possible nonvanishing contribution comes from bd−1 giving a term of

order O(R0). Furthermore, the terms in (2.30) with odd integer powers will only give rise

to odd inverse powers of R in odd dimensions and even inverse powers in even dimensions,

as in the second line of (1.15). Finally from (2.26) and (1.6), a term proportional to R−ν
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Figure 1. Sketch of the R → ∞ minimal surface in a domain wall geometry (2.1)–(2.3). The

violet and red regions represent the UV and IR regions of the expansion. The UV and IR solutions

overlap in the matching region, which is used to determine the parameters of the two expansions.

-3 -2 -1 1 2 3
Ρ

1

2

3

4

5

6

7

8

(a) Minimal surface for a gapped geometry (2.5)

with n > 2.

-3 -2 -1 1 2 3
Ρ

5

10

15

20

(b) Minimal surface for a scaling geometry with

0 < n < 2.

-5 -4 -3 -2 -1 1 2 3 4 5
Ρ

1

2

3

4

5

6

7

8

(c) Minimal surface for a domain wall geometry

with IR geometry given by (2.3).

(d) Minimal surface for a Schwarzshild black

hole. The beyond the horizon region is marked

by gray.

Figure 2. Samples of minimal surfaces for IR geometries that fall into four different categories.
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in (2.30) gives a contribution

Sd(R) = · · ·+Rd−1−ν K b̂

(d− 1− ν) Γ(1−ν
2 ) Γ(d2)


√
π Γ

(
d− ν

2

)
odd d

2 Γ

(
d+ 1− ν

2

)
even d

+ · · · . (2.31)

2.5 UV expansion

We now examine more explicitly the UV expansion (2.29) for the sphere, which is the same

for all geometries of the form (2.1). The IR expansion and matching will be discussed in

later sections case by case.

The equation for ρi(z) can be written as

zd−1

√
f

( √
f

zd−1
ρ′i

)′
= si , (2.32)

where si denotes a source from lower order terms with, for example,

s1 = −d− 2

f
. (2.33)

The equation for ρ1 can be readily integrated to give

ρ1(z) = b1ρhom(z)− (d− 2)

∫ z

0
du

ud−1√
f(u)

∫ u

∞
dv

1

vd−1
√
f(v)

, (2.34)

where b1 is an integration constant and ρhom is the homogenous solution to (2.32)

ρhom(z) =

∫ z

0
du

ud−1√
f(u)

. (2.35)

In particular because its unique R-dependence there are no source terms for ρ̂(z), thus it

takes the form:

ρ̂(z) = b̂ρhom(z) . (2.36)

As z → 0, ρ1 and ρ̂ has the leading behavior (for d ≥ 2)

ρ1(z) = O(z2), ρ̂(z) =
b̂

d
zd + · · · . (2.37)

Note that the normalization of ρhom in (2.36) was chosen such that the contribution to

cd(R), read off from (2.37), gives the term appearing in (2.30).

3 Gapped and scaling geometries

In this section we consider the large R behavior of the REE for holographic systems,

whose IR geometry is described by (2.5). As mentioned below (2.5) there is an important

difference between n > 2 and n ≤ 2, to which we refer as gapped and scaling geometries

respectively. For comparison we will treat them side by side. We will first consider the

strip and then the sphere case.
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3.1 Strip

In (2.14) to leading order in large zt, we can replace f(z) in the integrand by its large z

behavior f(z) = azn, leading to

R(zt) = zt

[∫ 1

0
dv

vd−1√
a(ztv)n(1− v2(d−1))

+ · · ·

]
=

α√
a
z

1−n
2

t + · · · , zt →∞ (3.1)

with

α =
2
√
π Γ
(

1
2 + η

4

)
(2− n) Γ

(η
4

) , η ≡ 2− n
d− 1

. (3.2)

For small zt we can replace f(ztv) in (2.14) by 1 and thus

R(zt) =
zt
d

+ · · · , zt → 0 . (3.3)

For n > 2, the function R(zt) then goes to zero for both zt → 0 and zt →∞, and thus

must have a maximum in between at some z
(max)
t . Introducing

Rmax = z
(max)
t

∫ 1

0
dv

vd−1√
f(z

(max)
t v)(1− v2(d−1))

(3.4)

we conclude that for R > Rmax there is no minimal surface with strip topology. Instead, the

minimal surface is just two disconnected straight planes x(z) = ±R. The minimal surface

area is independent from R due to the translational symmetry of the problem. We conclude

that for n > 2 in the R→∞ limit S becomes independent of R, hence Rd(R > Rmax) = 0.

For n = 2, R(zt)→ const at large zt, and again in this case there is no minimal surface of

strip topology and Rd(R > Rmax) = 0.

For n < 2, inserting (3.1) into (2.18) we find that

Rd =
Ld−1

2GN

(
α2

aRn

) 1
η

+ · · · ∝ R−β , 0 < n < 2 (3.5)

with

β = n
d− 1

2− n
=
n

η
. (3.6)

This result also applies to a hyperscaling violating geometry (2.8), and agrees with the

scaling derived in [32].

3.2 Sphere

Since for d = 2, the sphere and strip coincide (the answer is then given by (3.5)), we will

restrict our discussion below to d ≥ 3.

3.2.1 IR expansion

We first consider the behavior of the minimal surface in the IR geometry (2.5). Plugging

f(z) = azn into (2.23) we notice that if ρ̄(z) satisfies the resulting equation with a = 1, then

ρ(z) = ρ̄
(
a−

1
2−n z

)
(3.7)
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satisfies (2.23) for any a. Furthermore, equation (2.23) is invariant under the scaling

ρ→ λ
2−n

2 ρ , z → λz , (3.8)

which implies that if ρ(z) is a solution to (2.23), so is ρλ(z) = λ
2−n

2 ρ(λ−1z).

Solutions of two different topologies are possible. As discussed in [1], for n > 2, in

the large R limit the minimal surface has the topology of a cylinder, while for n ≤ 2, the

minimal surface has the topology of a disk. See figure 2(a) and figure 2(b).

For a solution of cylinder topology (i.e. for n > 2) the IR solution satisfies

ρ(z)→ ρ0, ⇒ ρλ(z)→ λ
2−n

2 ρ0, z →∞ . (3.9)

Introducing a solution ρ̄c(z) to (2.23) with a = 1, which satisfies the condition

ρ̄c(z →∞) = 1 , (3.10)

we can write a general ρ(z) in a scaling form

ρ(z) = ρ0ρ̄c(v), v ≡ (ρ2
0a)

1
n−2 z . (3.11)

From (2.23), ρ(z) has the large z expansion (see also appendix C of [1])

ρ(z) = ρ0 +
2(d− 2)

ρ0a(n− 2)(n+ 2d− 4)
z2−n + · · · , z →∞, n > 2 . (3.12)

For a solution of disk topology (i.e. for n ≤ 2), there should exist a zt <∞, where

zt = z(ρ = 0) or ρ(zt) = 0 . (3.13)

Now introducing a solution ρ̄d(z) to (2.23) with a = 1, which satisfies the boundary condi-

tion ρ̄d(1) = 0, we can write ρ(z) in a scaling form

ρ(z) =
z

(2−n)/2
t √

a
ρ̄d (u) , with u ≡ z

zt
, ρ̄d(u = 1) = 0 . (3.14)

Note that by taking zt sufficiently large, u can be small even for z � zCO, where (2.5)

applies. Expanding ρ̄d in small u one finds that

ρ̄d(u) = ᾱ0 +
α1

ᾱ0
u2−n +

α2

ᾱ3
0

u2(2−n) + · · ·

+
h̄

ᾱ
2
η

0

ud−n/2 + · · · , u→ 0 , (3.15)

where η was introduced in (3.2) and

α1 = − 2(d− 2)

(2− n)(2d− 4 + n)
, · · · . (3.16)
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ᾱ0 and h̄ are numerical constants that can be obtained by numerically solving the equation

of motion. Using (3.15), we then get the expansion for ρ(z):

ρ(z) = α0 +
α1

aα0
z2−n +

α2

a2α3
0

z2(2−n) + · · ·

+
h̄

a
1
η

+ 1
2α

2
η

0

zd−n/2 + · · · (3.17)

with

α0 ≡
ᾱ0 z

(2−n)/2
t√
a

. (3.18)

This is all the information we need about the IR solution. Note that the above expansion

applies to the range of z, which satisfies

z � zCO,
z

zt
� 1 . (3.19)

The small u expansion (3.15) is singular for n = 2, as can be seen from (3.16). Hence the

n = 2 case should be treated separately, see appendix A.

3.2.2 Matching

We first examine the UV solutions (2.34) and (2.36) for a sufficiently large z so that (2.5)

applies. At leading order in large z, we then find that

ρ1(z) =

∫ z

0
du

ud−1√
f(u)

(
b1 + (d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

)
=

b1√
a

zd−n/2

d− n/2
(1 + . . .) +

2(d− 2)

(2− n)(2d− 4 + n) a
z2−n (1 + . . .) (3.20)

ρ̂(z) =
b̂√
a

zd−n/2

d− n/2
(1 + . . .) . (3.21)

Plugging (3.20) and (3.21) into (2.29), we see that to match the UV expansion with

the n > 2 solution (3.12) at large z, we require

b1 = b̂ = 0, ρ0 = R . (3.22)

We see that the UV expansion in fact directly matches to the behavior at z →∞ without

the need of an intermediate matching region. Thus in this case the UV expansion (2.29)

can be extended to arbitrary z without breaking down, which can be verified by showing

that higher order terms are all finite for any z. This is also intuitively clear from figure 2(a)

where for large R the minimal surface has a large radius at any z. Note that, since b̂ = 0,

the non-integer ν term in (2.29) is not present.

