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1 Introduction

Interacting quantum field theories in 5d are non-renormalizable and therefore do not gener-

ically exist as microscopic theories. Nevertheless there is compelling evidence that there

exist strongly-interacting N = 1 supersymmetric fixed point theories in 5d, some of which

have relevant deformations corresponding to ordinary gauge theories with matter [1–5].

The simplest set of examples has a gauge group SU(2) and Nf ≤ 7 fundamental

hypermultiplets [1]. This set of fixed point theories is particularly interesting since it was

argued to exhibit an exotic global symmetry ENf+1. This is not visible in the gauge theory

action, which exhibits only an SO(2Nf ) × U(1)T global symmetry, where U(1)T is the

topological symmetry associated to the conserved current jT = ∗Tr(F ∧F ). It can however

be inferred by a particular string theory embedding of the gauge theory using a D4-brane in

Type I’ string theory. When the D4-brane coincides with the O8-plane and Nf D8-branes at

one of the boundaries, the low energy supersymmetric gauge theory has an Sp(1) = SU(2)

gauge symmetry, and Nf matter multiplets in the fundamental representation. The fixed

point theory corresponds to the limit where the dilaton blows up locally at this boundary,

which is possible only for Nf ≤ 7. In particular, this explains the enhancement of the

global symmetry to ENf+1, as a result of the enhancement of the 9d gauge symmetry on

the D8-branes due to massless D0-branes [6–8].

The enhanced global symmetry has recently been confirmed by an impressive calcu-

lation of the superconformal index, including instanton corrections, for the SU(2) theory

with Nf ≤ 5 [9]. The index exhibits explicitly the conserved current multiplets associated

with the ENf+1 symmetry. The extra currents not contained in SO(2Nf ) correspond to

instanton-particles.
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For Nf = 0 it was argued in [2] that there exists a second fixed point theory, the

so-called Ẽ1 theory, in which the U(1)T global symmetry is not enhanced. It was argued

that this theory is associated with a discrete analog of the θ parameter in 5d [3].

In this note we will revisit the Ẽ1 theory. We will explain how to embed it in the

Type I’ description by a previously overlooked discrete choice in the background. We will

then compute the superconformal index for this theory by adapting the computation of [9]

to this discrete choice, and exhibit the lack of symmetry enhancement. We will also offer

an alternative computation of the index, treating SU(2) as SU(N) with N = 2. In this

approach the Ẽ1 theory corresponds to the theory with a CS term at level κ = 1. Along

the way we also clarify how the SU(2) theory with CS level κ = 2 is equivalent to that

with κ = 0. We conclude by mentioning some future directions and raising some questions

about the string theory interpretation.

2 The Ẽ1 theory

In [2] Morrison and Seiberg showed that there are two more interacting fixed points that can

be reached by relevant deformations of the ENf+1 theories. Starting with the E2 theory,

there is a two-parameter space of relevant deformations spanned by the bare coupling

t0 ≡ 1/g2
0 and the flavor mass m. These can be thought of as VEVs of scalars in background

vector multiplets associated to the global E2 = SU(2) × U(1) symmetry. In particular m

is associated to the U(1) part, and the combination m0 ≡ t0 − 2m to the SU(2) part. The

origin of the (m0,m) plane is the E2 theory. Turning on m > 0 with m0 = 0, one flows

to the E1 theory with E1 = SU(2) global symmetry. On the other hand for m0 > 0 and

m = 0 one flows to the the free D1 theory with SO(2)×U(1) global symmetry. For m0 > 0

and m < 0 there is a singular locus where m0 + 4m = 0, along which the effective coupling

diverges. This suggests that in this direction one reaches a new interacting fixed point with

only a U(1) global symmetry, the so-called Ẽ1 theory. This theory has only one relevant

parameter s = m0 + 4m. For s > 0 it flows back to the free D1 theory, but for s < 0 it

flows to another interacting fixed point without any global symmetry, the E0 theory.

A similar conclusion was reached by considering the geometric realization of the ENf+1

fixed points as singular CY spaces with collapsed del-Pezzo surfaces [2, 3]. The flows

described above correspond to shrinking a 2-cycle inside the del-Pezzo surface and then

blowing one up in the CY space transverse to the del-Pezzo surface, i.e. a flop transition.

