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1 Introduction

There are still some unresolved puzzles regarding aspects of bulk solitons in holographic

models of QCD, even within effective five-dimensional Yang-Mills theories that are obtained

from limits of D-brane configurations in string theory. Here we work within the effective

five-dimensional theory obtained from the Sakai-Sugimoto model, which involves D8-brane

probes in a background of D4-branes compactified on a circle. Although our investigations

are concerned with the effective five-dimensional theory, we adopt a common nomenclature

and continue to refer to this effective theory as the Sakai-Sugimoto model. Within this

model we shall address issues that include the validity of the flat space self-dual instanton

approximation and the large distance behaviour of the electromagnetic form factors of the

baryon. In this paper we provide analytic resolutions of known puzzles regarding these

issues and confirm our findings by numerical investigations.

The cornerstone of all models of baryons in holographic QCD is that solitons in the

bulk correspond to Skyrmions on the boundary. This correspondence was first observed

by Atiyah and Manton [1] in four-dimensional Euclidean space, where the bulk soliton is

the self-dual Yang-Mills instanton. The correspondence can be formulated as a flat space

version of holography [2]. Holographic QCD differs from the Atiyah-Manton approach in

that spacetime is curved with AdS-like behaviour and a five-dimensional Chern-Simon term

is included that generates an abelian electric charge for the soliton. Here AdS-like means
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that the curvature is negative and there is a conformal boundary. The combination of the

curvature of spacetime and the electromagnetic repulsion provides a stability that fixes the

size of the soliton. These features are common to all models of holographic QCD, whether

bottom-up or top-down.

Top-down approaches are derived from a string embedding and the Sakai-Sugimoto

model [3, 4] is the prototypical example for top-down AdS/QCD models. In these models,

the validity of the supergravity approximation requires working with a large number of

colours Nc and a large value of the ’t Hooft coupling λ. Although Nc is just an overall

multiplicative factor in the action, and thus irrelevant at the classical level, λ plays a vital

role for the classical soliton, as it controls the ratio between the Yang-Mills and Chern-

Simons terms. In particular, for large λ the size of the soliton becomes parametrically small

with respect to the curvature scale. This suggests that most of the energy density of the

soliton is concentrated in a small region of space, where the effect of the curvature has little

influence on the fields of the soliton. This motivates the approach used in [5, 6], where the

soliton is approximated by the flat space self-dual Yang-Mills instanton, with a size deter-

mined by minimization of the energy function on the instanton moduli space that results

by restricting the full energy functional to the space of self-dual instanton fields. Note that

this approximation is based on the assumption that the curvature and Chern-Simons term

do not significantly alter the soliton fields, even though they are crucial in determining its

size. We shall put this assumption to the test by numerically computing the Sakai-Sugimoto

soliton and comparing it to the self-dual instanton. Furthermore, we show how to improve

the self-dual instanton approximation via a simple generalization that maintains the SO(4)

symmetry of the instanton but introduces a more general profile function.

The soliton properties at large distance, and consequently the baryon electromagnetic

form factors of the dual theory, have been calculated by expanding the self-dual instanton

tail at the linear level and then extending this linear solution into the curved space at large

distance from the core [7–9]. This approach relies on the fact that, for a small soliton, there

is a region from the soliton core to the curvature scale in which the soliton is essentially

in a linear regime and the curvature effects remain negligible. The result of this linear

analysis is that the baryon density, and consequently all the electromagnetic form factors

(including those of exited baryons obtained from a zero mode quantization) are exponen-

tially suppressed at large distance. This is in contrast to the situation for other models,

including the standard Skyrme model with massless pions, where the baryon density has

an algebraic decay.

Bottom-up approaches are equally good toy-models for AdS/QCD, as long as they

incorporate the features of confinement and chiral symmetry breaking. These models are

relieved of the requirement of a string theory embedding, so there is a free choice of any

AdS-like metric (provided it has a conformal boundary in the UV) and λ need not be

small. The Pomarol-Wulzer model [10] is an example in this category, where the metric is

a slice of AdS5 with a finite IR boundary at which left and right gauge fields are subject

to matching conditions that mimic the salient features of the Sakai-Sugimoto model. Nu-

merical computations of the Pomarol-Wulzer soliton have been performed at a value of the

coupling that is of order one (where the soliton size is comparable to the curvature scale

– 2 –



J
H
E
P
0
1
(
2
0
1
4
)
0
7
8

of the AdS5 slice), together with an asymptotic power series at large radius [11]. These

results show that the baryon form factors have an algebraic decay, as in the Skyrme model,

and not an exponential decay.

Cherman, Cohen and Nielsen [12] have described model independent relations for the

baryon form factors at large distance. These relations are satisfied by the baryon form

factors computed in the Skyrme model and the Pomarol-Wulzer model but not by those of

the Sakai-Sugimoto model obtained from the linear analysis. The exponential decay of the

soliton fields in the Sakai-Sugimoto model lies at the heart of this failure. Later, Cherman

and Ishii [13] adapted the large radius expansion in [11] to the Sakai-Sugimoto model

and found that the form factors have an algebraic decay and indeed satisfy the model

independent relations, contradicting the earlier result of the linear analysis. However,

their approach required the introduction of a UV cutoff and problems arise in attempting

to remove this cutoff, so it is not clear which of the conflicting results is correct. Very

recently, a preprint has appeared in which the large radius expansion has been applied

to a general metric [14] and a conclusion drawn regarding the UV cutoff introduced into

the Sakai-Sugimoto model. We shall comment on this conclusion in section 4.7, where we

derive the correct procedure for removing the UV cutoff.

The contradictory conclusions described above raise a number of issues and questions

concerning the use and validity of the various approximations and approaches. In fact,

several candidates have been suggested for the source of the disagreement. One possibility

is that the use of the flat space self-dual instanton in the Sakai-Sugimoto model is at the root

of the problem. The validity of this approximation has never been tested, either numerically

or analytically, and one may worry about a mechanism that allows the curvature and Chern-

Simons term to stabilize the instanton size without altering the form of its fields. We

shall test the use of the instanton approximation, firstly by introducing a generalization

that allows some deformation of the instanton fields, and secondly via direct numerical

computation of the Sakai-Sugimoto soliton. Our results strongly support the validity of

the self-dual instanton approximation for large ’t Hooft coupling.

Another possibility is that either the linear expansion in [7] or the large radius expan-

sion in [13] are not valid in the Sakai-Sugimoto model. In fact, we shall show that both

approaches are valid but they are applicable in different regions of space. The contradictory

results concerning the soliton tail, and consequently the baryon form factors, is a result of

applying the linear expansion in an inappropriate region. The resolution of all the discrep-

ancies in the literature resides in the existence of a new scale. This is a large scale that

grows logarithmically with the ’t Hooft coupling and is therefore much larger than both

the radius of curvature and the size of the small instanton. The linear expansion should be

thought of as an expansion in λ−1, where the first term solves the linearised field equations.

However, higher order terms are larger than the first order term both at the small instan-

ton scale, which is of order λ−1/2, and crucially at the new large scale of order log λ. The

fundamental property of the system is that there is a transition from a linear to a nonlinear

regime at large distance. The existence of this new large scale explains the discrepancy over

the form factor computations, which depend on the fall-off of the soliton tail. The vital ob-

servation is that the large λ and large radius limits do not commute. The crucial terms with
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algebraic decay are suppressed by additional powers of λ−1 in comparison to the terms with

exponential decay, so the algebraic decay is only evident at the large scale of order log λ.

The outline of this paper is as follows. In section 2 we review the main aspects of

the Sakai-Sugimoto model. In section 3 we discuss the flat space self-dual instanton ap-

proximation and our radial generalization. Section 4 is devoted to the calculation of the

tail properties of the soliton, and in particular a determination of the regions of validity

of alternative approximations. By comparing these different approximations we are able

to relate them to each other and hence predict the emergence of the new large scale. A

numerical computation of the Sakai-Sugimoto soliton is described in section 5, where the

numerical results are shown to support our analytic findings. Finally, some concluding

remarks are made in section 6.

2 The Sakai-Sugimoto model

Consider a five-dimensional spacetime with a warped metric of the form

ds2 = H(z) dxµdx
µ +

1

H(z)
dz2. (2.1)

Here xµ, with µ = 0, 1, 2, 3, are the coordinates of four-dimensional Minkowski spacetime

and z is the spatial coordinate in the additional holographic direction. The signature is

(−,+,+,+,+).