For n < 2, where the minimal surface has the topology of a disk, the UV expansion is

destined to break down at certain point before the tip of the minimal surface is reached. In

the region (3.19) both the IR and UV expansions apply, and by comparing (3.20) and (3.21)

with (3.17), we find that they match precisely provided that

α0 = R, b1 = 0, b̂ = −
(
d− n

2

)
h̄a
− 1
η , ν =

2

η
. (3.23)
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From (3.18) we conclude that zt scales with R as

zt ∼ R
2

2−n , R→∞ . (3.24)

Again, the story for n = 2 is discussed in appendix A with equation (3.24) replaced by

zt ∼ exp

(
−(d− 1)2 a

2(d− 2)
R2

)
. (3.25)

3.2.3 Asymptotic expansion of the REE

We will now obtain the leading order behavior of the REE in the large R limit.

1. n > 2 Let us first consider n > 2. From the discussion below (2.30), we expect the

leading order term for odd d to be proportional to 1/R, which comes from the 1/Rd term

in the expansion of cd. For even d, the leading term can in principle be 1/R0, which comes

from the 1/Rd−1 term in the expansion of cd. Note, however, since this a gapped system,

we expect the order 1/R0 term to vanish. So, for even d, the leading term should come

from the 1/Rd+1 term.

Since even for d = 3 we would need to know c3(R) to 1/R3 order, and we only worked

out ρ1 (which only determines c3(R) to 1/R), our results seem insufficient to determine the

1/R contribution to S3. However, the 1/R contribution to S3 can be obtained by directly

evaluating the on-shell action [15], as the 1/R piece is the next to leading term in the large

R expansion of S. For d = 4, we can use ρ1 to verify that the 1/R0 term (in the REE)

vanishes as expected for a gapped system. With due diligence, it is straightforward to work

out higher order terms, but will not be attempted here.

For d = 3, plugging (2.29) into (2.20) we have the expansion

A = R

∫ ∞
δ

dz
1

z2
√
f(z)

+
1

R

∫ ∞
0

dz

[√
f(z)

2z2
ρ′1(z)2 − ρ1(z)

z2
√
f(z)

]
+O

(
1

R3

)
= #R+

1

R

∫ ∞
0

dz

[√
f(z)

2z2
ρ′1(z)2 + ρ1(z)

(√
fρ′1
z2

)′]
+O

(
1

R3

)
, (3.26)

where in the second line we have used (2.32). Integrating by parts the second term in the

integrand we find that

A = #R− 1

R

∫ ∞
0

dz

√
f(z)

2z2
ρ′1(z)2 , (3.27)

where the boundary terms vanishe due to (2.37) and (3.12). We thus find that

A = #R− a1

2R
+ · · · , a1 =

∫ ∞
0

dz
z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

. (3.28)

It is desirable to make work with dimensionless coefficients that only depend on ratios of

scales. We can use

µ̃ ≡ a1/n (3.29)
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as an energy scale and define the dimensionless coefficient

s1 ≡ µ̃ a1 =

∫ ∞
0

dz
z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

, (3.30)

where all integration variables are dimensionless, and s1 only depends on ratios of scales,

e.g. (µ̃ zCO). Finally, we obtain

S3 =
s1K

µ̃R
+ · · · , n > 2 . (3.31)

This result agrees with those in [15]. It is interesting to note that the coefficient of 1/R

term depends on the full spacetime metric, i.e. in terms of the boundary theory, the full

RG trajectory.

For d = 4, the expansion of A has the form

A = a0R
2 + a2 +O(1/R2) (3.32)

where

a0 =

∫ ∞
δ

dz
1

z3
√
f(z)

, a2 =

∫ ∞
δ

dz
f(z)ρ′1(z)2 − 4ρ1(z)

2z3
√
f(z)

(3.33)

with δ a UV cutoff. Neither of the first two terms indicated in (3.32) will contribute to

S4 after differentiations in (1.6). As expected, a0 ∼ 1/δ2 is UV divergent. a2 contains a

logarithmic UV divergence log δµ, where µ is mass scale controlling the leading relevant

perturbation from the UV fixed point. At large z, from (3.20) and (3.22) ρ1 ∼ z2−n, hence

the integrand for a2 goes as ∼ z−1−3n/2, and the integral is convergent at the IR end. An

IR divergent a2 would signal a possible logR term. Thus we conclude that the leading

order contribution for d = 4 is of order 1/R2, consistent with our expectation that the

system is gapped.

2. n ≤ 2. For n < 2, b̂ in (2.30) is nonzero and its contribution to Sd can be directly

written down from (3.23)

Sd = en
K

a
1
ηRβ

+

{
O(R−1) d odd

O(R−2) d even
, (3.34)

where η and β were defined in (3.2) and (3.6) respectively, and

en =
d− n/2

n

η h̄

Γ
(
d
2

)
Γ
(

1
2 −

1
η

) ×

√
πΓ

(
1

2
− n

2η

)
d odd

2Γ

(
1− n

2η

)
d even

. (3.35)

For n = 2 the first term in (3.34) should be replaced by (see (A.9) and appendix A)

S(non-analytic)
d ∝

(
aR2

)t
exp

(
−(d− 1)2 a

2(d− 2)
R2

)
t ≡ d− 3

2
+

[
d

2

]
. (3.36)
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Figure 3. en plotted as a function of n for d = 2, 3 and 4. The vertical dashed lines indicate

nc. (3.35) consists of numerical factors and h̄, which is a constant determined by the IR solution,

ρ̄d. h̄ was obtained by numerically determining ρ̄d and fitting the small u expansion (3.15). For

d = 2 we know the exact answer from (3.5); the data points lie exactly on the analytically determined

curve. For d = 4 the dotted part of the line is an extrapolation of the solid line; we do not have

reliable numerical results in that region for h̄.

Below for convenience we will refer to the first term in (3.34) (or (3.39)) as “non-

analytic”, while terms of inverse odd powers in odd dimensions (and even inverse powers in

even dimensions) as “analytic.” Note that the non-analytic term is the leading contribution

in the large R limit when

n < nc ≡


2

d
d odd

4

d+ 1
d even

, (3.37)

in which case one can check that the coefficient en is positive. In figure 3 we plotted en
for d = 2, 3 and 4. Note that for odd d, en diverges as n → nc, while for even d it stays

finite.7 Despite appearances the numerical factors multiplying h̄ in (3.35) do not diverge

at n = nc, hence the features described in figure 3 are caused by h̄.

Let us consider the n→ nc limit of (3.34) for odd d. Because en diverges as n→ nc, in

order for (3.34) to have a smooth limit, we expect the coefficient of the 1/R term in (3.34)

to diverge too, in a way that the divergences cancel resulting in a logarithmic term

Sd = #
logR

R
+ · · · , n =

2

d
, d odd . (3.38)

The coefficient of the logarithmic term is given by the residue of (3.35) in the limit n→ nc.

In contrast, for even d, en is finite at n = nc. Thus, the leading term will simply be of

order 1/R2 with no logarithmic enhancement (there can still be logarithmic terms at higher

orders).

For d = 3 one can calculate the coefficient of 1/R term in (3.34) similar to n > 2 case

discussed. See appendix B for a derivation. One finds

S3(R) = en
K

(µ̃R)
2n

2−n
+
Ks1

µ̃R
+ · · · , (3.39)

7For d = 2 apart from the numerical results, we can analyze the analytic answer given in (3.5).
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where s1 is given by (3.28) for n > 2
3 , and for n < 2

3 by

s1 =

∫ ∞
0

dz

 z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

− 4

(2 + n)2

1

z3n/2

 . (3.40)

In this case, we can work out explicitly how the divergence in the limit n → nc cancels

between the coefficients of the analytic and non-analytic pieces. Note that the divergence

in s1 comes from the second term in the integrand in (3.40)8

s1 = − 3

8 (2/3− n)
+ . . . . (3.41)

The numerical results presented in figure 3 are consistent with the behavior

en =
3

8 (2/3− n)
+ . . . , (3.42)

to 1% precision. Plugging into (3.39) then gives

S3(R) = K
27

32

log µ̃R

µ̃R
+

#

R
+ · · · . (3.43)

We can perform the same calculation with n = 2/3 fixed from the beginning, and we get

the same result, see (B.14).

3.3 Discussion

We now briefly summarize the results by comparing between the strip and the sphere, and

between n < 2, n > 2 and n = 2 geometries.

The presence of analytic terms for the sphere can be expected from the general struc-

ture of local contributions to the entanglement entropy [1, 4], which implies the existence

of terms of the form 1/R+ 1/R3 + · · · for odd dimensions and 1/R2 + 1/R4 + · · · for even

dimensions. Note the coefficient (3.28), (3.40) of the 1/R term in (3.31) and (3.39) de-

pend on the full spacetime metric and thus the full RG trajectory. This is consistent with

the physical interpretation that such coefficients encode the contributions from degrees of

freedom at all shorter length scales compared to R.9 For a strip, other than the area, all

curvature invariants associated with the entangling surface vanish, and thus the analytic

terms are altogether absent.

For n < 2 geometries, non-analytic terms are present for both the strip and the sphere,

and have the same scaling. We note that the non-analytic terms (including the coefficients)

are solely determined by the IR geometry. From the boundary perspective they can be

interpreted as being determined by the IR physics. The presence of these non-analytic

terms (despite the fact that they could be subleading compared to analytic terms) imply

that the IR phase described by (2.5) is not fully gapped, and some IR gapless degrees of

8At first sight it seems puzzling that the divergence comes from the UV region, z = 0. However, this is

just an artifact of the subtraction we chose.
9In (3.28), (3.40) the upper limits of the integrals are ∞, as we are considering R→∞ limit.
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freedom are likely responsible for the non-analytic scaling behavior. For this reason we refer

to such geometries as scaling geometries. Note that due to the singularity at z = ∞, we

should view the region (2.5) as describing an intermediate scaling regime. It likely does not

describe the genuine IR phase, which depends on how the singularity is resolved. Thus our

discussion above should be interpreted as giving the behavior of S(R) for an intermediate

regime. We will see some explicit examples in the next section.

In contrast for n > 2, there is no non-analytic term and we expect the dual system to

be fully gapped in the IR.