For the surface describing the E2 theory, B2, there are two inequivalent choices leading

either to the Hirzebruch surface B1 = F1 or to the direct product CP 1 ×CP 1. The latter

corresponds to the E1 theory and the former to the Ẽ1 theory.

Related to this description is the description of the 5d fixed point theories in terms

of Type IIB 5-brane webs [5]. In this picture 5d gauge theories are constructed using

a configuration of 5-branes in Type IIB string theory, in which the gauge fields live on

the worldvolumes of D5-branes that are suspended between NS5-branes. The web-like

configuration is supported by semi-infinite (p, q)5-branes carrying the appropriate charges

for charge conservation. The webs for the E1 and Ẽ1 theories are shown in figure 1. Flavors

can be added by attaching semi-infinite D5-branes. In particular with one flavor, it is easy
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E1

(a)

Ẽ1

(b)

E1

(c)

Figure 1. Pure SU(2): (a) E1 theory, (b) Ẽ1 theory, (c) another representation of E1. The webs

are drawn with the assumption that gs = 1 and C0 = 0.

(a)

E2 E1

(b)

Ẽ1

(c) (d)

E0

Figure 2. SU(2) with one flavor: (a) E2 theory, (b) positive mass deformation, (c) negative mass

deformation, (d) E0 theory.

to generate the flow from the E2 theory to either the E1 or Ẽ1 theory, figure 2(a,b,c). The

E0 theory can be reached by deforming the Ẽ1 web as in figure 2(d).

Since the E1 and Ẽ1 theories are obtained by deforming with opposite signs for the

flavor mass m, it was argued that the difference between the two gauge theories is a

5d analog of the θ parameter of Yang-Mills theory [3]. Indeed, 5d SU(2) gauge theory,

and more generally Sp(N) gauge theory, admits a Z2-valued θ parameter associated with

π4(SU(2)) = Z2. This is a discrete 5d analog of the familiar 4d θ parameter associated with

π3(SU(2)) = Z. In 4d, Euclidean gauge field configurations with instanton number n ∈
π3(SU(2)) are weighted by a phase einθ. The non-trivial element of π4(SU(2)) is associated

to a Z2-charged instanton in 5d.1 The 5d path integral thus has two contributions, and

we have a choice of taking the sum or difference of the two. This is interpreted as the

discrete choice of the θ parameter. When massive flavors are present, this parameter can

be absorbed into the sign of their mass. Therefore, if there is a massless flavor, θ is

physically irrelevant. There is only one theory with one flavor, the E2 fixed point. But in

deforming it by giving mass to the flavor there are two choices, leading to the E1 and Ẽ1

theories.
1This is related to the 4d global anomaly of [10]. This anomaly was observed by constructing a non-

trivial path in configuration space that interpolates between a 4d gauge field configuration and its global

transformation by an SU(2) element in the non-trivial class of π4(SU(2)). Along such a path an odd number

of eigenvalues of the Dirac operator change sign, so there is an anomaly if the are an odd number of fermions

in the fundamental representation. This path can be thought of as a Z2-valued instanton in 5d.
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3 Type I’ string description

One can now ask how the discrete θ parameter of the 5d Sp(N) gauge theory is realized in

the Type I’ description. This should correspond to some discrete choice that one can make

in the Type I’ background. Indeed such a choice exists. In 10d Type IIA string theory

there is a one-form gauge field in the RR sector, C1. In reducing to 9d by compactifying

on a circle this gives rise to a 9d θ parameter, θ9 =
∫
S1 C1. Type I’ string theory involves

a projection by the combination of spatial and worldsheet reflections, under which θ9 is

odd, and therefore projected out. However, since θ9 ∼ θ9 + 2π, there is a discrete remnant

corresponding to the choice of θ9 = 0 or π.2

Associated to θ9 is a non-BPS D(-1)-brane [12] whose contribution to the path integral

comes with a phase eiθ9 . (The D(-1)-brane is related by T-duality to the non-BPS D0-brane

of Type I string theory [13, 14].) The D(-1)-brane can be regarded as a discrete “gauge

instanton” in the 9d O(2Nf ) theory on the D8-branes. Its charge is associated with the

non-trivial element of π8(O) = Z2. Alternatively, it can also be regarded as an instanton

in the 5d Sp(N) theory on the D4-branes, or as an instanton in the 1d O(k) theory on a

collection of k D0-branes. Mathematically, this is the statement of Bott periodicity, which

relates

π8(O) = π4(Sp) = π0(O) . (3.1)