A class of spacetimes that are particularly relevant for holographic baryons corresponds

to the choice

H =

(
1 +

z2

L2

)p
, (2.2)

where L and p are positive constants, with the former setting a curvature length scale. In

this paper we focus on the Sakai-Sugimoto model [3, 4], which corresponds to the choice p =
2
3 . For general p the scalar curvature of the metric, after setting the length scale L = 1, is

R = −4H−3/4
(
H3/4H ′

)′
= −

4p
(
2 + (7p− 2)z2

)
(1 + z2)2−p . (2.3)

This formula shows that the value of p is crucial in determining the qualitative features

of the spacetime. For p ≤ 1 the curvature is finite as z → ∞. For p = 1 the spacetime

is asymptotically AdS5 with constant negative curvature −20. For p > 2
7 the curvature is

negative for all z and for p > 1
2 the theory has a conformal boundary. In the case of a

conformal boundary it is often useful to introduce conformal coordinates

ds2 = H(z(u))
(
dxµdx

µ + du2
)
, (2.4)

where u solves the equation du/dz = 1/H(z). For large z the asymptotic behaviour is

u(z) ' c1 + c2/z
2p−1, for some constants c1 and c2. Thus u→ c1 as z →∞, revealing the

conformal boundary.

Given the above properties, we refer to the metric as AdS-like if p ∈ (1
2 , 1], since there

is then a conformal boundary and the curvature is negative and finite. The Sakai-Sugimoto
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model is a generic example with p = 2
3 . Unless otherwise specified, from now on we will

fix the values L = 1 and p = 2
3 , though occasionally we will reintroduce these constants to

indicate the more general dependence.

The Sakai-Sugimoto model is a U(2) gauge theory in the five-dimensional spacetime

introduced above. Our index notation is that uppercase indices include the holographic

direction whilst lowercase indices exclude this additional dimension. Furthermore, greek

indices include the time coordinate whilst latin indices (excluding z) run over the spatial

coordinates. Thus, for example,

Γ,∆, . . . = 0, 1, 2, 3, z, µ, ν, . . . = 0, 1, 2, 3, I, J, . . . = 1, 2, 3, z, i, j, . . . = 1, 2, 3. (2.5)

To fix conventions, the gauge potential AΓ is hermitian and under a gauge transformation,

G ∈ U(2), it transforms as AΓ 7→ GAΓG
−1 + i(∂ΓG)G−1. The associated field strength is

FΓ∆ = ∂ΓA∆ − ∂∆AΓ + i[AΓ,A∆] and the covariant derivative is DΓ♥ = ∂Γ♥+ i[AΓ,♥].

The action is the sum of a Yang-Mills term and a U(2) Chern-Simons term

S = − Ncλ

216π3

∫ √
−g 1

2
tr
(
FΓ∆FΓ∆

)
d4x dz +

Nc

24π2

∫
ω5(A) d4x dz, (2.6)

where g is the earlier warped metric with p = 2
3 . The factors Nc and λ are respectively the

number of colours and the ’t Hooft coupling of the dual theory. Note that the number of

colours acts just as a multiplicative factor and therefore plays a trivial role in the classical

physics in the bulk. In particular, by keeping λ fixed and taking the limit Nc →∞ we can

always make any quantum corrections negligible.

Decomposing the U(2) gauge potential into a sum of non-abelian SU(2) and abelian

U(1) components

AΓ = AΓ +
1

2
ÂΓ, FΓ = FΓ +

1

2
F̂Γ, (2.7)

the U(2) Chern-Simons term, up to a total derivative, is

Nc

24π2

∫ (
3

8
ÂΓtr (F∆ΣFΞΥ) +

1

16
ÂΓ F̂∆ΣF̂ΞΥ

)
εΓ∆ΣΞΥ d4x dz. (2.8)

The action, conveniently rescaled, becomes

S =
216π3

Ncλ
S

=

∫ {
− 1

4H1/2
F̂µνF̂

µν − H3/2

2
F̂µzF̂

µz − 1

2H1/2
tr (FµνF

µν)−H3/2tr (FµzF
µz)

}
d4x dz

+
1

Λ

∫ (
ÂΓtr (F∆ΣFΞΥ) +

1

6
ÂΓ F̂∆ΣF̂ΞΥ

)
εΓ∆ΣΞΥ d4x dz, (2.9)

where the indices are now raised using the flat 5-dimensional Minkowski metric tensor ηΓ∆.

For convenience, in the above we have introduced the rescaled ’t Hooft coupling

Λ =
8λ

27π
. (2.10)
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As we are concerned with the static soliton solution of the theory, from now on we

shall restrict to the case of time independent fields. The appropriate static ansatz is

A0 = 0, AI = AI(xJ), Â0 = Â0(xJ), ÂI = 0, (2.11)

so that the abelian potential generates an electric field F̂I0 = ∂IÂ0. The action restricted

to static fields is then

S =

∫ {
1

2H1/2
(∂iÂ0)2 +

H3/2

2
(∂zÂ0)2 − 1

2H1/2
tr
(
F 2
ij

)
−H3/2tr

(
F 2
iz

)}
d4x dz

+
1

Λ

∫
Â0 tr (FIJFKL) εIJKL d

4x dz. (2.12)

The static field equations that follow from the variation of this action are

1

H1/2
DjFji +Dz(H

3/2Fzi) =
1

Λ
εiJKLFKL∂J Â0 (2.13)

H3/2DjFjz =
1

Λ
εijkFjk∂iÂ0 (2.14)

1

H1/2
∂i∂iÂ0 + ∂z(H

3/2∂zÂ0) =
1

Λ
tr (FIJFKL) εIJKL. (2.15)

Baryon number is identified with the SU(2) instanton number of the soliton

B = − 1

32π2

∫
tr(FIJFKL) εIJKL d

3x dz, (2.16)

and the Chern-Simons coupling implies that the instanton charge density sources the

abelian electric field.

For later computational purposes, it will be convenient to rewrite the action by rear-

ranging the terms as

S =

∫ {
H3/2

2

(
(∂IÂ0)2 − tr

(
F 2
IJ

))
+

1−H2

2H1/2

(
(∂iÂ0)2 − tr

(
F 2
ij

))}
d4x dz,

+
1

Λ

∫
Â0 tr (FIJFKL) εIJKL d

4x dz. (2.17)

3 Radial and self-dual approximations

As we shall see, the static soliton solution of the field equations that follow from (2.12)

is quite complicated. Even for the single static soliton, symmetry reduction can only re-

duce the field equations to coupled partial differential equations for five functions of two

variables, which then need to be solved numerically. This approach will be described in

detail in section 5, where we present the results of the first numerical computation of the

Sakai-Sugimoto soliton.

The lack of an exact solution has motivated various approximate descriptions of the

soliton, some of which we shall discuss later. First we consider an approximation, in which

the fields are assumed to have SO(4) spherical symmetry. Because of the warp factor in
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the metric, such an assumption is clearly incompatible with the true solution of the field

equations, so no exact solutions can be obtained in this way. However, we can certainly

restrict the functional space to such a set of symmetric trial fields and determine the fields

that are stationary points of the restricted action. The advantage of this approach is that it

reduces the problem to a single ordinary differential equation, which is much easier to deal

with than the full coupled partial differential equations. Furthermore, the radial approxi-

mation is a generalization of the self-dual flat space instanton approximation that has been

used heavily in previous studies, so we are able to further investigate this approximation

by examining how the radial approximation compares to the self-dual approximation in

the large Λ limit. The obvious disadvantage of the radial approximation is that it is un-

clear whether the approximate fields provide a reasonable description of the true solution.

Fortunately, our later numerical solution will allows us to investigate this aspect too.

An SO(4) radial approximation has been used previously [15] in the study of the Sakai-

Sugimoto model, but for a slightly different purpose. Namely, it has been used to investigate

the modification of the self-dual flat space instanton within the Dirac-Born-Infeld action at

linear order in 1/Λ. Here we use this approximation to study a different situation, namely

the Yang-Mills theory without restriction to linear order in 1/Λ. The two studies therefore

use the same ansatz but to investigate different sources of error in using the self-dual flat

space instanton approximation.

To specify the fields within the radial approximation we define the coordinates ρ ≥ 0

and θ ∈ [0, π] by

ρ =
√
x2

1 + x2
2 + x2

3 + z2, z = ρ cos θ. (3.1)

The radial approximation involves two real profile functions a(ρ) and b(ρ) and is given by

Â0 = a(ρ), AI = −σIJxJ b(ρ), (3.2)

where σIJ is the anti-symmetric ’t Hooft tensor defined in terms of the Paul matrices σi by

σij = εijkσk, σzi = σi. (3.3)

The non-abelian field has the same SO(4) symmetry as the self-dual instanton, but has a

more general radial profile function.