For n = 2 the strip and sphere entanglement entropies show different behaviors as

emphasized recently by [34]. For R → ∞ the minimal surface for a strip is disconnected,

and hence there is no non-analytic term in the expansion of Rd. However, for a spheri-

cal entangling surface the topology of the minimal surface is a disc, and Sd contains an

exponentially small term (3.36). In next section, by examining the spectral function of a

scalar operator, we argue that an n = 2 geometry describes a gapped phase, but with a

continuous spectrum above the gap.

4 More on scaling geometries

In this section, we discuss further the properties of a scaling geometry with n ≤ 2 by exam-

ining the behavior of a probe scalar field. We show that the system has gapless excitations

in the IR. We emphasize that here the term IR is used in a relative sense, i.e. IR relative

to the UV fixed point. The understanding of “genuine” IR phase of the system depends

on how the singularity at z =∞ is resolved. In this sense, the scaling region (2.5) should

be considered as characterizing an intermediate regime, and our discussion of the entangle-

ment entropy of the last section and correlation functions below should be considered as

applying only to this intermediate regime. In the second part of this section we consider

some explicit examples, where a scaling geometry arises as an intermediate phase.

4.1 Correlation functions

Consider a probe scalar field in a spacetime (2.1) with (2.5). A similar analysis was done

in [35] for two specific flows in d = 4 dimensions with n = 3 and n = 2 respectively,10 and

more recently in [32] in the context of hyperscaling violating geometries.

The field equation for a minimally coupled scalar in momentum space can be written as

φ′′(z) +

(
f ′(z)

2f(z)
− d− 1

z

)
φ′(z)− m2 + k2z2

z2f(z)
φ(z) = 0 , (4.1)

where kµ is the energy-momentum along the boundary spacetime directions

and k2 = ηµνk
µkν .

First, consider the gapped case, corresponding to n > 2. For z → ∞ the two allowed

behaviors for the scalar field are:

φ+ = 1− 2k2

(n− 2)(2d+ n− 4)
z−(n−2) + · · · (4.2)

φ− = zd−n/2 − 2k2

(4 + 2d− 3n)(−2 + n)
zd−n/2−(n−2) + · · · , (4.3)

10There the scalar fields of interest mixed with the metric, here we assume no mixing.
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where we have set a = 1 for simplicity of notation. The null energy condition requires that

n/2 < d [32], hence only φ+ is regular. Near z → 0, the normalizable solution φnorm(z)

can be written as a linear superposition of φ±, i.e. φnorm(z) = A+(k)φ+ +A−(k)φ− where

A±(k) are some functions of k2. Requiring both regularity at z → ∞ and normalizability

at the boundary then leads to A−(k) = 0, which implies that the system has a discrete

spectrum. This is in agreement with the findings of [35] in specific examples, and is

consistent with our discussion at the end of last section that such a geometry should be

describe a gapped theory.

For n = 2, in the scaling region (4.1) can be solved analytically

φ± =
(m
z

)−(d−1)/2
I±ν

(m
z

)
ν =

√(
d− 1

2

)2

+ k2 , (4.4)

where I is the modified Bessel function of the first kind. For k2 < −∆2, ν is imaginary and

φ± behave as plane waves near z → ∞. Then following the standard story [36], choosing

an infalling solution leads to a complex retarded Green function and a nonzero spectral

function. We thus conclude that in this case, there is nonzero gap ∆ = d−1
2 and the system

has a continuous spectrum above the gap. The presence of a continuum above a gap is

presumably responsible for the exponential behavior (3.36) in the entanglement entropy.

Now we consider n < 2. For k2 < 0 and z →∞, the solutions to (4.1) have the “plane

wave” form

φ± → z(d−1)/2 exp

[
∓i2
√
−k2

2− n
z(2−n)/2

]
. (4.5)

Thus in this case one finds a continuous spectrum all the way to k2 → 0−. The correspond-

ing spectral function can be extracted from [32]

ρ(k2) = ImGR(k2) ∝ (
√
−k2)γ , γ =

2d− n
2− n

. (4.6)

This continuous spectrum should be the origin of the “non-analytic” behavior in (3.34)

for a sphere and (3.5) for a strip. It is also interesting to note that the exponents β

in (3.5), (3.34) and γ in (4.6) satisfy a simple relation

γ = β + d . (4.7)

It would be interesting to understand further the origin of such a relation.

4.2 Explicit examples: near horizon Dp-brane geometries

We now consider the near-horizon Dp-brane geometries [37], which exhibit the scaling ge-

ometry (2.5) in some intermediate regime. EE in these geometries was analyzed previously

in [32]. While these geometries are not asymptotically AdS, our earlier result for the non-

analytic term in (3.34) is nevertheless valid, since it only relies on the geometry of the

scaling region. We will focus on this leading non-analytic contribution in 1/R.
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The near horizon extremal black p-brane metric in the string frame can be written as

ds2
string,10 =

1√
gN

(
r

ls

)(7−p)/2
(dxµ)2 +

√
gN

(
r

ls

)−(7−p)/2 [
dr2 + r2dΩ2

8−p
]

(4.8)

eφ10 = g (gN)−(p−3)/4

(
r

ls

)(p−3)(7−p)/4
, (4.9)

where g and ls are the string coupling and string length respectively. As we will only be

interested in the qualitative dependence on R and couplings, here and below we omit all

numerical factors. We will restrict our discussion to p ≤ 5, for which a field theory dual

exists. After dimensional reduction and going to the Einstein frame, the metric can be

written as (see also [32])

ds2
Einstein,p+2 =

(gN)
1
p l2s

z2

[
(dxµ)2 + gN

dz2

(z/ls)2(p−3)2/(9−p)

]
, (4.10)

which is of the same form as (2.1) and (2.5) with

n =
2(p− 3)2

(9− p)
=



1 p = 1
2
7 p = 2

0 p = 3
2
5 p = 4

2 p = 5

, a =
1

gNlns
. (4.11)

In our convention, the bulk Newton constant is GN = g2 ld−1
s = N−2(gN)2 ld−1

s . The

metric (4.10) is valid in the range [37]

(gN)−(9−p)/2p �
(
z

ls

)3−p
�
(
gN

3−p
7−p
)−(9−p)/2p

. (4.12)

The l.h.s. condition comes from the requirement of small curvature, while the r.h.s. imposes

small sting coupling (dilaton). For p = 1, 2 as z is increased the system eventually settles

into a CFT with degrees of freedom of order O(N) and O(N
3
2 ) respectively, while for

p = 4, 5 the system is eventually described by the free U(N) Yang-Mills theory (i.e. with

O(N2) degrees of freedom) as z →∞.

For our analysis of the previous section to be valid, zt should lie inside the region (4.12).

For both strip (3.1) and sphere (3.24) we have zt ∼ (
√
aR)

2
2−n which then leads to

1

gN
�
(
R

ls

)3−p
� N

2(5−p)
7−p

gN
. (4.13)

Now plugging (4.11) into the “non-analytic” term in (3.34) for sphere (or similarly (3.5)

for strip) we find that

S ∝ N2λ
p−3
5−p
eff (R) (4.14)
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where λeff(R) is the effective dimensionless t’ Hooft coupling at scale R,

λeff(R) = gN

(
R

ls

)3−p
. (4.15)

In terms of λeff equation (4.13) can also be written as

1� λeff(R)� N
2(5−p)

7−p . (4.16)

For p = 1, 2, λeff increases with R but appears in S with a negative power. For p = 4, the

opposite happens. In all cases S decreases with R. The p = 5 case, for which n = 2, has

to be treated differently and one finds from (3.36)

S ∝ N2

(gN)3/2 λeff(R)9/2
exp

(
− 25

8λeff(R)

)
. (4.17)

5 Domain wall geometry

We now consider the large R behavior of the REE for holographic systems, whose IR

geometry is described by (2.3), i.e. the system flows to a conformal IR fixed point. We will

again consider the strip story first.

5.1 Strip

Again we start with (2.14) which can be written as

R(zt) =
zt√
f∞

[
ad +

∫ 1

0
dv

vd−1√
(1− v2(d−1))

(√
f∞

f(ztv)
− 1

)]
(5.1)

with

ad =

√
πΓ
(

d
2(d−1)

)
Γ
(

1
2(d−1)

) . (5.2)

The leading behavior in large zt limit of the integral in (5.1) depends on the value of

α̃ ≡ ∆̃− d . (5.3)

For α̃ < d
2 we can directly expand f(ztv) using (2.4)√

f∞
f(ztv)

− 1 =
1

2f∞(µ̃ztv)2α̃
+ · · · (5.4)

and find

R(zt) =
zt√
f∞

[
ad +

b̃d
(µ̃zt)2α̃

+ · · ·

]
(5.5)

with

b̃d =

√
π Γ
(
d−2α̃

2(d−1)

)
2f∞(1− 2α̃) Γ

(
1−2α̃

2(d−1)

) . (5.6)
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Note that b̃d is positive for any d > 1. For α̃ ≥ d
2 , the term on r.h.s. of (5.4) leads to

a divergence in (5.1) near v = 0 and should be treated differently.11 In particular, the

divergence indicates that the leading contribution should come from the integration region

v � 1. We will thus approximate the factor 1/
√

1− v2(d−1) in the integrand of (5.1) by 1,

leading to

R(zt) =
zt√
f∞

(
ad +

bd

zdt
+ · · ·

)
(5.7)

where

bd =

∫ ∞
0

du ud−1

(√
f∞
f(u)

− 1

)
. (5.8)

Inverting (5.5) and (5.7) we find from (2.18)

Rd =
Ld−1

2GN

(
ad√
f∞

)d−1

×


1 + (d− 1)

b̃d
ad

(
µ̃
√
f∞R

ad

)−2α̃

+ · · ·
(
α̃ <

d

2

)
1 + (d− 1)

bd
ad

(√
f∞R

ad

)−d
+ · · ·

(
α̃ ≥ d

2

) . (5.9)

We discuss the physical implication of this result in section 5.3.