The latter is simply a Wilson line in Euclidean time, where the O(k) gauge field undergoes

a gauge transformation in the negative-determinant component of O(k). (This is related

by T-duality to the realization of the Type I D0-brane as a Wilson line in the Type I D1-

brane [15].) We are therefore lead to identify the θ parameters in the different dimensions:

θ9 = θ5 = θ1 . (3.2)

It is useful to construct a background in which θ9 changes between its two possible

values. This is achieved by considering the 9d “magnetic” dual of the non-BPS D(-1)-

brane, which is a non-BPS D7-brane. Depending on the size of the interval in the Type I’

background, this corresponds to either a D7-brane localized on the O8-plane, or to a D8-

brane-anti-D8-brane combination stretched along the interval, figure 3(a) [12]. (These are

T-dual to the D8-brane and D7-brane of Type I string theory [14].) Either way, this creates

a domain wall in 9d across which θ9 changes from 0 to π. So when the D(-1)-brane crosses

the D7-brane it acquires a −1 phase. This also means that the 5d θ parameter jumps across

the wall. In the absence of flavors, i.e., no D8-branes transverse to the interval, this creates

a clear separation between two regions in 5d with different values of θ, corresponding to

the two distinct vacua of the 5d Sp(N) gauge theory. When a flavor D8-brane is added the

configuration becomes unstable; there is a tachyon at the intersection of the D8-brane and

the D7-brane, leading to the absorption of the D7-brane by the D8-brane. In the stretched

D8-D8 description of the non-BPS D7-brane the branes break and reconnect, as shown in

figure 3(c). In other words, the domain wall disappears, and the two vacua are physically

equivalent. This is exactly what we expect from the point of view of the 5d gauge theory.

The θ parameter can be transformed away in the presence of massless fermion matter.

2A similar choice exists in Type I string theory, implying the existence of a new 10d string [11].
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(a)
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D8

(b)

O8 + D8

D8

D8

O8 + D8

(c)

Figure 3. Type I’ description of the θ parameter: (a) A transverse D8-D8 forms a θ domain wall,

(b) adding a flavor D8-brane leads to an instability, (c) the branes break and reconnect, eliminating

the domain wall.

4 Superconformal index

The superconformal index is a characteristic of superconformal field theories that essentially

counts a class of BPS operators [16]. As such, it is protected from continuous deformations

of the theory, and can be used as a diagnostic of non-perturbative physics like duality and

enhanced symmetries. Given a supercharge Q and its conjugate in radial quantization S,

the associated superconformal index is defined in general by

I(µi) = Tr
[
(−1)F e−β∆eµiqi

]
, (4.1)

where ∆ = {Q,S} is the Hamiltonian in radial quantization, µi are chemical potentials

associated to symmetries that commute with Q, and qi are the corresponding charges.

The BPS states contributing non-trivially to I satisfy ∆ = 0. The above expression can

be translated to a Euclidean functional integral in the field theory on Sd−1 × S1 with

appropriately twisted periodicity conditions on S1.

The computation is greatly simplified using supersymmteric localization, which reduces

the functional integral to ordinary matrix integrals. This was done for 5d N = 1 theories

in [9], leading to an expression that factorizes into a 1-loop determinant contribution and

a contribution of “instanton particles”:3

I(x, y,mi, q) =

∫
[Dα] Iloop(α, x, y,mi) |Iinst(α, x, y,mi, q)|2 . (4.2)

The integral is taken over the holonomy matrix α and includes the Haar measure of the

gauge group. The other parameters are fugacities associated with the Cartan generators

of the global symmetry SO(5)× SU(2)R × SO(2Nf )×U(1)T .