The instanton charge density is

− 1

32π2
tr(FIJFKL) εIJKL =

3

π2
b(1− ρ2b)(2b+ ρb′)

=
1

π2ρ3

(
3

2
(ρ2b)2 − (ρ2b)3

)′
(3.4)

yielding the instanton number

B = c2(3− 2c), where c = lim
ρ→∞

(ρ2b). (3.5)

The requirement that B = 1 therefore determines that c = 1, giving the large ρ behaviour

b =
1

ρ2
+O

(
1

ρ4

)
. (3.6)
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In evaluating the action density of the radial field, the first term to consider is

tr
(
F 2
IJ

)
= 12(2b+ ρb′)2 + 48b2(1− bρ2)2. (3.7)

The remaining term that is required is

tr
(
F 2
ij

)
=

8

ρ

(
6ρb2 + 2b3ρ(ρ2 + 2z2)(bρ2 − 2) + b′(b′ρ+ 4b)(ρ2 − z2)

)
. (3.8)

Substituting these expressions into the action (2.17), writing z = ρ cos θ and performing

the angular integration over θ gives

S

2π2
=

∫ {
(P1 − P2 + P3)a′2 − 12P1

(
(2b+ ρb′)2 + 4b2(1− bρ2)2

)
+8
(
6b2P2 + 2b3ρ2(P2 + 2P3)(bρ2 − 2) + b′(b′ρ+ 4b)ρ(P2 − P3)

)}
ρ3 dρ dt

−16

Λ

∫
a
(
3(ρ2b)2 − 2(ρ2b)3

)′
dρ dt, (3.9)

where the three functions P1,2,3(ρ) are defined by the following angular integrals

P1(ρ) =
1

π

∫ π

0
H(ρ cos θ)3/2 sin2 θ dθ =

1

2
+

1

8
ρ2

P2(ρ) =
1

π

∫ π

0

H(ρ cos θ)2 − 1

H(ρ cos θ)1/2
sin2 θ dθ =

1

6
ρ2 − 1

72
ρ4 +O(ρ6)

P3(ρ) =
1

π

∫ π

0

H(ρ cos θ)2 − 1

H(ρ cos θ)1/2
sin2 θ cos2 θ dθ =

1

12
ρ2 − 5

576
ρ4 +O(ρ6). (3.10)

The field equation for a(ρ), that follows from the variation of (3.9), may be integrated once

to yield

a′ = − 8ρb2(3− 2ρ2b)

Λ(P1 − P2 + P3)
, (3.11)

where the constant of integration has been set to zero in order to have a vanishing elec-

tric field at the origin a′(0) = 0. Integration by parts of the Chern-Simons term in (3.9),

together with the solution (3.11), produces the following energy functional, that depends

only on the profile function b(ρ),

E

2π2
=

∫ {
64ρ2b4(3− 2ρ2b)2

Λ2(P1 − P2 + P3)
+ 12P1

(
(2b+ ρb′)2 + 4b2(1− bρ2)2

)
−8
(
6b2P2 + 2b3ρ2(P2 + 2P3)(bρ2 − 2) + b′(b′ρ+ 4b)ρ(P2 − P3)

)}
ρ3 dρ. (3.12)

Minimization of this energy gives a second order ordinary differential equation for b(ρ) that

must be solved subject to the boundary conditions

b′(0) = 0 and ρ2b→ 1 as ρ→∞. (3.13)

Given this profile function, a(ρ) can be obtained by integrating (3.11). We shall present

this numerical solution at the end of this section, but first we see how the flat space self-dual

instanton approximation fits within this formalism.
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In the case of large ’t Hooft coupling (which is required in top-down approaches) the

Chern-Simons term is parametrically suppressed with respect to the Yang-Mills term. The

role of the Chern-Simons coupling is to provide an electric contribution that stabilize the

soliton against the shrinking induced by the spacetime curvature. Large Λ should therefore

correspond to a small soliton size, so that space is approximately flat in the soliton core.

This motivates the use of the flat space self-dual instanton to approximate the soliton [5, 6].

To investigate the large Λ limit it is useful to first introduce the rescaled coordinate

ρ̃ =
√

Λρ. The boundary condition ρ2b → 1 as ρ → ∞, determines that the appropriate

associated rescaling of the profile function is b̃ = b/Λ. In terms of these variables the

energy (3.12) can be written as E =
∑∞

j=0EjΛ
−j , where the first two terms are

E0 = 12π2

∫ {(
(2b̃+ ρ̃b̃′)2 + 4b̃2(1− b̃ρ̃2)2

)}
ρ̃3 dρ̃, (3.14)

E1 =
π2

3

∫ {
4b̃2
(
192b̃2(2ρ̃2b̃− 3)2 + ρ̃4b̃2 − 2ρ̃2b̃+ 6

)
+ 5ρ̃b̃′(ρ̃b̃′ + 4b)

}
ρ̃5 dρ̃. (3.15)

Restricting to the leading order term, the energy E0 is minimized by the profile function

of the flat space self-dual instanton

b̃ =
1

ρ̃2 + µ̃2
, (3.16)

where µ̃ is the rescaled arbitrary size of the instanton. The leading order term in the energy

is E0 = 8π2 and is independent of the size of the instanton.

The self-dual approximation involves restricting the profile function to the self-dual

form (3.16) and using the next order term in the energy, E1, as an energy function on the

moduli space of instanton sizes. Explicitly, substituting (3.16) into (3.15) and performing

the integration yields

E1 = 2π2

(
2

3
µ̃2 +

256

5µ̃2

)
, (3.17)

which is minimized when

µ̃ = 4

(
3

10

)1/4

. (3.18)

Returning to unscaled variables, with µ = µ̃/
√

Λ the size of the instanton, the self-dual

approximation gives

E = 2π2

(
4 +

2

3
µ2 +

256

5Λ2µ2

)
+O

(
1

Λ2

)
, (3.19)

where

µ =
4√
Λ

(
3

10

)1/4

. (3.20)

A similar scaling analysis of equation (3.11) shows that the leading order result for a′

simply corresponds to replacing the term P1 − P2 + P3 in (3.11) by its flat space limit 1
2 .

After substituting the self-dual approximation b = 1/(ρ2 +µ2) and integrating, the result is

a =
8(ρ2 + 2µ2)

Λ(ρ2 + µ2)2
. (3.21)
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Figure 1. The profile function b(ρ) using the flat space self-dual approximation (blue curve) and

the radial approximation (orange curve). The left and right images correspond to the coupling

Λ = 2 and Λ = 10 respectively.

Note that a(0) = 16/(Λµ2) =
√

10
3 is independent of Λ within this self-dual approximation.

In summary, the first term in the energy (3.19) is independent of the instanton size

and is simply the flat space self-dual Yang-Mills result of 8π2 in our units. The second

term is O(µ2) and also derives from the Yang-Mills functional but from the leading order

correction to the the metric expansion around flat space. This gravitational contribution

drives the instanton towards zero size. The third term is O(1/µ2) and is the first contri-

bution from the electrostatic abelian field. This term resists the shrinking of the instanton

size. These competing effects combine to produce the finite size (3.20), which is small for

large Λ, with the energy dominated by the flat space self-dual contribution. The correction

from the size stabilizing terms is subleading and is O(1/Λ).

Returning to the radial approximation, the profile function b(ρ) that minimizes the

energy (3.12) subject to the boundary conditions (3.13), was obtained using a shooting

method with a fourth order Runge-Kutta algorithm to solve the second order ordinary

differential equation obtained from the variation of the energy. The results are displayed in

figure 1 for two values of the coupling Λ = 2, 10. These plots illustrate the flow of the radial

approximation to the self-dual approximation as Λ→∞. For finite Λ the main difference

between the radial and self-dual approximations is that the self-dual approximation over-

estimates the value at the origin. As we shall see later, the full numerical solution confirms

this overestimation, with the radial approximation being an improvement that reduces, but

does not eliminate, this error.