5.2 Sphere

With (2.3) as z → ∞ the system flows to a CFT in the IR, and, as discussed in [1], to

leading order in the large R expansion the REE Sd approaches a constant, that of the IR

CFT. Here we confirm that the subleading terms have the structure given in (1.15).

5.2.1 IR expansion

Since the IR geometries approaches AdS, in the large R limit the IR part of the minimal

surface should approach that in pure AdS. In particular, in the limit R → ∞, we expect

most part of the minimal surface to lie in the IR AdS region, hence the IR solution z(ρ)

can be written as

z(ρ) = z0(ρ) + z1(ρ) + · · · , z0(ρ) =
√
f∞ (R2 − ρ2) . (5.10)

z0(ρ) is the minimal surface with boundary radius R in a pure AdS with f = f∞. z1 and

· · · in (5.10) denote subleading corrections which are suppressed compared with z0 by some

inverse powers of R. Below we will determine the leading correction z1(ρ) by matching with

the UV solution.

Plugging (5.10) into (2.23), and expanding to linear order in z1, we find that

z′′1 +
(d− 2)R2 − 2ρ2

ρ(R2 − ρ2)
z′1 −

(d− 1)R2

(R2 − ρ2)2
z1 = s(ρ) , (5.11)

11Note that even for α̃ < d
2
, higher order terms in the expansion on the r.h.s. of (5.4) can similarly lead

to divergences. They can be treated similarly as for α̃ ≥ d
2
, and give rise to higher order terms compared

to the second term of (5.5).

– 25 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
8

where the source term s(ρ) is given by

s(ρ) =
f

1
2
−α̃
∞
µ̃2α̃

(d− 1)R2 + (α̃− 1)ρ2

(R2 − ρ2)3/2+α̃
. (5.12)

The homogenous equation, obtained by setting s(ρ) to zero in (5.11), has the following

linearly independent solutions

φ1 =
R√

R2 − ρ2
(5.13)

φ2 =



3

2

[
−1 +

R√
R2 − ρ2

arctanh

(√
R2 − ρ2

R

)]
(d = 3)

(R− ρ)2

√
2 ρ
√
R2 − ρ2

(d = 4)

5(R2 + 2ρ2)

8ρ2
− 15

8

R√
R2 − ρ2

arctanh

(√
R2 − ρ2

R

)
(d = 5)

(5.14)

W (φ1, φ2) ≡ φ1φ
′
2 − φ′1φ2 =



− 3R

2ρ
√
R2 − ρ2

(d = 3)

− R√
2 ρ2

(d = 4)

−5R
√
R2 − ρ2

4ρ3
(d = 5)

. (5.15)

Note that there is an expression for φ2 in terms of hypergeometric functions for all dimen-

sions, but we find it more instructive to display explicit expressions in various dimensions.

The final results will be written down in general d. φ1 is singular at ρ = R, while φ2 ∼ Rd−3

ρd−3

is singular as ρ→ 0 (for d = 3, there is a logarithmic divergence) with W → −Rd−3

ρd−2 + · · · .
Also note that

φ2 → δ
d−1

2 , W → − d√
8

δ
d−4

2

R
, δ ≡ R− ρ

R
� 1 . (5.16)

In order for z(ρ) to be regular at ρ = 0, z1 should be regular there, and can be

written as

z1(ρ) = cRφ1(ρ) + φ1(ρ)

∫ R

ρ
dr

φ2(r)

W (r)
s(r) + φ2(ρ)

∫ ρ

0
dr

φ1(r)

W (r)
s(r) , (5.17)

where c is an integration constant. Note that the first integral above is convergent in the

upper integration limit only for α̃ < 1. For α̃ ≥ 1 some additional manipulations are

required. For example for 1 < α̃ < 2, we should replace the first integral by

φ1(ρ)

[∫ R

ρ
dr

(
φ2(r)

W (r)
s(r)− c1

µ̃2α̃Rα̃(R− r)α̃

)
+

c1R

(α̃− 1)(µ̃R)2α̃

1

δα̃−1

]
(5.18)

– 26 –



J
H
E
P
0
1
(
2
0
1
4
)
0
9
8

where c1 is the numerical constant appearing in the limit φ2(r)
W (r)s(r)→

c1
µ̃2α̃Rα̃(R−r)α̃ + · · · as

r → R, and is given by

c1 = −2−α̃f
1/2−α̃
∞ (−2 + d+ α̃)

d
. (5.19)

For α̃ > 2 further subtractions may be needed. We will not write these separately, as they

are irrelevant for our discussion below.

5.2.2 Matching

The IR expansion (5.10) and (5.17) is valid for z � zCO, where (2.4) applies. For sufficiently

large R, this includes the region where

δ ≡ R− ρ
R

� 1, R
√
δ � zCO, µ̃

−1, · · · (5.20)

where the · · · on the right hand side of the second inequality includes all other scales of the

system. The UV expansion we discussed earlier in section 2.5 applies to the region δ � 1.

Thus the IR and UV expansions can be matched for ρ satisfying (5.20).

Let us now consider the behavior of (5.17) in the overlapping region (5.20). The first

integral gives

φ1(ρ)

∫ R

ρ
dr

φ2(r)

W (r)
s(r) = d1R

δ1/2−α̃

(µ̃R)2α̃
(1 +O(δ)) , (5.21)

where for all α̃

d1 = −(d− 2 + α̃) (2f∞)1/2−α̃

2(1− α̃)d
. (5.22)

The second integral in (5.17) gives

φ2(ρ)

∫ ρ

0
dr

φ1(r)

W (r)
s(r) = d2R

δ1/2−α̃

(µ̃R)2α̃
(1 +O(δ)) + hR

δ
d−1

2

(µ̃R)2α̃
(1 +O(δ)) , (5.23)

where

d2 = − d− 2 + α̃

d(d− 2 + 2α̃)
(2f∞)1/2−α̃ , h = f1/2−α̃

∞
2(d−3)/2πα̃Γ

(
d+1

2

)
d sin

(
π
2 (d+ 2α̃)

)
Γ
(

3
2 − α̃

)
Γ
(
d
2 + α̃

) .
(5.24)

Putting the two expansions together we get:

z1(ρ) =
cR√
2δ

+ d3R
δ1/2−α̃

(µ̃R)2α̃
(1 +O(δ)) + hR

δ
d−1

2

(µ̃R)2α̃
(1 +O(δ)) , (5.25)

where

d3 = − d− 2 + α̃

2(1− α̃)(d− 2 + 2α̃)
(2f∞)1/2−α̃ . (5.26)

One could consider the next order in the IR expansion, i.e. including a z2 in (5.10).

The equation for z2 only differs from (5.11) by having a different source term, and the

corresponding terms in (5.25) coming from the source will be proportional to (µ̃R)−4α̃.

Similarly, the corresponding terms at the nth order are proportional (µ̃R)−2nα̃.
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Now including z0 in the region (5.20), we have the expansion

z(ρ)

R
=
√

2f∞ δ

[
1 +

c√
4f∞ δ

+
d3√
2f∞

1

(µ̃R
√
δ)2α̃

+
h√
2f∞

δ(d+2α̃−2)/2

(µ̃R
√
δ)2α̃

+ · · ·

]
. (5.27)

Clearly we have a double expansion in terms of δ and inverse powers of µ̃R
√
δ. The

consistency of the expansion also requires that the constant c have the scaling

c =
c̃

(µ̃R)2
(5.28)

with c̃ now an O(R0) constant. Now inverting (5.27) we find that

δ =
z2

2f∞R2
− c̃√

f∞(µ̃R)2
+

d4

2f∞

z2

R2

1

(µ̃z)2α̃
− h̃ zd

µ̃2α̃Rd+2α̃
+ · · · , (5.29)

which can be considered as a double expansion in z/R and 1/(µ̃z) and

d4 =
d− 2 + α̃

(1− α̃)(d− 2 + 2α̃)
, h̃ = 2h(2f∞)−

d+1
2 . (5.30)

Now consider (2.34) with z large, with f(z) given by (2.4). We find that ρ1 can be

expanded as (see appendix C for details)

ρ1(z) =
b1

d
√
f∞

zd (1 + · · ·) +
z2

2f∞
+ γ +

z2

2f∞
a(µ̃z)−2α̃ +O

(
z2

(µ̃z)4α̃

)
. (5.31)

Note the above equation applies to all α̃, but the expression for constant γ depends on the

range of α̃. For example, for α̃ > 1,

γ =

∫ ∞
0

du

[
(d− 2)

ud−1√
f(u)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞

]
. (5.32)

At higher orders in 1/R, it suffices to determine the leading term:

ρn(z) =
bn

d
√
f∞

zd + · · · ρ̂(z) =
b̂

d
√
f∞

zd + · · · . (5.33)

Using (5.31) and (5.33) in (2.29) we find that

δ =
b1

d
√
f∞R2

zd(1+· · · )+
z2

2f∞R2

(
1 + a(µ̃z)−2α̃ + · · ·

)
+
γ

R2
+· · ·+ b̂

d
√
f∞

zd

Rν
+· · · . (5.34)

Comparing (5.34) with (5.29) we find they match provided that

b1 = 0, c̃ = −
√
f∞µ̃

2γ, b̂ = −d
√
f∞

h̃

µ̃2α̃
, ν = d+ 2α̃− 1 . (5.35)
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5.2.3 Asymptotic expansion of REE

With b̂ and ν given by (5.35), from (2.31) we find the leading “non-analytic” contribution

in Sd is given by

Sd = · · ·+ 1

2
KIR

(d− 1)!!

(d− 2)!!
b(α̃)

f−α̃∞
(µ̃R)2α̃

+ · · · (5.36)

with

KIR ≡ Kf−(d−1)/2
∞ , b(α̃) =


1

1− 2α̃
d odd

√
π Γ (1− α̃)

2Γ
(

3
2 − α̃

) d even

. (5.37)

This above expression agrees with that obtained in [1] for two closely separated fixed points,

which we review and extend in appendix E. As discussed in the Introduction this can be

anticipated on the grounds that the coefficient of the non-analytic term should depend only

on the physics at the IR fixed point.