3We will refer to these as instanton particles to differentiate them from the gauge instantons discussed

previously. The latter are true instantons in the sense of being pointlike in 5d, whereas the former are

particles with world-lines in 5d.
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For each type of superfield, the 1-loop contribution is given by a Plethystic exponential

of the one-letter index

Iloop = PE[f(·)] = exp

[ ∞∑
n=1

1

n
f(·n)

]
. (4.3)

The vector multiplet contributes

fvector(x, y, α) = −
x(y + 1

y )

(1− xy)(1− x
y )

∑
r∈R

e−ir·α , (4.4)

where R is the root lattice, and each matter multiplet contributes

fmatter(x, y,mi, α) =
x

(1− xy)(1− x
y )

∑
w∈W

Nf∑
i=1

(
eiw·α+imi + e−iw·α−imi

)
, (4.5)

where the sum is over the appropriate weights in the weight lattice.

The instanton contribution is given by a product of a contribution from instanton

particles located at the south pole of the S4 and a contribution of anti-instanton particles

located at the north pole. Each is expressed as a power series in the instanton number,

Iinst(α, x, y,mi, q) = 1 + qZ1(α, x, y,mi) + q2Z2(α, x, y,mi) + · · · , (4.6)

where Zk is the 5d Nekrasov k-instanton partition function [17]. The computation of Zk
involves following the ADHM procedure for quantizing the multi-instanton moduli space,

described by supersymmetric gauge quantum mechanics with a dual gauge group. This

boils down to a contour integral over the Cartan subalgebra of the dual gauge group. The

result depends on both the gauge group and the matter content. Exact results for SU(N),

Sp(N) and SO(N) with various matter were obtained in [18].

4.1 Pure SU(2)

For SU(2) = Sp(1) the dual group for k instantons is O(k). This is of course the gauge

symmetry of the D0-brane theory in the Type I’ string theory description. This group

has two disconnected components denoted O(k)+ = SO(k) and O(k)−. The latter is

the set of determinant −1 elements of O(k) and does not form a group. For k = 2n,

the torus action of the group is generated by diag(eiσ2φ1 , . . . , eiσ2φn) for O(2n)+ and by

diag(eiσ2φ1 , . . . , eiσ2φn−1 , σ3) for O(2n)−. In other words the dimension of the Cartan sub-

algebra of O(2n)− is smaller by 1 than that of O(2n)+. For k = 2n + 1 the torus action

is generated by diag(eiσ2φ1 , . . . , eiσ2φn ,±1). The k-instanton index has two contributions

coming from the the two components O(k)+ and O(k)−, corresponding, respectively, to the

sectors of the supersymmetric quantum mechanics without and with the discrete Wilson

line.

The general expressions for the two contributions, Z+
k and Z−k , were given in [9]. Let

us reproduce here just the 1-instanton functions. The O(1)+ part contributes

Z+
1 =

x2

(1− xy)
(

1− x
y

)
(x− s)

(
x− 1

s

) , (4.7)

– 6 –
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where s is the gauge fugacity eiα, and the O(1)− part contributes

Z−1 =
x2

(1− xy)
(

1− x
y

)
(x+ s)

(
x+ 1

s

) . (4.8)

The latter is equivalent to inserting a parity twist (−1)P in the trace defining the index,

where P is the element −1 ∈ O(1). The only parity odd modes come from the gauge

moduli, hence the sign flip in front of s. The full instanton index is given by combining the

two parts, or equivalently by parity-projecting the spectrum. But here one has a choice

of projecting by either 1
2(1 + (−1)P ) or 1

2(1 − (−1)P ). This is precisely the choice of

the θ parameter, which gives a phase eiθ in the contribution with the Wilson line. The

even-parity projection gives

Zθ=0
1 =

1

2

(
Z+

1 + Z−1
)

=
x2(1 + x2)

(1− xy)
(

1− x
y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.9)

which is the result of [9] for pure SU(2). For θ = π we take the difference of (4.7) and (4.8),

which gives

Zθ=π1 = ±1

2

(
Z+

1 − Z
−
1

)
= ±

x3
(
s+ 1

s

)
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2) . (4.10)

We have included a possible sign ambiguity, due to a potential shift in the fermion number

relative to the θ = 0 case. We are not able to fix the sign from first principles, but we will

give an indirect argument that the minus sign is the correct one.