The above rescaling to the self-dual instanton in the Λ→∞ limit is a radial restriction

of the following rescaling used in [5, 6]

x̃I =
√

ΛxI , t̃ = t, ÃI = AI/
√

Λ,
˜̂
A0 = Â0. (3.22)

Defining H̃ = H(z̃/
√

Λ), then in the rescaled variables the action becomes

S =

∫ {
−H̃

3/2

2
tr
(
F̃ 2
IJ

)
− 1− H̃2

2H̃1/2
tr
(
F̃ 2
ij

)
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+
1

Λ

(
H̃3/2

2
(∂̃I
˜̂
A0)2 +

1− H̃2

2H̃1/2
(∂̃i
˜̂
A0)2

)}
d4x̃ dz̃

+
1

Λ

∫ ˜̂
A0 tr (F̃IJ F̃KL) εIJKL d

4x̃ dz̃. (3.23)

Using the metric (2.2), with a general value of p, and expanding in 1/Λ gives

S =

∫ {
−1

2
tr
(
F̃ 2
IJ

)
+

1

Λ

(
−3

4
pz̃2tr

(
F̃ 2
IJ

)
+ pz̃2tr

(
F̃ 2
ij

)
+

1

2
(∂̃I
˜̂
A0)2 +

˜̂
A0 tr (F̃IJ F̃KL) εIJKL

)
+O

(
1

Λ2

) }
d4x̃ dz̃, (3.24)

which highlights the convenience of the rescaling (3.22). The leading order term is scale

invariant and is simply the Yang-Mills action in flat space. The next term is of order 1/Λ

and contains the size stabilizing contributions from both the abelian field and the curvature

(due to the positive value of p). The action of the leading order term is minimized by the

self-dual instanton and the term of order 1/Λ defines an action on the self-dual instanton

moduli space that fixes the size of the instanton.

In summary, the way to extract the self-dual instanton limit is to convert to the rescaled

coordinates (3.22) and then perform the Λ→∞ limit

lim
Λ→∞

Ã(x̃) = Ãself−dual(x̃), (3.25)

to converge to a self-dual instanton with a size µ̃ in rescaled coordinates given by (3.18).

For large but finite Λ the small unscaled instanton size is µ = µ̃/
√

Λ.

It is important to note that the self-dual limit has nothing to say about the asymptotic

fields of the soliton at large distance. This is because the rescaling performed in (3.22)

involves zooming in to a scale of order 1/
√

Λ. To study the fields of the soliton at distances

greater than 1/
√

Λ requires alternative approaches that we describe in the next section.

4 The soliton tail

4.1 A linear expansion in flat space

In this subsection we consider a linear expansion that we shall see is valid in the region

L/
√

Λ . ρ . L, where we recall that we have set L = 1. This region is far enough from

the soliton core that a linear expansion is possible but is close enough to the origin that

the curvature of the metric can be neglected by setting H = 1.

To derive this expansion we still use 1/Λ as the small parameter of the expansion, but

now we keep the length scale fixed rather than zooming in to the core. In this limit

lim
Λ→∞

ΛA(x) = Atail(x), (4.1)

where Atail is a finite term that solves the linearised field equations. The task is to compute

Atail(x) and to confirm its region of applicability.
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We define the 1/Λ expansion

AI = A
(1)
I +A

(2)
I + . . . , Â0 = Â

(1)
0 + Â

(2)
0 + . . . (4.2)

in which

A
(n)
I , Â

(n)
0 ∝ 1

Λn
. (4.3)

The limit (4.1) picks up only the first term in this expansion

Atail(x) = ΛA(1)(x). (4.4)

As the space is now taken to be flat, the calculation in this subsection will involve expanding

the self-dual instanton to provide the leading order contribution. This result will then be

used in the next subsection to match to a linear analysis in curved space.

To perform the analysis it is convenient to write the self-dual instanton in the gauge

in which it has the ’t Hooft form

AI =
1

2
σIJ∂J log

(
1 +

µ2

ρ2

)
. (4.5)

Given that µ2 = O(1/Λ) then the first term in the expansion is

A
(1)
I = −σIJ

xJ µ
2

ρ4
=
µ2

2
σIJ∂J

1

ρ2
∝ 1

Λ
, (4.6)

which satisfies the field equations ((2.13) and (2.14) with H = 1) at the linear level since

∂IA
(1)
I = 0 and ∂J∂JA

(1)
I = 0. (4.7)

These equations are simply those of an abelian gauge potential: the first is the condition

of Coulomb gauge and the second is the vanishing of the Laplacian.

The term A
(1)
I gives the dominant contribution to the field strength

F
(1)
IJ = ∂IA

(1)
J − ∂JA

(1)
I =

2µ2

ρ4

(
σIJ +

2

ρ2
(σJKxKxI − σIKxKxJ)

)
. (4.8)

From (3.21) the abelian gauge potential at linear order is

Â
(1)
0 =

8

Λρ2
, (4.9)

which satisfies the final field equation ((2.15) with H = 1) at linear order.

Defining F
(2)
IJ = ∂IA

(2)
J − ∂JA

(2)
I , at second order the field equations are

∂IF
(2)
IJ + i[A

(1)
I , F

(1)
IJ ] = 0 and ∂I∂IÂ

(2)
0 = 0, (4.10)

with solution

A
(2)
I = σIJ

xJ µ
4

ρ6
∝ 1

Λ2
, Â

(2)
0 = 0. (4.11)
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The next non-zero term in Â0 is at third order, where the field equation gives

∂I∂IÂ
(3)
0 =

1

Λ
tr (F

(1)
IJ F

(1)
KL) εIJKL, (4.12)

and is solved by

Â
(3)
0 = − 8µ4

Λρ6
∝ 1

Λ3
. (4.13)

For this expansion to be reliable requires ||A(1)
I || . ||A

(2)
I || and ||Â(1)

0 || . ||Â
(3)
0 ||. These

conditions correspond to the requirement that ρ & 1/
√

Λ, which means far from the soliton

core. The use of the flat space metric approximation, H = 1, required ρ . 1, so combining

these constraints results in the region of validity 1√
Λ

. ρ . 1, as claimed at the start of

this subsection.

4.2 A linear expansion in curved space

We now extend the linear expansion of the previous subsection to distances beyond the

restriction ρ . 1. This requires that the curvature of the metric is now taken into account

and the approximation H = 1 can no longer be used. The linear analysis in this subsection

is equivalent to that in [7] and produces the same result. However, the derivation is a little

different as we wish to elucidate the aspects that will play a role in our additional analysis

later in the paper.

For the purposes of this subsection it will be sufficient to consider only the first order

terms A
(1)
i and Â

(1)
0 . As these terms satisfy the linearised field equations we can perform a

separation of variables in xi and z, expand in eigenfunctions of the linear operator in flat

space, and then extend each eigenfunction separately into the curved region beyond ρ . 1 .

The existence of an overlap region 1√
Λ
. ρ . 1, in which the linear flat space approximation

and the linear curved space approximation are both valid, allows the computation of the

coefficients of the eigenfunction expansion in curved space.

The easiest case is that of the abelian potential Â
(1)
0 , which satisfies the linearized field

equation (2.15) given by

∂i∂iÂ
(1)
0 +H1/2∂z(H

3/2∂zÂ
(1)
0 ) = 0. (4.14)

We can therefore extend (4.9) to the curved regime by writing

Â
(1)
0 =

8

Λ
ξ(xI) (4.15)

where ξ(xI) is a harmonic function in the four-dimensional curved space, which in the flat

regime is

ξ(xi, z) '
1

ρ2
for ρ . 1. (4.16)

We now separate variables xI = (xi, z) and write r =
√
x2

1 + x2
2 + x2

3 for the three-

dimensional radius. The harmonic function can be expanded in a Laplace-Fourier expansion

(Laplace expansion in r, Fourier expansion in z). In flat space there is the exact identity

1

ρ2
=

1

r2 + z2
=

∫ ∞
0

e−kr

r
cos (kz) dk. (4.17)
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Note that all the momentum modes k must appear in this expansion in order to recon-

struct the function 1/ρ2 exactly. Now we extend this expansion into the curved region by

replacing it with

ξ(xi, z) =

∫ ∞
0

e−kr

r
ψ+

(k)(z) dk, (4.18)

where ψ±(k)(z) are defined as the eigenfunctions satisfying the linear equation

H1/2∂z(H
3/2∂zψ

±
(k)) + k2ψ±(k) = 0, (4.19)

with the superscript ± referring to even and odd parity with respect to z → −z. The

boundary conditions for ψ+
(k)(z) are

ψ+
(k)(0) = 1, ∂zψ

+
(k)(0) = 0. (4.20)

Only the even eigenfunctions ψ+
(k)(z) appear in the expansion for ξ(xI), but later we shall

need the odd eigenfunctions ψ−(k)(z), which satisfy the boundary conditions

ψ−(k)(0) = 0, ∂zψ
−
(k)(0) = 1. (4.21)

The expression (4.15) with ξ(xI) defined in (4.18) gives the exact extension of Â
(1)
0 in

the curved region and reduces to (4.16) in the almost flat region since, for every value of k,

ψ+
(k)(z) ' cos (kz) for z � 1, (4.22)

as H ' 1 in this region.