As discussed earlier our UV expansion (2.29) was designed to produce the second line

of (1.15), and the fact that the UV expansion is consistent with the IR expansion confirms

the second line of (1.15).

In d = 3 using ρ1 and z1 obtained in last subsection we can obtain the coefficient of

1/R term by directly evaluating the action as we have done for the gapped and scaling

geometries. The calculation is given in appendix D. The final answer is:

S3 = S(IR)
3 +KIR

f−α̃∞
(1− 2α̃)(µ̃R)2α̃

+
Ks1

µ̃R
+ . . . , (5.38)

where s1 is given by (D.11):

s1 =



∫ ∞
0

dz

[
z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

− 1

f
3/2
∞

]
(

1

2
< α̃

)
∫ ∞

0
dz

[
z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

− 1

f
3/2
∞

(
1 +

3 + 2α̃

2(1 + 2α̃)

1

z2α̃

)]
(

1

4
< α̃ <

1

2

)
.(5.39)

The expressions for smaller values of α̃ are similar but require more subtractions. s1

(and the integration variables, z and v) is dimensionless, hence only depends on ratios of

RG scales.

Our results are compatible with the F-theorem; for α̃ < 1
2 the non-analytic term

dominates in (5.38), and b(α̃) > 0 in this range (5.37). For 1
2 < α̃, where the 1/R term

dominates over the non-analytic term, s1 > 0 follows from (5.39).

As a consistency check, we apply these formulae to closely separated fixed points in

appendix E. We recover (E.6) that is obtained using different methods. Another consistency
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check is that the f∞ →∞ limit of (5.39) recovers s1 for the scaling geometries (3.40). This

had to be the case, as a scaling geometry can be viewed as a limit of domain walls with

increasing f∞.

5.3 Discussion

We conclude this section making a comparison between the result for the strip (1.21), (5.9)

and that for the sphere (1.15).

First, let us look at the strip result (5.9). When α̃ < d
2 , Rd can be written in terms of

an effective dimensionless irrelevant coupling geff(R) = (µ̃R)−α̃ as

Rd = R(IR)
d + #g2

eff(R) + · · · (5.40)

with a coefficient # only depending on the data at the IR fixed point. As for the sphere

case (1.16), such a term can be expected from conformal perturbations around a fixed point.

For α̃ > d
2 , we see that the leading approach to the IR value saturates at R−d no matter

what the dimension of the leading irrelevant operator is. In particular, the coefficient

bd (5.8) involves an integral over all spacetime, suggesting this term receives contributions

from degrees of freedom at all length scales (not merely IR degrees of freedom). This term

may be considered as the counterpart for a strip of the second line in (1.15). But note that

for a sphere the second line of (1.15) can be associated with a curvature expansion of a

spherical entangling surface, while for a strip all such curvature terms are absent.

6 Black holes

In this section we consider the large R expansion of the entanglement entropy for strip

and sphere for a holographic system at a finite temperature/chemical potential, which is

described by a black hole on the gravity side. Compared with examples of earlier sections,

there are some new elements in the UV and IR expansions. The setup is exactly the same

as discussed in section 2.2 and section 2.3 except that now the function f(z) has a zero at

some z = zh:

f(zh) = 0, f(z) = f1(zh − z) + f2(z − zh)2 + · · · , z → zh . (6.1)

In our discussion below, we will assume f1 is nonzero. For an extremal black hole, f1

vanishes, which requires a separate treatment and will be given elsewhere. For notational

simplicity, we will set zh = 1 below, which can be easily reinstated on dimensional grounds.

We also introduce

γ ≡
√

(d− 1)f1zh
2

, (6.2)

which will appear in many places below.

6.1 Strip

We again look at the strip first. As R → ∞ we expect the tip of the minimal surface zt
to approach the horizon zh = 1. This can be seen immediately from equation (2.14): with
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zt = 1, due to f(1) = 0, the integrand develops a double pole and the integral becomes

divergent. To obtain the large R behavior, we thus take

zt = 1− ε, ε� 1 , (6.3)

and expand the integral in ε. From (2.14) we find that

R = − 1

2γ
log

ε

4
+ b0 +O(ε log ε) , (6.4)

where γ was introduced in (6.2) and

b0 =

∫ 1

0
dv

[
vd−1√

f (v) (1− v2(d−1))
− 1

2γ

1

(1− v)

]
. (6.5)

Then we can express ε as a function of R:

ε = 4e2γb0e−2γR
(
1 +O(Re−2γR)

)
. (6.6)

Reinstating zh, from (2.18)

Rd =
Ld−1

2GN

(
R

zh

)d−1

(1 + (d− 1)ε+ · · ·) . (6.7)

The entanglement entropy itself can be written as

Sstrip =
Ld−1

4GN

2R ld−2

zd−1
h

(
1− 2(d− 1)zh

γR
e2γb0e

− 2γR
zh + · · ·

)
, (6.8)

which is given by the Bekenstein-Hawking entropy with exponential corrections. For the

d = 2 BTZ black hole one simply recovers the well known expression for a 2d thermal CFT

by evalutaing (2.14) exactly.

6.2 Sphere

6.2.1 UV expansion

Anticipating a volume term and possibly other subleading terms in the entanglement en-

tropy, we modify the UV expansion (2.29) to include terms of all integer powers in 1/R, i.e.

ρ(z) = R− ρ0(z)− ρ1(z)

R
+ · · · . (6.9)

At finite temperature, we do not expect non-integer power law terms in 1/R in (6.9), except

exponentially small terms. Here will focus on the lowest two terms in (6.9).

The equations for ρ0 and ρ1 are

ρ′′0 +
f ′

2f
ρ′0 −

d− 1

z
ρ′0(1 + fρ′20 ) = 0

ρ′′1 +

(
f ′

2f
− (d− 1)(1 + 3fρ′20 )

z

)
ρ′1 +

d− 2

f
(1 + fρ′20 ) = 0 , (6.10)
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which can be solved by

ρ0 =

∫ z

0
dy

yd−1

f
1
2

√
a−1 − y2(d−1)

(6.11)

and

ρ1(z) =

∫ z

0
dz

zd−1

f
1
2

(
1− az2(d−1)

) 3
2

(
b+ (d− 2)

∫ 1

z
dy

√
1− ay2(d−1)

f
1
2 yd−1

)
(6.12)

with a and b integration constants.

The expansion (6.9) should break down for small ρ when ρ0 or higher order terms

become comparable to R. As in the strip case we again expect that the tip of the surface

z(ρ = 0) ≡ zt approaches the horizon z = 1, when R is large. We thus expect the UV

expansion to break down near the horizon. This indicates that we should choose

a = 1 . (6.13)

An immediate consequence of the above equation is that the expansion of ρ0 near the

boundary has the form

ρ0 =
1

d
zd + · · · → cd(R) = −1

d
+ · · · , (6.14)

which from (2.26) immediately gives

S =
Ld−1

4GN

ωd−2

d− 1

Rd−1

zd−1
h

+ · · · = Ld−1

4GN

Vsphere

zd−1
h

+ · · · , (6.15)

where Vsphere is the volume of the sphere and we have reinstated zh. In section 6.4 we

generalize this result to an arbitrary shape.

6.2.2 IR expansion

It is clear both from general arguments and the numerical solution shown in figure 2 that

the IR part of the minimal surface is very flat and stays in the near horizon region for a

large range of ρ. This motivates us again to write

zt = 1− ε ε→ 0 . (6.16)

The part of minimal surface near the horizon can then be expanded in terms of ε

z(ρ) = 1− εz1(ρ)− ε2z2(ρ) + · · · (6.17)

with boundary conditions

z1(0) = 1, zm(0) = 0, m ≥ 2, z′n(0) = 0, n ≥ 1 . (6.18)

Below we will relate ε to R by matching (6.17) with the UV expansion (6.9).

Plugging (6.17) into the equation of motion (2.24) we find that z1 satisfies the equation

z′′1
z1
− 1

2

z′21
z2

1

+
d− 2

ρ

z′1
z1
− γ2

2
= 0 , (6.19)
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where γ was introduced in (6.2). Setting z1 = h2, one finds that h satisfies the Bessel

equation which then leads to

z1 = Γ2

(
d− 1

2

)(γρ
2

)3−d
I2
d−3

2

(γρ) , (6.20)

where we have imposed the boundary condition at ρ = 0. At large ρ we then find that

z1 = Γ2

(
d− 1

2

)(γρ
2

)3−d e2γρ

2πγρ

(
1 +O(ρ−2)

)
. (6.21)

6.2.3 Matching

We now try to match the two sets of expansions in their overlapping region with

1� σ ≡ R− ρ� R, ε� u ≡ 1− z � 1 . (6.22)

In the above region equation (6.21) can be expanded in large R as

z1 = Λe−2γσ

(
1 +

c11(σ)

R
+
c12(σ)

R2
+ · · ·

)
≡ C1(σ)Λe−2γσ (6.23)

with

Λ = Γ2

(
d− 1

2

)
2d−4

πγd−2

e2γR

Rd−2
c11(σ) = (d− 2)σ, · · · . (6.24)

One can show that z2 has a similar structure, i.e.

z2 =Λ2e−4γσc20

(
1 +

c21(σ)

R
+
c22(σ)

R2
+ · · ·

)
≡ Λ2e−4γσC2(σ) . (6.25)

We thus have

u = εz1 + ε2z2 + · · · = εΛC1(σ)e−2γσ + (εΛ)2C2(σ)e−4γσ + · · · . (6.26)

One now expands ρ0 and ρ1 for small u

ρ0 = − 1

2γ
log u+ b0 + b01u+ · · · , (6.27)

ρ1 =
b

4γ(d− 1)

1

u
− blog log u+ b10 + b11u+ · · · (6.28)

where various coefficients b0, b01, · · · can be found explicitly from (6.11)–(6.12). In partic-

ular b0 is given by (6.5). Using (6.27)–(6.28) in (6.9) we then find that

σ = ρ0 +
ρ1

R
+ · · · = b

4γ(d− 1)

1

u
− 1

2γ
Bc(R) log u+B0(R) +B1(R)u+ · · · , (6.29)

where

Bc(R) = 1 +
2γblog

R
+O(R−2), B0(R) = b0 +

b10

R
+O(R−2), · · · . (6.30)

Now matching (6.26) and (6.29) we find they precisely match provided that b = 0 and

ε = ε0

(
1 +

d1

R
+
d2

R2
+ · · ·

)
(6.31)

with

ε0 = e2γb0Λ−1 =

(
Γ2

(
d− 1

2

)
2d−4

πγd−2

e2γR

Rd−2

)−1

e2γb0 , d1 = 2γb10 − (d− 2)b0, · · · .