It is illuminating to expand the result in powers of x, since this orders the contributions

roughly according to their scaling dimension. The leading order contribution corresponds

to the ground state of the instanton particle. We see that to leading order, Zθ=0
1 ∼ x2,

whereas Zθ=π1 ∼ x3
(
s+ 1

s

)
. This shows that the ground state of the instanton particle is

charged under the gauge symmetry in the Ẽ1 theory, and is gauge-neutral in the E1 theory.

This is something we can also see from the description of BPS states as string-webs inside

the 5-brane-web [19], figure 4. On the Coulomb branch of the E1 theory, the instanton

particle is described by a D-string between the two NS5-branes. It is therefore uncharged

with respect to the SU(2) gauge symmetry at the origin. (Although it becomes charged

under the unbroken U(1) on the Coulomb branch due to the one-loop CS term). In the

Ẽ1 theory on the other hand, the instanton particle is described a 3-string web with a

fundamental string prong ending on one of the D5-branes. This corresponds to an SU(2)

charge in the fundamental representation, which is precisely what we see in the leading

term in the index.

Let us now return to the question of the overall sign in (4.10). This is related to the

question of whether the ground state is bosonic or fermionic, and as we will now argue, the

ground state of the instanton particle in the Ẽ1 theory is most likely fermionic. The basic

idea is to examine the symmetry properties of the 2-instanton operator, and to compare

it with the symmetry properties of the product of two 1-instanton operators. For free

– 7 –
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(a) (b)

Figure 4. The instanton particle: (a) in the E1 theory, (b) in the Ẽ1 theory.

particles, the two particle state should be a symmetrized product if they are bosons and

an antisymmetrized product if they are fermions. This should be seen by comparing the

2-instanton partition function with the symmetrized or antisymmetrized product of the

1-instanton partition function. The instantons are not free particles, so we will not get

an equality. Nevertheless, the leading terms in x are dominated by the symmetrized (or

antisymmetrized) product of the 1-instanton moduli space, and so we should be able to

determine which possibility of the two is more likely. The symmetry properties of the

products are encoded in the Plethystic exponential. Extracting the 2-instanton term, in

the bosonic case we would get

PE

 qx3
(
s+ 1

s

)
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2)
∣∣∣∣∣∣
q2

≈
(

1 + s2 +
1

s2

)
x6 +O(x7) , (4.11)

whereas in the fermionic case we would get

PE

− qx3
(
s+ 1

s

)
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2)
∣∣∣∣∣∣
q2

≈ x6 +O(x7) . (4.12)

Comparing with the expansion of the 2-instanton index,

Zθ=π2 ≈ x6 +O(x7) , (4.13)

we conclude that the ground state of the instanton in the Ẽ1 theory is actually fermionic,

and therefore that the correct sign in (4.10) is the minus sign.

We can now compute the superconformal index using (4.2). One can deduce from [9]

that for small x, Z±k ∼ O(x2k). So to compute the index to O(x2k), we generically need to

include instanton contributions up instanton number k. For the θ = 0 theory the authors

– 8 –
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of [9] found4

Iθ=0 = 1 + χ3(q)x2 + χ2(y2)[1 + χ3(q)]x3 +
(
χ3(y2)

[
1 + χ3(q)

]
+ 1 + χ5(q)

)
x4

+
(
χ4(y2)

[
1 + χ3(q)

]
+ χ2(y2)

[
1 + χ3(q) + χ5(q)

])
x5

+
(
χ5(y2)

[
1 + χ3(q)

]
+ χ3(y2)

[
1 + χ3(q) + χ5(q) + χ2

3(q)
]

+ χ3(q) + χ7(q)−1
)
x6

+
(
χ6(y2)

[
1 + χ3(q)

]
+ χ4(y2)

[
2 + 4χ3(q) + 2χ5(q)

]
+ χ2(y2)

[
1 + 3χ3(q) + 2χ5(q) + χ7(q)

])
x7

+
(
χ7(y2)

[
1 + χ3(q)

]
+ χ5(y2)

[
3χ5(q) + 5χ3(q) + 4

]
+ χ3(y2)

[
2χ7(q) + 3χ5(q) + 7χ3(q) + 2

]
+ χ9(q) + 2χ5(q) + 2χ3(q) + 3

)
x8

+O(x9) . (4.14)

This exhibits manifestly the enhancement of the global U(1)T symmetry to E1 = SU(2).