Next we consider the non-abelian field A
(1)
I , given by (4.6) in the flat regime. First we

decompose into parity components

A
(1)
i = A

(1+)
i +A

(1−)
i , A(1)

z = A(1+)
z (4.23)

where the superscript ± again stands for the parity with respect to z → −z. The odd

component A
(1−)
z vanishes in the chosen gauge where ∂iA

(1+)
i = 0.

In the flat regime (4.6) gives the parity components

A
(1+)
i =

µ2

2
εijkσk∂j

1

ρ2
, A

(1−)
i = −µ

2

2
σi∂z

1

ρ2
, A(1+)

z =
µ2

2
σi∂i

1

ρ2
. (4.24)

Applying the parity decomposition to the linearized field equations (2.13) and (2.14) yields

∂j∂jA
(1+)
i +H1/2∂z(H

3/2∂zA
(1+)
i ) = 0, (4.25)

∂i(∂iA
(1+)
z − ∂zA(1−)

i ) = 0, (4.26)

∂j(∂jA
(1−)
i − ∂iA(1−)

j ) +H1/2∂z(H
3/2∂zA

(1−)
i )− ∂i(H1/2∂z(H

3/2A(1+)
z )) = 0. (4.27)

The easiest component to deal with is A
(1+)
i as this decouples from the other components

and satisfies the same equation as the abelian potential A
(1)
0 . The first component in (4.24)

is therefore extended to curved space as

A
(1+)
i =

µ2

2
εijkσk∂jξ(xI), (4.28)
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where ξ(xI) is the same harmonic function defined in (4.18). Note that here, as for Â0,

only the even eigenfunctions appear in the expansion.

The remaining two components A
(1−)
i and A

(1+)
z are slightly more complicate as their

equations (4.26) and (4.27) are coupled together. We see from (4.26) that if A
(1−)
i is

expanded using the eigenfunctions ψ−(k) then A
(1+)
z must be expanded in terms of their

derivatives ∂zψ
−
(k), which then gives a consistent expansion for (4.27). We therefore define

the functions

φ±(k)(z) = ∂zψ
∓
(k)(z). (4.29)

In the almost flat region H ' 1, so we have that

ψ−(k)(z) '
sin (kz)

k
and φ+

(k)(z) ' cos (kz) for z � 1. (4.30)

The flat space results (4.24) may be rewritten as

A
(1−)
i =

µ2

2
σi

∫ ∞
0

e−kr

r
k sin (kz) dk, A(1+)

z =
µ2

2
σi

∫ ∞
0

∂i
e−kr

r
cos (kz) dk, (4.31)

so the extension to curved space is

A
(1−)
i =

µ2

2
σi

∫ ∞
0

e−kr

r
k2ψ−(k)(z) dk, A(1+)

z =
µ2

2
σi

∫ ∞
0

∂i
e−kr

r
φ+

(k)(z) dk, (4.32)

where only the odd eigenfunctions ψ−(k) and their derivatives φ+
(k) appear in the expansions

of these components. As for the other components described earlier, the expressions (4.32)

give the exact extensions of A
(1−)
i and A

(1+)
z to the curved region, and reduce to (4.24) in

the almost flat region.

4.3 The effect of a conformal boundary

The expressions (4.15), (4.28) and (4.32) are exact identities, but only if all the momentum

modes k are taken into account. A case in which this is compatible with the boundary

conditions is when the metric does not have a conformal boundary, for example if p < 1
2 .

In this case the formulae (4.15), (4.28) and (4.32) provide the exact solution to the first

order term in the linear expansion. Since the boundary is at conformal infinity this is the

end of the story.

In contrast, if there is a conformal boundary, as in all cases in which an AdS/CFT

interpretation is possible (including the Sakai-Sugimoto model), the boundary conditions

for the fields at the conformal boundary must be specified, and this may restrict the al-

lowed momenta k in the Laplace-Fourier expansion. For holographic QCD, the correct

holographic prescription at the boundary is that there are no sources for the operators in

the dual theory. In conformal coordinates this corresponds to the field strength having van-

ishing parallel components at the boundary z = ±∞ for both the abelian and non-abelian

fields. In terms of the eigenfunction expansion, this condition translates to the boundary

condition on the even eigenfunctions

ψ+
(k)(∞) = 0, (4.33)
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Figure 2. The limit values c±(k), with zeros corresponding to the allowed momenta.

which selects only a discrete set of momenta, k2n−1 with n = 1, 2, . . . and k1 > 0. Similarly,

the odd eigenfunctions are required to satisfy

ψ−(k)(∞) = 0, (4.34)

which selects the discrete momenta k2n with n = 1, 2, . . . . It can be shown that the even

and odd momenta interlace so that we may impose the ordering kn+1 > kn.

Restricting to the Sakai-Sugimoto value p = 2
3 , we may define c±(k) = limz→∞ ψ

±
(k)(z),

so that the allowed values of the momenta k are given by the zeros of c±(k). In figure 2 we

plot the limit values c±(k) for 0 ≤ k ≤ 3. This allows the first few values of the discrete

momenta to be determined and in particular k1 = 0.82 and k2 = 1.26, which agrees with

the results in [3].

As the odd (even) values of n correspond to even (odd) functions with respect to

z → −z, a more convenient notation from now on is to label the eigenfunctions by an

integer by defining

ψ2n−1(z) ≡ ψ+
(k2n−1)(z) , ψ2n(z) ≡ ψ−(k2n)(z) , n = 1, 2, . . . (4.35)

so that the information about the parity of the eigenfunction is encoded in the parity of

the integer index.

In the absence of a conformal boundary the eigenfunction ψ±(k)(z) has an infinite num-

ber of zeros and oscillates as z →∞. In this situation a function like 1/ρ2, that vanishes as

z →∞, can be expanded as an integral over all momenta k, as in (4.17), even if ψ±(k)(z) 6→ 0

as z →∞ It is the oscillating property of the eigenfunction that produces decoherence and

leads to this result.

In contrast, when there is a conformal boundary the eigenfunction ψ±(k)(z) has a finite

number of zeros and does not oscillate for large z, but rather tends monotonically to a
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finite limit as z →∞. For p = 2
3 the large z behaviour is ψ±(k)(z) ∼ c

±(k) + d±(k)/z + . . . .

In this situation, the expansion of a function that vanishes at infinity requires all the eigen-

functions in the expansion to also vanish at infinity, so the boundary conditions (4.33)

and (4.34) must be imposed.

To make sense of (4.18) we must therefore project to the subspace of allowed eigen-

functions to obtain the form

ξ(xi, z) =

∞∑
n=1

ξ2n−1
e−k2n−1r

r
ψ2n−1(z), (4.36)

where the projection coefficients ξ2n−1 are defined by

ξ2n−1 =
1

(ψ2n−1, ψ2n−1)

∫ ∞
0

(ψ+
(k), ψ2n−1) dk, (4.37)

using the inner product

(ψ, ψ̃) =

∫ ∞
−∞

1

H1/2
ψψ̃ dz. (4.38)

This is the inner product in which the eigenfunctions ψn are orthogonal, (ψm, ψn) ∝ δmn.
The discretization (4.36) has an important consequence. As k1 > 0, the large distance

decay is now exponential not algebraic. Since Â0 is the field dual to the baryon current of

the boundary theory, this means that the baryon form factors, at least within this linear

approximation, decay exponentially.

Another consequence of the discretization appears when we retract back to the flat

regime, as it converts the identity (4.17) into the approximation

1

ρ2
'
∞∑
n=1

ξ2n−1
e−k2n−1r

r
cos(k2n−1z), (4.39)

due to the projection to an incomplete subset of eigenfunctions. However, in the almost

flat region |z| � 1 the large momenta modes are the most important in reconstructing

the function 1/ρ2, so this discretization does not affect the validity of the small instanton

approximation.

A similar story applies to the projection of the non-abelian potential. In particular,

the relations (4.32) become

A
(1−)
i =

µ2

2
σi

∞∑
n=0

ξ2n
e−k2nr

r
k2

2nψ2n(z), A(1+)
z =

µ2

2
σi

∞∑
n=0

ξ2n∂i
e−k2nr

r
φ2n(z), (4.40)

where φn(z) = ∂zψn(z) using our new notation. An expression for the projection coef-

ficients ξ2n will be given below, but first we draw attention to an important point. An

additional mode has been included in the expansions (4.40), where we have defined k0 = 0.