(6.32)
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6.3 Large R behavior of the entanglement entropy

By carrying out the procedure outlined above one could in principle obtain the large R

expansion for the entanglement entropy to any desired order. As an illustration we now

calculate the constant term (i.e. R-independent term) in S for d = 3.

We divide the area functional (2.20) into a UV and IR piece and calculate to O(R0):

A ≡ AUV +AIR (6.33)

AUV =

∫ z∗

δ
dz

ρ

z2

√
ρ′(z)2 +

1

f(z)
(6.34)

AIR =

∫ ρ∗

0
dρ

ρ

z2

√
1 +

z′(ρ)2

f(z)
, (6.35)

where z∗ is an arbitrary point in the matching region and ρ(z∗) = ρ∗ and δ is a UV cutoff.

Plugging in the UV expansion (6.9) and (6.11) into AUV we get:

AUV =

∫ z∗

δ
dz

R− ρ0(z)

z2
√
f(z)(1− z4)

+ ρ1(z∗) +O

(
1

R

)
(6.36)

This has an expression for small u∗ = 1− z∗:

AUV = − 1

8γ2
log2 u∗ +

R− b0
2γ

log u∗ + ρ1(u∗) +
R

δ
+ aUV +O(u∗) (6.37)

aUV ≡ −R+

∫ 1

0
dz

[
R− ρ0(z)

z2
√
f(z)(1− z4)

− R

z2
− 1

4γ2

log(1− z)
(1− z)

− 1

2γ

R− b00

1− z

]
. (6.38)

Note that ρ1(u∗) contains log u∗ and constant terms, but we chose not to expand it for later

convenience. We isolated all u∗ and δ dependence, hence aUV is a finite term independent

of u∗. It includes finite area law terms. AIR is given by

AIR =

∫ ρ∗

0
dρ

[
ρ+ ε ρ

(
2z1(ρ) +

z′1(ρ)2

2γ2z1(ρ)

)
+O(ε2)

]
. (6.39)

Plugging in the results of the IR expansion we find

AIR =
ρ2
∗

2
+O(u∗) =

R2

2
−Rρ0(u∗) +

ρ0(u∗)
2

2
− ρ1(u∗) +O(u∗)

=
R2

2
+

1

8γ2
log2 u∗ −

R− b0
2γ

log u∗ +
b20
2
− ρ1(u∗) .

(6.40)

Adding together (6.37) and (6.40), we find that the u∗ dependence cancels which provides

a nontrivial consistency check, and the final result is

A = #
R2

2
+ (area law terms) + a (6.41)

a =
b20
2
−
∫ 1

0
dz

[
ρ0(z)

z2
√
f(z)(1− z4)

− 1

2γ

− 1
2γ log(1− z) + b0

(1− z)

]
. (6.42)

b0 is the constant term in the expansion (6.27) of ρ0, and it is given by (6.5).
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6.4 Leading order result for an arbitrary shape

For arbitrary shape we cannot go into as much detail as for the sphere case. Here we

demonstrate that at leading order in the large size limit the entanglement entropy goes to

thethermal entropy in an explicit calculation. To the best of our knowledge this is the first

demonstration using the holographic approach, although the result is widely expected.

We choose spherical coordinates on each z slice of the spacetime:

ds2|t=0 =
L2

z2

([
dρ2 + ρ2dΩ2

d−2

]
+

dz2

f(z)

)
(6.43)

dΩ2
d−2 =

d−2∑
i=1

gi dθ
2
i , (6.44)

where gi are just the conventional metric components:

g1 = 1 , g2 = sin2 θ1 , g3 = sin2 θ1 sin2 θ2 , . . . . (6.45)

We will use the notation

(∂ΩF )2 ≡
d−2∑
i=1

1

gi

(
∂F

∂θi

)2

, (6.46)

and denote the set of θi’s as Ω.

We parametrize the entangling surface in polar coordinates as

ρ = Rr(Ω) (6.47)

where r(Ω) specifies the shape of the surface, while R gives its size. The minimal surface

ρ(z,Ω) then satisfies the boundary condition ρ(z = 0,Ω) = Rr(Ω).

The entanglement entropy is given by the minimal surface area:

S(R) =
2πLd−1

κ2
A = K ′A, K ′ ≡ 2πLd−1

κ2
, (6.48)

where

A =

∫ zt

0
dz

∫
dΩd−2

ρd−2

zd−1

√
(∂zρ)2 +

1

f(z)

(
1 +

(∂Ωρ)2

ρ2

)
=

∫ zt

0
dz

∫
dΩ L . (6.49)

One can go through the same steps as for the sphere case, where r(Ω) = 1, to obtain

the near boundary expansion:

ρ(z,Ω) = Rr(Ω)− z2

2R
r̃(Ω) + · · ·+ cd(R,Ω)zd + · · ·+

∞∑
n=2,m=2

anm(R,Ω)zn+mα . (6.50)

r̃(Ω) and the functions appearing in higher orders can be determined by solving alge-

braic equations only involving r(Ω) and its derivatives. One can use the asymptotic data,
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cd(R,Ω) to obtain dA/dR, by using the Hamilton-Jacobi formalism [1]. We take z to be

time, and introduce the canonical momentum and Hamiltonian

Π =

∫
dΩ

∂L
∂(∂zρ)

=

∫
dΩ

ρd−2

zd−1

ρ′√
(∂zρ)2 + 1

f(z)

(
1 + (∂Ωρ)2

ρ2

) (6.51)

H = Πρ′ − L = −
∫
dΩ

ρd−2

zd−1

1 + (∂Ωρ)2

ρ2

f

√
(∂zρ)2 + 1

f(z)

(
1 + (∂Ωρ)2

ρ2

) (6.52)

One can show that
dA

dR
= −dRd−2 cd(R)− ẽd

R
+ . . . , (6.53)

where ẽd is proportional to ed in (2.26), dots denote non-universal terms that drop out

when acted on with the differential operator (1.6), and

cd(R) ≡
∫
dΩ

r(Ω)d−1√
1 + (∂θr(θi))

2

r(Ω)2

cd(R,Ω) . (6.54)

As a result Sd(R) can be solely expressed in terms of cd(R), and the same formulae apply

as in section 2.3.

In the large R limit we consider the expansion

ρ(z, θi) = Rr(Ω)− ρ0(z,Ω) + · · · . (6.55)

Plugging in the above expression into the equation of motions we can readily solve ρ0

ρ0(z,Ω) =

∫ z

0
dz

zd−1

f
1
2

√
a(Ω)−1 − z2(d−1)

√
1 +

(∂ir(Ω))2

r2(Ω
(6.56)

where a(Ω) is an integration “constant” to be determined. As in (6.13), considering that

the UV expansion (6.55) should break down precisely at the horizon, we require that

a(Ω) = 1 . (6.57)

Then ρ0 factorizes and we obtain:

ρ0(z,Ω) =

√
1 +

(∂Ωr(Ω))2

r2(Ω)
ρ

(S)
0 =

√
1 +

(∂Ωr(Ω))2

r2(Ω)

∫ z

0
dy

yd−1

f
1
2

√
1− y2(d−1)

, (6.58)

where ρ
(S)
0 is the sphere result given in (6.11). We readily obtain:

cd(R,Ω) = −1

d

√
1 +

(∂Ωr(Ω))2

r(Ω)2
(6.59)

cd(R) =

∫
dΩ

r(Ω)d−1√
1 + (∂Ωr(Ω))2

r(Ω)2

cd(R,Ω) = −1

d

∫
dΩ r(Ω)d−1 = −(d− 1)VΣ

dRd−1
, (6.60)

where VΣ is the volume enclosed by Σ. Plugging into (2.25) yields the result

S(Σ) = K ′ VΣ + · · · . (6.61)
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A The n = 2 case

In the n = 2 case the minimal surface ending on the boundary theory sphere has disk

topology. This was seen before in [1], where the Coulomb branch flow of d = 4 MSYM [38]

was analyzed.

Firstly, we analyze the IR region. In section 3.2.1 we saw that the small u expan-

sion (3.15) of the reference solution ρ̄d was singular for n = 2. Unlike in the n < 2 case,

the expansion does not start with a constant term:

ρ̄d (u) =

√
2(d− 2)

d− 1

√
log

u0

u
+ · · ·+ h̄

ud−1
0

ud−1 + . . . (u→ 0) . (A.1)

(3.14) then implies that ρ(z) has the small z/zt expansion valid in the region (3.19):

ρ(z) =

√
2(d− 2)

(d− 1)a

√
log

u0 zt
z

+ · · ·+ h̄√
a (u0 zt)d−1

zd−1 + . . .

=

√
2(d− 2)

(d− 1)a

√
log(
√
a u0 zt)

[
1− 1

2

log (
√
a z)

log(
√
a u0 zt)

+ . . .

]
+

h̄√
a (u0 zt)d−1

zd−1 + . . . .