In particular the conserved current multiplets contribute to the coefficient of x2, which

is χ3(q) = 1 + q + 1/q. The three contributions come respectively from the perturbative

U(1)T current and two charged currents corresponding to an instanton particle (D0-brane)

and an anti-instanton particle (anti-D0-brane). For the θ = π theory we find

Iθ=π = 1 + x2 + 2χ2(y2)x3 +
(

1 + 2χ3(y2)
)
x4 +

(
2χ4(y2) + χ2(y2)

)
x5

+
(

2χ5(y2) + 3χ3(y2) + q2 +
1

q2

)
x6

+

(
2χ6(y2) + 4χ4(y2) + 4χ2(y2) + χ2(y2)

(
q2 +

1

q2

))
x7

+

(
2χ7(y2) + 7χ5(y2) + 7χ3(y2) + 4 + χ3(y2)

(
q2 +

1

q2

)
+ q3 +

1

q3

)
x8

+O(x9) . (4.15)

As anticipated, there is no symmetry enhancement in this theory. In fact, it is clear

from (4.10) that the instanton will only start to contribute at O(x6) in this case. Our

result also matches perfectly the computation of the index of the Ẽ1 theory done in [20],

to the order it was done there.

4.2 Adding flavor

Flavor hypermultiplets contribute fermionic zero modes that give factors of the form

(eimi/2 ∓ e−imi/2) in the numerator of the instanton index [9], where mi are the chemi-

cal potentials associated to the flavor symmetries (these can be thought of as the masses

of the flavor hypermultiplets). The sign is correlated with the sign of O(k)±. For O(k)+

the sign is negative due to the (−1)F operation, and for O(k)−, corresponding to the in-

sertion of (−1)P , the sign is positive since the flavors are parity-odd. For one flavor, the

4The result is expressed in terms of SU(2) characters. For example χ2(x) =
√
x+ 1√

x
, χ3(x) = x+1+ 1

x
.
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1-instanton functions are given by

Z±1 =
x2(eim/2 ∓ e−im/2)

(1− xy)
(

1− x
y

)
(x∓ s)

(
x∓ 1

s

) . (4.16)

For the two choices of θ we then get:

Zθ=0
1 =

x2
(
eim/2(1 + x2)− xe−im/2

(
s+ 1

s

))
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.17)

Zθ=π1 =
x2
(
e−im/2(1 + x2)− xeim/2

(
s+ 1

s

))
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.18)

where in the second case we have used the overall minus sign of (4.10). The two indices

are related by changing the sign of m, and they are equal for m = 0. This is as expected,

since the θ parameter becomes unphysical in the presence of massless fermions in the

fundamental representation. This also reinforces our argument for the sign in (4.10).

4.3 An alternative approach

An alternative way to compute the SU(2) instanton index is to treat the gauge group as

SU(N) with N = 2. Practically speaking, the SU(N) Nekrasov partition function is really

for U(N), but we can freeze-out the overall U(1) by setting its fugacity to 1. However the

distinction is important when we include a CS term. Although there is no possible CS

term for SU(2), one is possible for U(2). We will see that from the SU(2) point of view

this reduces to the discrete θ parameter. The Nekrasov 1-instanton partition function for

SU(2) with CS level κ is given by [9]:

Z
SU(2)κ
1 =

1

2πi

∮
u1+κ(1− x2)du

(1− xy)
(

1− x
y

)
(u− xs)

(
u− x

s

) (
u− s

x

) (
u− 1

xs

) , (4.19)

where s is the SU(2) gauge fugacity as before. The integral is taken on the unit circle in

the u-plane. There are four poles, but if we take x� 1 only the two at u = xs and u = x
s

contribute, and the result is

Z
SU(2)κ
1 =

x2+κ
[
(s2−κ − sκ)x2 + s2+κ − s−κ

]
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2)
(s2 − 1)

. (4.20)

At CS level κ = 0 this gives

Z
SU(2)0
1 =

x2(1 + x2)

(1− xy)
(

1− x
y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.21)

in agreement with the result for the E1 theory, namely the SU(2) theory with θ = 0 (4.9).