The associated zero mode is

ψ0(z) =

∫ z

0

1

H(z)3/2
dz with φ0(z) =

1

H(z)3/2
. (4.41)
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Note that ψ0(∞) 6= 0, hence this mode was excluded from the earlier considerations. How-

ever, since k0 = 0 this mode does not contribute to A
(1−)
i due to the k2

2n factor in the first

formula in (4.40). Thus the boundary condition on the field strength (that the parallel

components vanish at the conformal boundary) remains satisfied. The eigenfunction ψ0,

with zero eigenvalue, is associated with the massless pion and contributes through the in-

clusion in A
(1+)
z of the mode φ0, which vanishes at infinity. For the Sakai-Sugimoto model

p = 2
3 which gives φ0 = 1/(1 + z2) and ψ0 = tan−1 z with ψ0(∞) = π

2 .

From the second formula in (4.40) the projection coefficients are given by a similar

expression to (4.37), namely

ξ2n =
1

〈φ2n, φ2n〉

∫ ∞
0
〈φ+

(k), φ2n〉 dk, (4.42)

using the appropriate inner product

〈φ, φ̃〉 =

∫ ∞
−∞

H3/2φφ̃ dz, (4.43)

for orthogonality 〈φm, φn〉 ∝ δmn.
For n 6= 0, an integration by parts, together with an application of the defining equation

for the eigenfunctions (4.19), proves the identity

〈φ+
(k), φ2n〉 = (k2ψ−(k), ψ2n). (4.44)

Using this identity gives the first projection formula in (4.40), which completes the deriva-

tion.

In summary, the conclusion from the linear analysis in curved space is that at large

three-dimensional distance, r & 1, all terms decay exponentially, except the algebraic decay

associated with the pion field. Explicitly,

A(1)
z =−ξ0µ

2

2

σix̂i
r2

φ0(z)+O
(
e−k2r

r

)
, A

(1)
i =O

(
e−k1r

r

)
, Â

(1)
0 =O

(
e−k1r

r

)
, (4.45)

where x̂i = xi/r. In the following subsection we shall show that the linear result (4.45)

cannot be used to conclude anything about the asymptotic tail of the soliton fields. In

particular, by extending it to arbitrarily large values of the radius r, it leads to incorrect

conclusions regarding the exponential decay of physical quantities of the baryon, such as

the baryon density and electromagnetic form factors. We shall see that these linear results

do have a region of validity, but this region does not include arbitrarily large values of the

radius, since nonlinear terms then dominant over the linear result (4.45). This is the source

of several erroneous computations and conclusions in the literature.

4.4 Noncommutativity of the large Λ and large r limits

As we saw in the previous subsection, if we take the leading order term in the 1/Λ expan-

sion and then expand again to find the large r behaviour, then the dominant contribution

is from the pion field. It produces an O(1/r2) term that appears only in the Az component
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of the gauge potential and not in the Ai or Â0 components, which decay exponentially. It

is crucial to note the order of the limits here: first we take the large Λ limit, which selects

the linear term A(1), and then we consider the large r limit. This ordering assumes that

the linearized fields given in (4.45) provide the dominant contribution at large r. If this

assumption is to be valid then it requires that all higher order terms in the 1/Λ expansion

of Ai and Â0 decay exponentially with r. In this subsection we prove that this requirement

is not satisfied and hence the linear result is not valid at large r. We begin by assuming

the linear result is valid and then find a contradiction.

For the remainder of the computations in this subsection we ignore all terms that decay

exponentially with r, as we are interested in the details of the algebraic decay. With the

exponential terms neglected, Ai = Â0 = 0. From (4.45), the only non-zero components of

the field strength at linear order in 1/Λ are

F
(1)
iz =

ξ0µ
2

2
φ0σj∂i∂j

(
1

r

)
. (4.46)

In particular, this means that at the linear level the instanton charge density decays expo-

nentially.

The field equations (2.13) and (2.14) now become

Dz

(
H3/2Fiz

)
= 0, DiFiz = 0. (4.47)

We can check that they are satisfied at linear order

∂z

(
H3/2F

(1)
iz

)
= 0, ∂iF

(1)
iz = 0, (4.48)

using (4.46) and the identities

∂z

(
H3/2φ0

)
= 0, ∂i∂i

(
1

r

)
= 0. (4.49)

However, a problem arises at the next order in the 1/Λ expansion. At second order the

first equation in (4.47) becomes

∂z(H
3/2∂iA

(2)
z ) + iH3/2[A(1)

z , F
(1)
iz ] = 0, (4.50)

which simplifies to

∂z(H
3/2∂iA

(2)
z ) = −1

2
ξ2

0µ
4φ0εijk

x̂j
r5
σk. (4.51)

This equation determines the z dependence of A
(2)
z to be

A(2)
z = −1

2
ξ2

0µ
4φ0ψ0β, (4.52)

where β is independent of z and solves the equation

∂iβ = εijk
x̂j
r5
σk. (4.53)
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However, it is easy to prove that there are no solutions to (4.53). Defining the right hand

side of (4.53) to be Ξi, the existence of a solution β requires the zero curvature condition

∂iΞj − ∂jΞi = 0, which is easily calculated and does not vanish.

This proves that it is impossible to extend the linear result (4.45) to higher order in

1/Λ if Ai and Â0 decay exponentially with r. Terms in Ai and Â0 with algebraic decay

are required beyond linear order for a consistent expansion. As a result, at large radius

these higher order terms in 1/Λ dominate over the exponential terms at linear order. The

upshot is that the linear result is not valid at large radius and gives incorrect results for

physical quantities, such as the baryon density, the abelian electric field and electromag-

netic form factors. In the following subsection we derive the correct extension of the linear

expansion (4.45) for large r.

4.5 A nonlinear expansion at large r

The 1/Λ expansion will still play a role in this subsection, but to obtain the correct large r

behaviour it is vital to include higher order terms beyond the linear contribution A(1). We

reverse the order of the limits in the previous subsection by first considering the large r limit

and then performing the 1/Λ expansion. Explicitly, we keep the leading order terms in a 1/r

expansion at each order in a 1/Λ expansion. As in the previous subsection, we ignore all ex-

ponentially decaying terms, so from (4.45) the expansion starts with the linear term in 1/Λ

A(1)
z = −ξ0µ

2

2

σix̂i
r2

φ0, A
(1)
i = 0, Â

(1)
0 = 0. (4.54)

As confirmed previously, the field equations are satisfied at linear order. At second order

the field equation (2.13) becomes

∂z(H
3/2F

(2)
zi ) + iH3/2[A(1)

z , F
(1)
zi ] +H−1/2∂jF

(2)
ji = 0. (4.55)

At large r the final term in this expression is of lower order in a 1/r expansion than the

first and may be neglected. This leaves

∂z(H
3/2(∂iA

(2)
z − ∂zA

(2)
i )) + iH3/2[A(1)

z , F
(1)
iz ] = 0. (4.56)

As we saw in the previous subsection, it is impossible to solve this equation with A
(2)
i = 0.

We now derive the solution for A
(2)
i in the gauge A

(2)
z = 0, when (4.56) becomes

∂z(H
3/2∂zA

(2)
i ) =

1

2
ξ2

0µ
4φ0εijk

x̂j
r5
σk. (4.57)

The z dependence factors as

A
(2)
i = η

1

2
ξ2

0µ
4εijk

x̂j
r5
σk, (4.58)

where η(z) solves the equation

∂z(H
3/2∂zη) = φ0. (4.59)

Using φ0 = 1/H3/2 = ∂zψ0, this equation may be integrated once to give

∂zη = ψ0φ0, (4.60)
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which is solved by

η =
1

2
ψ2

0 −
π2

8
, (4.61)

where the constant of integration has been fixed by the requirement that η(∞) = 0 and

we have used the earlier result that ψ0(∞) = π
2 for the Sakai-Sugimoto model with p = 2

3 .