(A.2)

Let us turn our attention to the UV expansion (2.29). We have to modify it so that ρ̂

is multiplied by a general function F (R), not R−ν . To obtain the large z behavior of ρ1(z)

we go through the same steps as in (3.20) to get:

ρ1(z) =
b1

(d− 1)
√
a
zd−1 (1 + . . .) +

d− 2

(d− 1)a
log z (1 + . . .) . (A.3)

We note that taking the n → 2 limit of (3.20) can also give us this result. Plugging in

n = 2 into (3.21), and combining all this together in (2.29) gives:

ρ(z) = R− 1

(d− 1)
√
a

(
b1
R

+ · · ·+ b̂ F (R)

)
zd−1 − d− 2

(d− 1)aR
log z + . . . . (A.4)

Matching this expansion to the IR solution (A.2) determines

R =

√
2(d− 2)

(d− 1)a

√
log(
√
a u0 zt) (A.5)

b = 0 (A.6)

b̂ = −(d− 1) h̄ (A.7)

F (R) = a(d−1)/2 exp

(
−(d− 1)2 a

2(d− 2)
R2

)
. (A.8)
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It would be very interesting where exponential behavior comes from in field theory.

The non-analytic contribution to Sd is also exponentially small for n = 2. Using (2.26)

and (2.30) the leading large R contribution we get for Sd is

S(non-analytic)
d ∝

(
aR2

)t
exp

(
−(d− 1)2 a

2(d− 2)
R2

)
t ≡ d− 3

2
+

[
d

2

]
. (A.9)

B 1/R term in the d = 3 scaling geometries

Let us divide the area func an IR part and let z∗ be some z in the matching region that

divides between the two regions. It is clear that the result should not depend on z∗.

A ≡ AUV +AIR =

∫ z∗

0
dz

ρ

z2

√
ρ′(z)2 +

1

f(z)
+

∫ zt

z∗

dz
ρ

z2

√
ρ′(z)2 +

1

f(z)
. (B.1)

For AUV, we can go through the same steps leading to (3.27). We obtain

AUV = #R+
1

R

∫ z∗

0
dz

[√
f(z)

2z2
ρ′1(z)2 − ρ1(z)

z2

]
+O

(
1

R3

)
. (B.2)

Because the integrand for AUV is the same as in the first line of (3.26), and only the upper

limit of the integral differs, in analogy with (3.26) and (3.27), we obtain

AUV = #R+
1

R

[
− 1

2

∫ z∗

0
dz

z2√
f(z)

[∫ ∞
z
dv

1

v2
√
f(v)

]2

+

√
f(z)

z2
ρ′1(z)ρ1(z)

∣∣∣
z=z∗

]
+ . . . ,

(B.3)

where the last term is a boundary term that vanished in (3.27); here it will play an impor-

tant role.

For z > zCO we will assume for simplicity that f(z) = a zn exactly. We set a = 1 to

avoid clutter. Corrections to f(z) can be understood in a perturbative setup, and for fast

enough convergence to the asymptotic behavior, the results obtained below should hold. In

appendix D, we show how to incorporate subleading terms in f(z) for domain wall flows.

Because we have the full scaling symmetry in the IR, we can evaluate the IR on-shell action

by using the solution ρ̄d(z) introduced in (3.14).

AIR =

∫ zt

z∗

dz
ρ

z2

√
ρ′(z)2 +

1

f(z)
=

1

znt

∫ 1

z∗/zt

du
ρ̄d(u)

u2

√
ρ̄′d(u)2 +

1

un
. (B.4)

For small u we can plug in the UV expansion (3.15) of ρ̄d(z) into the integral to obtain the

leading behavior of the integrand

ρ̄d(u)

u2

√
ρ̄′d(u)2 +

1

un
=

ᾱ0

u2+n/2
+
α1 + (2−n)2

2 α2
1

ᾱ0 u3n/2
+ . . .

+
h̄
(
1 +

(
2
n − 1

) (
6
n − 1

)
α1

)
ᾱ

2
η

0

u1−n/2 + . . . . (B.5)
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We have to subtract the divergences from the integrand coming from the first line of (B.5),

in order to be able to obtain the 1/R expansion of AIR. Note that for n < 2/3, only the

first term gives a divergence. For 2/3 < n < 4/5, only the first two terms give a divergence,

and so on. It does not hurt to subtract arbitrary regular terms from the integrand, so we

can proceed by subtracting the first few terms in the first line of (B.5). Finally, we can

write down the result for AIR

AIR =
1

znt

∫ 1

z∗/zt

du

[
ρ̄d(u)

u2

√
ρ̄′d(u)2 +

1

un
− ᾱ0

u2+n/2
−
α1 + (2−n)2

2 α2
1

ᾱ0 u3n/2
+ . . .

]

+
1

znt

[
− ᾱ0(

1 + n
2

)
u1+n/2

−
α1 + (2−n)2

2 α2
1(

3n
2 − 1

)
ᾱ0 u3n/2−1

+ . . .

]u=1

u=z∗/zt

. (B.6)

For n = 2/3 the above equation is replaced by

AIR =
1

z
2/3
t

∫ 1

z∗/zt

du

[
ρ̄d(u)

u2

√
ρ̄′d(u)2 +

1

u2/3
− ᾱ0

u7/3
−
α1 + 8

9α
2
1

ᾱ0 u

]

+
1

z
2/3
t

[
− ᾱ0

4
3 u

4/3
+
α1 + 8

9α
2
1

ᾱ0
log u

]u=1

u=z∗/zt

. (B.7)

The lower limit of the integral in the first line can be sent to zero without encountering

divergences. Using (3.18) we can trade zt for R

zt =

(
R

ᾱ0

)2/(2−n)

. (B.8)

We obtain

AIR =
#

R2n/(2−n)
+

R(
1 + n

2

)
z

1+n/2
∗

+
1

R

α1 + (2−n)2

2 α2
1(

3n
2 − 1

)
z

3n/2−1
∗

+ . . . , (B.9)

where the expansion is a double expansion as in (3.19). For n = 2/3 the answer is:

AIR =
#

R
+

R
4
3 z

1+n/2
∗

− 27

64

logR

R
+ . . . (B.10)

We know the coefficient of the first term from the analysis performed in the main text.

In this approach it is given by a more complicated expression: the integral in the first

line (with the lower limit sent to zero) and the u = 1 boundary terms in the second line

in (B.6). It is related to en by some simple factors. The second term is an uninteresting

area law term. The third term is the 1/R term we are after. Combining this term with

the boundary term in (B.3) we get for the 1/R term:

A = #R+
#

R2n/(2−n)
− 1

R

[
1

2

∫ z∗

0
dz

z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

(B.11)

+
2

(3n/2− 1)(2 + n)2

1

z
3n/2−1
∗

]
+ . . . ,
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where we plugged in the value of α1 (3.16) and the UV expansion of ρ1 (3.20). For n > 2/3

the two terms beautifully combine to give:

A = #R+
#

R2n/(2−n)
− a1

2R
+ . . . (B.12)

a1 =

∫ ∞
0

dz
z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

. (B.13)

For n = 2/3 there are no terms coming from (B.3) that could contribute to the logR/R

term of (B.10). Hence we obtain:

A = #R− 27

64

logR

R
+

#

R
+ . . . . (B.14)

For n < 2/3 we have to apply subtractions, then a1 is given by

a1 =

∫ ∞
0

dz

 z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

− 4

(2 + n)2

1

z3n/2

 . (B.15)

Note that in the main text we use a dimensionless version of a1 denoted by s1. Because

we set a = 1 in this appendix, plugging in µ̃ = 1 in the expression of s1 gives the result for

a1 obtained here.

C Details of the UV expansion of ρ1 for the domain wall case

We are interested in the behavior of ρ1 at large z beyond the crossover scale zCO: zCO �
z � R. We assume that f(z) takes the form:

f(z) = f∞

(
1− λ

z2α̃

)
+ . . . (z � zCO) . (C.1)

where we introduced λ ≡ µ̃−2α̃. From (2.34)

ρ1 = b1ρhom(z) + ξ(z) (C.2)

with

ξ(z) ≡ (d− 2)

∫ z

0
du

ud−1√
f(u)

∫ ∞
u

dv
1

vd−1
√
f(v)

. (C.3)

For large z, ρhom(z) has the expansion

ρhom(z) =
zd

d
√
f∞

(
1 +

dλ

2(d− 2α̃)
z−2α̃ + . . .

)
+O(zdCO) . (C.4)

The large z behavior of ξ(z) is a bit more complicated. For α̃ > 1 we have

ξ(z) =

∫ z

0
du

[
ud−1√
f(u)

(d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞

]
+

z2

2f∞

=
z2

2f∞
+ γ −

∫ ∞
u

du

[
ud−1√
f(u)

(d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞

]

=
z2

2f∞
+ γ − λ

2f∞

(d− 2 + α̃)

(α̃− 1)(d− 2 + 2α̃)
z2−2α̃ +O(z2−4α̃)

(C.5)
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with

γ =

∫ ∞
0

du

[
ud−1√
f(u)

(d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞

]
, α̃ > 1 . (C.6)

For 1 ≥ α̃ > 1/2 we have to do more subtractions:

ξ(z) =

∫ z

0
du

[
ud−1√
f(u)

(d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞
− λ(d− 2 + α̃)

(d− 2 + 2α̃)f∞
u1−2α̃

]

+
z2

2f∞

(
1 +

λ(d− 2 + α̃)

(1− α̃)(d− 2 + 2α̃)
z−2α̃

)
=

z2

2f∞

(
1 +

λ(d− 2 + α̃)

(1− α̃)(d− 2 + 2α̃)
z−2α̃

)
+ γ +O

(
z2−4α̃

)
,

(C.7)

where now γ is given by

γ =

∫ ∞
0

du

[
ud−1√
f(u)

(d− 2)

∫ ∞
u

dv
1

vd−1
√
f(v)

− u

f∞
− λ(d− 2 + α̃)

(d− 2 + 2α̃)f∞
u1−2α̃

]
. (C.8)

For α̃ outside the above ranges one has to do more subtractions, but the leading

expressions remain the same as (C.7) with the explicit value of γ being different.