At CS level κ = 1 we get

Z
SU(2)1
1 =

x3
(
s+ 1

s

)
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.22)

in agreement, up to a sign, with the Ẽ1 theory (4.10).
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The sign difference above suggests that the procedure of freezing-out the overall U(1)

by setting its fugacity to 1 leaves a residue of the form (−1)κ. More generally, the result

for Zk with fundamental matter in the SU(N) formalism seems to have a U(1) residue

(−1)k(κ+Nf/2). We suspect that this is associated with the mixed CS term inherent in the

decomposition of U(2) to U(1)× SU(2),

Smixed CS ∝ κ
∫
Â ∧ Tr(F ∧ F ) . (4.23)

The Nf/2 contribution reflects the one-loop shift of the CS level due to the flavors. It

would be interesting to understand this better.

It is also interesting to consider the theory with CS level κ = 2. The result for the

1-instanton partition function is given by

Z
SU(2)2
1 =

x4
[
s2 + 1 + 1

s2
− x2

]
(1− xy)

(
1− x

y

)
(1− (xs)2)

(
1−

(
x
s

)2) . (4.24)

However this result is problematic since it is not invariant under x→ 1
x , unlike the results

for κ = 0 and κ = 1. This transformation is part of the superconformal group; it’s an

element of SU(2)x ⊂ SO(5). Therefore it should be respected by the instanton index. The

above result for the index is missing states that are required in order to form complete

representations of the superconformal group. We claim that the missing sector can be

accounted for by adding a term ∆ to (4.24), where

∆ =
x2

(1− xy)
(

1− x
y

) . (4.25)

The sum is

Z
SU(2)2
1 + ∆ =

x2(1 + x2)

(1− xy)
(

1− x
y

)
(1− (xs)2)

(
1−

(
x
s

)2) , (4.26)

and is invariant under x→ 1
x . Indeed it is precisely Z

SU(2)0
1 , namely the 1-instanton index

of the E1 theory. This is what we expect. The CS level 2 theory is really the SU(2)

theory with θ = 2π ∼ 0. It corresponds to the second 5-brane web realization of the E1

theory shown in figure 1(c). More generally, we claim that the full index, including all

instanton corrections, should be multiplied by PE[q∆]. A more detailed derivation and

interpretation of this result will appear elsewhere [21]. As a teaser, let us however mention

that the same term must be added more generally for SU(N)N , showing that the fixed

point theory corresponding to SU(N)N has an enhanced SU(2) global summetry.

5 Conclusions

By properly implementing the effect of the 5d θ parameter on the instanton particle in the

5d N = 1 SU(2) theory, we have computed the superconformal index of the Ẽ1 theory. Our

result confirms the lack of global symmetry enhancement, and agrees with other approaches.
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The generalization to Sp(N) with an antisymmetric hypermultiplet is straightforward,

and can be obtained in an analogous manner from the results of [9]. The θ = π theory

will not have an enhanced global symmetry. In fact, the instanton contribution starts at

a power of x that scales with N , so that at large N the index of the Ẽ1 theory becomes

purely perturbative (for a computation of the large N perturbative index see [22]).

It would be interesting to explore further the Type I’ string theory description of the

discrete θ parameter, and in particular its effect on the D0-brane. Can the difference in

the ground states of the instanton particle in the two theories be understood in terms of

some stringy mechanism?

It would also be interesting to understand the supergravity dual of the large N Ẽ1

theory, and related quiver theories, extending the results of [23, 24].
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[12] O. Bergman, E.G. Gimon and P. Hořava, Brane transfer operations and T duality of nonBPS

states, JHEP 04 (1999) 010 [hep-th/9902160] [INSPIRE].

[13] A. Sen, Type I D particle and its interactions, JHEP 10 (1998) 021 [hep-th/9809111]

[INSPIRE].

[14] E. Witten, D-branes and k-theory, JHEP 12 (1998) 019 [hep-th/9810188] [INSPIRE].

[15] A. Sen, SO(32) spinors of type-I and other solitons on brane - anti-brane pair, JHEP 09

(1998) 023 [hep-th/9808141] [INSPIRE].