The ij component of the field strength has a contribution at second order

F
(2)
ij = −ξ

2
0µ

4η

r6

(
εijk + 3x̂l(εiklx̂j − εjklx̂i)

)
σk (4.62)

and thus the term proportional to the instanton charge density

I = εIJKL tr (FIJFKL) (4.63)

is generated at third order in 1/Λ

I(3) = 4εijk tr
(
F

(2)
ij F

(1)
kz

)
= −48ξ3

0µ
6φ0η

r9
∝ 1

Λ3r9
. (4.64)

The abelian field Â0 is sourced by I with a coupling 1/Λ, and thus it is generated at

fourth order. The equation for Â0 in radial coordinates is

H−1/2∂r

(
r2∂rÂ0

)
+ r2∂z

(
H3/2∂zÂ0

)
=

1

Λ
r2I, (4.65)

so the fourth order term satisfies

H−1/2∂r

(
r2∂rÂ

(4)
0

)
+ r2∂z

(
H3/2∂zÂ

(4)
0

)
= −48ξ3

0µ
6φ0η

Λr7
. (4.66)

Applying the ansatz

Â
(4)
0 = −48ξ3

0µ
6

Λr9
χ, (4.67)

with χ(z), and neglecting subleading terms in 1/r, we obtain the equation

∂z

(
H3/2∂zχ

)
= φ0η, (4.68)

which must be solved subject to the boundary conditions χ(±∞) = 0. The solution is eas-

ily obtained by using ψ0 as the independent coordinate rather than z, as equation (4.68)

then simplifies to
∂2χ

∂ψ2
0

=
1

2
ψ2

0 −
π2

8
. (4.69)

The unique solution satisfying the above boundary conditions is

χ =
1

24

(
ψ4

0 − 6

(
π

2

)2

ψ2
0 + 5

(
π

2

)4)
, (4.70)

to give

Â
(4)
0 = −2ξ3

0µ
6

Λr9

(
ψ4

0 − 6

(
π

2

)2

ψ2
0 + 5

(
π

2

)4)
. (4.71)
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We have now achieved our aim of determining the leading order large r behaviour of all

the fields and their relation to the small instanton approximation. Namely,

Az = −1

2
ξ0µ

2 x̂iσi
r2

φ0 + . . . , Ai =
1

2
ξ2

0µ
4εijk

x̂jσk
r5

η + . . . , Â0 = −48ξ3
0µ

6

Λr9
χ+ . . . (4.72)

Note the significant difference in the rate of decay of the abelian field Â0 in the r and z

directions, since χ decays only as O(1
z ) for large z.

4.6 The emergence of a new scale

We now describe the way in which the results we have obtained imply the existence of a

new large scale, in which the behaviour of the Ai and Â0 components are dominated by

nonlinear terms. Recall that the 1/Λ expansion at large r takes the form

Az = A(1)
z + . . .

Ai = A
(2)
i + . . .

Â0 = Â
(4)
0 + . . . (4.73)

where Ai starts only at second order and Â0 starts only at fourth order, once exponentially

decaying terms are neglected. However, we need to determine the scale at which it is

appropriate to neglect these exponentially decaying terms, so that the nonlinear terms

with algebraic decay dominate over the linear result.

The new scale is where the linear terms in the 1/Λ expansion of Ai and Â0 are compa-

rable to the higher order terms, that is, A
(1)
i ∼ A

(2)
i , Â

(1)
0 ∼ Â(4)

0 . From our earlier results

this is equivalent to
e−k1r

Λr
∼ 1

Λ2r5
,

1

Λ4r9
, (4.74)

so a new length scale appears at r ∼ log Λ, or more generally r ∼ L log Λ, if we reinstate

the scale L. Note that this is a large scale for large Λ. It is the scale beyond which the

asymptotic fields, of the form (4.73), are applicable to describe the tail of the soliton.

It is common to define the size of a soliton’s core by reference to the region beyond

which the fields of the asymptotic tail provide a good approximation to the fields of the soli-

ton. If such a definition is used then the soliton is large at large ’t Hooft coupling. This is in

stark contrast to the commonly stated result that the soliton has a small size, which results

by defining the size via comparison with the approximate self-dual instanton. The size of

the Sakai-Sugimoto soliton is therefore a more complicated issue than previously realized.

In summary, there are three important scales in the problem. The scale of the self-dual

instanton, L/
√

Λ, the radius of curvature L, and the new scale of order L log Λ. The vari-

ous approximations discussed in this paper are valid in different regions, some of which are

contiguous and therefore allow the different approximations to be related. These different

regions correspond to the treatment of space as flat or curved and the treatment of the

partial differential equations as linear or nonlinear. Schematically, we may summarise the

situation as:

0 < ρ . L/
√

Λ, flat and nonlinear

L/
√

Λ . ρ . L, flat and linear
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L . ρ . L log Λ, curved and linear

L log Λ . ρ curved and nonlinear. (4.75)

The appearance of the final region is a slightly unusual feature due to the fact that at large

radius nonlinear terms dominate over linear terms, despite the fact that these terms are

small. This has led to some confusion by previous authors, who have incorrectly assumed

the more generic behaviour that when functions become small the system enters a linear

regime.

4.7 The Cherman-Ishii expansion

Cherman and Ishii [13] have performed a large r expansion to obtain the asymptotic fields

of the Sakai-Sugimoto soliton, based on a method first applied in a different holographic

model [11]. They found that the fields have an algebraic decay with a form that satisfies

the model independent form factor relations described in [12]. However, they were only

able to implement their approach by introducing a UV cutoff and the limit as this cutoff is

removed is problematic: prompting them to speculate on possible resolutions that include

holographic renormalization and boundary counterterms. In this subsection we describe the

relation between our asymptotic fields and those of the Cherman-Ishii expansion. Although

the Cherman-Ishii fields appear to have a more complicated form than our expressions, we

shall show that they are gauge equivalent. Moreover, we shall see that their required UV

cutoff is merely a gauge artifact that is a consequence of a gauge choice that is incompatible

with the holographic boundary conditions. Although our asymptotic expansion turns out

to be equivalent to the Cherman-Ishii expansion, our derivation has the advantage that the

constant appearing in the expansion is directly related to the self-dual instanton, whereas

it appears simply as an unknown constant in the Cherman-Ishii expansion, even after a

gauge transformation to remove the spurious UV cutoff.

First we highlight the relevant issue concerning the choice of gauge. The required

condition at the conformal boundary, that the field strength has vanishing parallel com-

ponents, is gauge invariant. In the AdS/CFT dictionary the gauge potential Ai at the

boundary corresponds to the source for the related current. If Fij is zero at the boundary,

then it is always possible to choose a gauge in which Ai is also set to zero at the boundary

(so that the sources vanish). The chosen gauge for our expansion is already in this form.

The starting point of our linear expansion (4.54) has A
(1)
i = 0, moreover none of the higher

order terms give a contribution at the boundary, so Ai vanishes there. This is why we have

no need for a UV cutoff.

The expansion strategy followed in [13] has led to some confusion about the choice

of gauge because they directly perform a radial expansion in 1/r and do not consider an

expansion in 1/Λ. They start their expansion with a dominant term at large r given by

Az = β
σj x̂j
r2

+ . . . (4.76)

where β is a constant that is left arbitrary and cannot be determined using their approach.

The crucial point here is that this term is independent of z. All the other terms in the 1/r
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expansion are then derived on top of this one, choosing step by step a gauge in which Ai = 0

at the boundary. However, by postulating the leading term (4.76) this implicitly contains a

gauge choice, which is not necessarily compatible with the choice of gauge in which Ai = 0

at the boundary. In fact it turns out that, generically, the only way to have Ai vanishing

at the boundary is to introduce a fictitious UV cutoff. The need for a cutoff simply reflects

the fact that the gauge implicitly chosen by the starting point (4.76) is not a good one.

To relate our expansion to that of Cherman and Ishii we shall take our leading order

result, given by the pion tail (4.54), and attempt to convert it to a gauge in which (4.76)

holds. The first step is to perform the gauge transformation given by

G1 = exp

(
− i

2
ξ0µ

2σj x̂j
r2

ψ0(z)

)
, (4.77)

which results in

A(1)
z = 0, A

(1)
i =

ξ0µ
2

2r3
(σi − 3σj x̂ix̂j)ψ0(z), (4.78)

so that the pion tail is transferred entirely into the Ai component.

This is a perfectly legitimate gauge, but it does not have vanishing sources at the

boundary, because ψ0(∞) 6= 0. A way to resolve this issue is to introduce a UV cutoff,

zUV , and perform second gauge transformation given by

G2 = exp

(
i

2
ξ0µ

2σj x̂j
r2

zψ0(zUV )

zUV

)
, (4.79)

so that (4.78) becomes

A(1)
z = −ξ0µ

2

2

σj x̂j
r2

ψ0(zUV )

zUV
, A

(1)
i =

ξ0µ
2

2r3
(σi − 3σj x̂ix̂j)

(
ψ0(z)− zψ0(zUV )

zUV

)
. (4.80)

Now A
(1)
i vanishes at the UV boundary z = zUV and A

(1)
z has the form (4.76) with

β = −ξ0µ
2ψ0(zUV )/(2zUV ). This demonstrates the equivalence between the Cherman-Ishii

expansion and our simpler version (4.54) and explains how the UV cutoff terms are simply

gauge artefacts.