D 1/R term in the d = 3 domain wall geometry

In the domain wall case we follow the same logic as in appendix B, i.e. we divide the area

functional into UV and IR parts as in (B.1). The UV expansion for scaling and domain wall

geometries takes the same form, and correspondingly AUV has an identical form to (B.3).

z∗ is an arbitrary point in the region (5.20).

AIR can be obtained by regarding f(z) as a perturbation of f∞ and working to first

order. We set up the IR problem a bit differently, than in section 5:

ρ(z) = r0(z) + λr1(z) =

√
R2 − z2

f∞
+ λr1(z) (D.1)

λr1(z)− z2

2f∞R
= −ρ1(z)

R
+ . . . , (D.2)

where λ = µ̃−2α̃ as in (C.1), and the above equation follows from

R− ρ1(R)

R
+ · · · =

√
R2 − z2

f∞
+ λr1(z) + . . . . (D.3)

Let us consider how the on-shell action AIR changes, if we change f(z). If we regard z

as time, this is as a Hamilton-Jacobi problem in classical mechanics, when we are interested

in how the on-shell action changes. In this analogy, we are holding the initial time and

the endpoint of the trajectory fixed. There will be a term coming from the explicit change

of f(z) in the Lagrangian. Because the original trajectory was an extremum of the action

there is only a boundary term coming from the change of trajectory. Finally, there is a
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term coming from the change of time, when the particle reaches the endpoint. Hence we

get, in the order we listed the terms above:

δAIR =

∫ zt

z∗

dz
δL
δf
δf −Π δρ

∣∣∣
z∗
−H(zt)δzt , (D.4)

where δzm and δρ denote the induced variations due to δf , and the canonical variables

have the expressions

Π =
∂L
∂ρ′

=
ρd−2

zd−1

ρ′√
ρ′2 + 1

f

, H = Πρ′ − L = −ρ
d−2

zd−1

1

f
√
ρ′2 + 1

f

. (D.5)

Applying the above results to the current problem, we find that

δAIR =

∫ zm

z∗
dz

δL
δf

∣∣∣∣
r0

(
−f∞λ
z2α̃

)
−Π(z∗)

∣∣∣
r0
λr1(z∗) (D.6)

where we used H(zt) = 0. Evaluating these with zm =
√
f∞R we get:

δAIR = #R− f−(1+α̃)
∞ λ

R−2α̃

1− 4α̃2
+

λ

2(1− 2α̃)f
3/2
∞ R

z1−2α̃
∗ +

1√
f∞ z∗

λr1(z∗) + . . . . (D.7)

The zeroth order contribution gives:

A
(0)
IR =

R√
f∞z∗

− 1

f∞
= #R− 1

f∞
. (D.8)

Adding all this up and using (D.2) we get:

A = #R− 1

f∞
− f−1−α̃
∞ λ

R−2α̃

1− 4α̃2
− 1

2R

∫ z∗

0
dz

z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

+

√
f(z∗)

z2
∗R

ρ′1(z∗)ρ1(z∗) +
λ

2(1− 2α̃)
√
f∞R

z1−2α̃
∗ − 1√

f∞ z∗R
ρ1(z∗) +

z∗

2f
3/2
∞ R

.

(D.9)

Note that this result is in the double expansion (5.20), just like all expressions in the

matching region appearing in the main text. Now the common theme of this paper has to

be applied: subtractions. Subtracting the divergence(s) from the integral allows us to go

with the upper limit to infinity and gives the result:

A = #R− 1

f∞
− f−1−α̃
∞ λ

R−2α̃

1− 4α̃2
− a1

2R
(D.10)

a1 =



∫ ∞
0

dz

 z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

− 1

f
3/2
∞


(

1

2
< α̃

)
∫ ∞

0
dz

 z2√
f(z)

[∫ ∞
z

dv
1

v2
√
f(v)

]2

− 1

f
3/2
∞

(
1 +

3 + 2α̃

2(1 + 2α̃)

λ

z2α̃

)
(

1

4
< α̃ <

1

2

)
(D.11)
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The rest of the terms in (D.9) (after adding back the subtracted part to the integral) can

be shown to cancel to the order in z∗/R and 1/(µ̃z∗) that we wrote them down.

The final answer is:

S3 = S(IR)
3 +KIR

f−α̃∞ λ

(1− 2α̃)R2α̃
+
Ks1

µ̃R
+ . . . , (D.12)

where s1 = µ̃a1, as explained around (3.28).

E Some results for closely separated fixed points

We review and extend some results from [1] for closely separated fixed points:

f(z) = 1 + εg(z) g(z)→ 1− λ

z2α̃
(z →∞) (E.1)

Sd = SUV
d − ε (d− 1)!!K

2(d− 2)!!


∫ 1

0
dx g(xR) d odd∫ 1

0
dx

xg(xR)√
1− x2

d even.

(E.2)

Let us start with the odd d case and expand for large R with the technique of subtraction:∫ 1

0
dx g(xR) = 1 +

∫ 1

0
dx [g(xR)− 1] = 1 + [xg(xR)]1x=0 +

∫ 1

0
dx

[
−xg′(xR)R− 1

]
= 1−

∫ 1

0
dx (xR)g′(xR) + . . .

= 1−
[∫ ∞

0
dz zg′(z)

]
1

R
+ . . . , (E.3)

where we used partial integration and assumed fast enough (α̃ > 1
2) decay at infinity. If

the decay is slower, we need additional subtractions. For the even dimensional case we

encounter an integral similar to (5.7), so we can use the approximation technique from

there. After subtraction the integral is expected to be dominated by the x� 1 region and

we have:∫ 1

0
dx

xg(xR)√
1− x2

= 1 +

∫ 1

0
dx

xg(xR)− x√
1− x2

= 1 +

∫ 1

0
dx [xg(xR)− x] + . . .

= 1− 1

2

∫ 1

0
dx x2g′(xR)R+ . . .

= 1− 1

2

[∫ ∞
0

dz z2g′(z)

]
1

R2
+ . . . .

(E.4)

The final result in odd d is:

Sd = SUV
d − ε (d− 1)!!K

2(d− 2)!!
+ εK

1

2

(d− 1)!!

(d− 2)!!
b(α̃)

λ

R2α̃
+ ε

Ks1

µ̃R
+ . . . (E.5)

s1 =
(d− 1)!! µ̃

2(d− 2)!!


∫ ∞

0
dz zg′(z)

(
α̃ >

1

2

)
∫ ∞

0
dz

[
zg′(z)− 2α̃λ

z2α̃

] (
α̃ <

1

2

)
,

(E.6)

where λ = µ̃−2α̃. Of course we might need to apply more subtractions, if α̃ is small enough.
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The final result for even d takes the form:

Sd = SUV
d − ε (d− 1)!!K

2(d− 2)!!
+ εK

1

2

(d− 1)!!

(d− 2)!!
b(α̃)

λ

R2α̃
+ ε

Ks2

(µ̃R)2
+ . . . (E.7)

s2 =
(d− 1)!! µ̃2

4(d− 2)!!


∫ ∞

0
dz z2g′(z) (α̃ > 1)∫ ∞

0
dz

[
z2g′(z)− 2α̃λ

z2α̃−1

]
(α̃ < 1) .

(E.8)

Let us compare (E.6) to (5.39). We are interested in s1 to first order in ε, which we

repeat here for convenience for 1
2 < α̃:

s1 =

∫ ∞
0

dz

 z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

− 1

f
3/2
∞

 . (E.9)

Let us first take the integral over v. Using (E.1) we obtain:∫ ∞
z

dv
1

v2
√
f(v/µ̃)

=
1

z
− ε

2

∫ ∞
z

dv
g(v/µ̃)

v2
. (E.10)

The next step is to examine the full integrand:

z2√
f(z/µ̃)

[∫ ∞
z

dv
1

v2
√
f(v/µ̃)

]2

= z2

(
1− ε

2
g(z/µ̃)

)(
1

z2
− ε

z

∫ ∞
z

dv
g(v/µ̃)

v2

)
= 1 + ε

(
−1

2
g(z/µ̃) + z

∫ ∞
z

dv
g(v/µ̃)

v2

)
(E.11)

1

f
3/2
∞

= 1− 3ε

2
. (E.12)

Combining the above terms we get that s1 has the expression to first order in ε:

s1 = ε

∫ ∞
0

dz

[
−1

2
g(z/µ̃) + z

∫ ∞
z

dv
g(v/µ̃)

v2
+

3

2

]
. (E.13)

We can define a new function g̃(z) ≡ g(z)− 1 that vanishes sufficiently fast as z →∞. In

terms of this new function

s1 = ε

∫ ∞
0

dz

[
−1

2
g̃(z/µ̃) + z

∫ ∞
z

dv
g̃(v/µ̃)

v2

]
= −ε

∫ ∞
0

dz g̃(z/µ̃)

= ε µ̃

∫ ∞
0

dz zg′(z) ,

(E.14)

where in the second line we integrated the second term partially in z. In the third line we

did a second partial integration in z, and used that g̃′(z) ≡ g′(z).
For α̃ < 1

2 the same steps lead to the subtracted version of (E.13):

s1 = ε

∫ ∞
0

dz

[
−1

2
g(z/µ̃) + z

∫ ∞
z

dv
g(v/µ̃)

v2
+

3

2
− 3 + 2α̃

2(1 + 2α̃)

1

z2α̃

]
. (E.15)
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Defining g̃(z) ≡ g(z) − 1 + λ
z2α̃ allows us to absorb all the subtracted terms, and get the

simple formula:

s1 = −ε
∫ ∞

0
dz g̃(z/µ̃) . (E.16)

Partially integrating in z and using g̃′(z) ≡ g′(z)− 2α̃ λ
z2α̃+1 we obtain (E.6).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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