[16] J. Kinney, J.M. Maldacena, S. Minwalla and S. Raju, An Index for 4 dimensional super

conformal theories, Commun. Math. Phys. 275 (2007) 209 [hep-th/0510251] [INSPIRE].

[17] N.A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math.

Phys. 7 (2004) 831 [hep-th/0206161] [INSPIRE].

[18] N. Nekrasov and S. Shadchin, ABCD of instantons, Commun. Math. Phys. 252 (2004) 359

[hep-th/0404225] [INSPIRE].

[19] O. Aharony, A. Hanany and B. Kol, Webs of (p,q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[20] A. Iqbal and C. Vafa, BPS Degeneracies and Superconformal Index in Diverse Dimensions,

arXiv:1210.3605 [INSPIRE].

[21] O. Bergman, D. Rodriguez-Gomez and G. Zafrir, 5-Brane Webs, Symmetry Enhancement,

and Duality in 5d Supersymmetric Gauge Theory, to appear.

[22] O. Bergman, D. Rodriguez-Gomez and G. Zafrir, 5d superconformal indices at large-N and

holography, JHEP 08 (2013) 081 [arXiv:1305.6870] [INSPIRE].

[23] A. Brandhuber and Y. Oz, The D-4 - D-8 brane system and five-dimensional fixed points,

Phys. Lett. B 460 (1999) 307 [hep-th/9905148] [INSPIRE].

[24] O. Bergman and D. Rodriguez-Gomez, 5d quivers and their AdS6 duals, JHEP 07 (2012)

171 [arXiv:1206.3503] [INSPIRE].

– 13 –

http://dx.doi.org/10.1016/S0550-3213(98)00316-2
http://arxiv.org/abs/hep-th/9711098
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711098
http://dx.doi.org/10.1007/JHEP10(2012)142
http://arxiv.org/abs/1206.6781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.6781
http://dx.doi.org/10.1016/0370-2693(82)90728-6
http://inspirehep.net/search?p=find+J+Phys.Lett.,B117,324
http://dx.doi.org/10.1007/JHEP09(2013)149
http://arxiv.org/abs/1304.1551
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1551
http://dx.doi.org/10.1088/1126-6708/1999/04/010
http://arxiv.org/abs/hep-th/9902160
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902160
http://dx.doi.org/10.1088/1126-6708/1998/10/021
http://arxiv.org/abs/hep-th/9809111
http://inspirehep.net/search?p=find+EPRINT+hep-th/9809111
http://dx.doi.org/10.1088/1126-6708/1998/12/019
http://arxiv.org/abs/hep-th/9810188
http://inspirehep.net/search?p=find+EPRINT+hep-th/9810188
http://dx.doi.org/10.1088/1126-6708/1998/09/023
http://dx.doi.org/10.1088/1126-6708/1998/09/023
http://arxiv.org/abs/hep-th/9808141
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808141
http://dx.doi.org/10.1007/s00220-007-0258-7
http://arxiv.org/abs/hep-th/0510251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510251
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://dx.doi.org/10.4310/ATMP.2003.v7.n5.a4
http://arxiv.org/abs/hep-th/0206161
http://inspirehep.net/search?p=find+EPRINT+hep-th/0206161
http://dx.doi.org/10.1007/s00220-004-1189-1
http://arxiv.org/abs/hep-th/0404225
http://inspirehep.net/search?p=find+EPRINT+hep-th/0404225
http://dx.doi.org/10.1088/1126-6708/1998/01/002
http://arxiv.org/abs/hep-th/9710116
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710116
http://arxiv.org/abs/1210.3605
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.3605
http://dx.doi.org/10.1007/JHEP08(2013)081
http://arxiv.org/abs/1305.6870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6870
http://dx.doi.org/10.1016/S0370-2693(99)00763-7
http://arxiv.org/abs/hep-th/9905148
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905148
http://dx.doi.org/10.1007/JHEP07(2012)171
http://dx.doi.org/10.1007/JHEP07(2012)171
http://arxiv.org/abs/1206.3503
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3503

	Introduction
	The tilde E(1) theory
	Type I' string description
	Superconformal index
	Pure SU(2)
	Adding flavor
	An alternative approach

	Conclusions