The conclusion is that the correct gauge to have vanishing sources is in fact (4.54) with

no term like (4.76). In the Cherman-Ishii expansion there are other terms, of higher order

in 1/r and linear in 1/Λ, that can also be removed by a gauge transformation, leaving

the physical terms that correspond to our second order and fourth order terms (4.58)

and (4.71). In particular, formula (4.71) for the leading order large r behaviour of Â0, does

not depend on the choice of gauge for the non-abelian fields and coincides with the one

given in [14], which is a correction of the expression in [13] (as this contains an error).

In the recent preprint [14], which appeared on the arXiv during the preparation of this

manuscript, it is argued that the UV cutoff is a kind of coordinate singularity that can be

removed by a very specific change of variable for the holographic coordinate. However, the

interpretation as a coordinate singularity is not the underlying explanation but is a pure

coincidence, as follows. In the right gauge, the correct starting point for the expansion of Az
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is A
(1)
z given by (4.54), which has a z dependence proportional to φ0(z). The specific change

of coordinate identified in [14] is to use z̃ = ψ0(z) as the holographic variable. The correct

dependence of A
(1)
z maps to an A

(1)
z̃ that is independent of z̃, and hence is of the form (4.76),

simply because this specific choice of z̃ obeys dz̃/dz = φ0, which cancels the z-dependent

factor of φ0 in Az. Independence of the holographic coordinate happens only for this specific

choice of coordinate and for a generic coordinate the correct formula is obtained from (4.54).

5 Numerical computations

In this section we describe our numerical scheme for the computation of the Sakai-Sugimoto

soliton, together with some of the results it generates. We shall see that the numerical re-

sults are in good agreement with the analytical approximations discussed in the previous

sections.

Static SO(3) symmetric fields have the form [16, 17]

Aj =

(
1 + Φ2

r
εjakx̂k +

Φ1

r
(δja − x̂j x̂a) + arx̂j x̂a

)
σa
2
, Az = azx̂a

σa
2
, Â0, (5.1)

where the fields Φ1,Φ2, ar, az, Â0 are functions of r and z.

Writing Φ = Φ1 + iΦ2, frz = ∂raz − ∂zar and DrΦ = ∂rΦ− iarΦ, the expression for

the baryon number becomes

B = −
∫ ∞

0
dr

∫ ∞
−∞

dz
1

2π

{
frz(1− |Φ|2) + i(DrΦDzΦ−DrΦDzΦ)

}
. (5.2)

In terms of these variables, the energy obtained from the action (2.12) has three terms,

E = 4π(ESU(2) + EU(1) + ECS), where

ESU(2) =

∫ ∞
0

dr

∫ ∞
−∞

dz

{
H−

1
2 |DrΦ|2+H

3
2 |DzΦ|2+

r2H
3
2

2
f2
rz+

H−
1
2

2r2
(1− |Φ|2)2

}
, (5.3)

EU(1) = −
∫ ∞

0
dr

∫ ∞
−∞

dz

{
1

2
r2

(
H−

1
2 (∂rÂ0)2 +H

3
2 (∂zÂ0)2

)}
, (5.4)

ECS = − 1

Λ

∫ ∞
0

dr

∫ ∞
−∞

dz

{
4Â0

(
frz(1− |Φ|2) + i(DrΦDzΦ−DrΦDzΦ)

)}
. (5.5)

For reference, the flat space self-dual instanton is given by

Φ =
2rz + i(r2 − z2 − µ2)

ρ2 + µ2
, ar =

2z

ρ2 + µ2
, az =

−2r

ρ2 + µ2
, (5.6)

where, as earlier, ρ2 = r2 + z2. The required soliton has B = 1 and is a vortex in the

reduced theory on the half-plane r ≥ 0. On the boundary {r = 0} ∪ {ρ =∞} the complex

field Φ has unit modulus and its phase varies by 2π around the boundary. Setting µ = 0

in (5.6) gives the fields

Φ =
2rz + i(r2 − z2)

ρ2
, ar =

2z

ρ2
, az =

−2r

ρ2
, (5.7)
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which are pure gauge but have a singularity at the point ρ = 0. These fields satisfy |Φ| = 1

and DrΦ = DzΦ = frz = 0, which are the natural boundary conditions to impose as

ρ→∞. In particular, the phase of Φ varies by 2π along this boundary. The boundary con-

ditions along the line r = 0 are Φ = −i, DrΦ = DzΦ = 0, which are those of the finite size

self-dual instanton. A series expansion of the field equations around r = 0 confirms that

these are the correct boundary conditions as r → 0, together with ∂rÂ0 = 0. In summary,

the boundary conditions at r = 0 are given by

Φ = −i, ar = ∂rΦ1, az = 0, ∂rÂ0 = 0, (5.8)

and as ρ→∞ the fields are given by (5.7) together with Â0 → 0.

The field equations that follow from the variation of the energy E are solved using a

heat flow method. For the fields Φ1,Φ2, ar, az this corresponds to gradient flow associated

with the energy ESU(2) +ECS , in the Coulomb gauge ∂rar +∂zaz = 0. For Â0 the heat flow

corresponds to gradient flow associated with the energy −EU(1)−ECS , where the negative

signs are due to the negative sign that appears in front of the energy (5.4), arising because

Â0 is the time component of a gauge potential. The problem may be viewed as a con-

strained energy minimization, where the energy ESU(2) + ECS is to be minimized subject

to the constraint that Â0 satisfies the field equation

1

r2H1/2
∂r(r

2∂rÂ0)+∂z(H
3/2∂zÂ0) =

4

Λr2

{
frz(1−|Φ|2)+i(DrΦDzΦ−DrΦDzΦ)

}
, (5.9)

which is a curved space Poisson equation sourced by the instanton charge density.

As an initial condition for the numerical relaxation the self-dual instanton fields (5.6)

are taken with a spatially dependent size µ(r, z) so that µ(0, 0) 6= 0 but µ(r, z) = 0 for

sufficiently large ρ. For Â0 the initial condition is that it vanishes everywhere.

As we have seen from the analysis in the previous sections, and will be confirmed by the

numerical computations in this section, the fields decay more slowly in the z direction than

in the r direction, due to the warped metric. As a result, it turns out to be computationally

efficient to perform the change of variable z = tanw, so that the infinite domain of z

transforms to the finite interval w ∈ [−π
2 ,

π
2 ]. At the boundaries w = ±π

2 the fields (5.7)

now give the boundary conditions Φ = −i, ar = az = Â0 = 0.

The numerical solution is computed on a grid with a boundary at a finite value r = r?.

The boundary conditions applied at this simulation boundary are that the fields are given

by the pure gauge fields (5.7) together with Â0 = 0, that is,

Φ =
2r? tanw + i(r2

? − tan2w)

r2
? + tan2w

, ar =
2 tanw

r2
? + tan2w

, az = − 2r?
r2
? + tan2w

, Â0 = 0.

(5.10)

Note that the 2π phase winding of Φ now takes place along the single boundary r = r?.

It has been verified that the solutions are insensitive to the choice of this finite boundary,

providing r? is taken to be sufficiently large. The simulation details depend upon the value

of Λ, as this sets the scale of the soliton, but for Λ of order one a typical grid contains

400× 200 points in the (r, w)-plane with r? = 40.
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Figure 3. The abelian potential Â0 for the soliton with Λ = 200. The left image displays plots of

Â0 along the r-axis (black curve) and the z-axis (red curve). The flat space self-dual approximation

(blue curve) is included for comparison. All three curves are almost indistinguishable as the

self-dual field provides a good approximation in this range, apart from a very slight overshoot

at the origin. The right image is a plot of Â0 in the plane x2 = x3 = 0 and demonstrates the

approximate SO(4) symmetry in this region.

To display the results of the numerical computations it is convenient to plot the abelian

potential Â0, as this is a scalar quantity that is invariant under SU(2) gauge transforma-

tions, and in addition the U(1) gauge freedom is fixed by our earlier prescription that

ÂI = 0 and Â0 → 0 as ρ→∞. Furthermore, we have the simple explicit expression (3.21)

for Â0 within the flat space self-dual approximation, that can be used to compare to the

numerical result.

We first compute the soliton for a large value of Λ, where we expect the self-dual

instanton to be a good approximation, at least in the region ρ . 1. Figure 3 displays a

plot of Â0 for the value Λ = 200. The plot in the left image presents Â0 along the r and

z axes, together with the SO(4) symmetric self-dual instanton approximation (3.21) with

the instanton size given by (3.20). All three curves are almost indistinguishable, which

confirms that the the self-dual instanton provides a good approximation in this range, for

this large value of Λ. The plot in the right image presents Â0 in the plane x2 = x3 = 0,

and demonstrates the approximate SO(4) symmetry for ρ . 1. To see a deviation from the

self-dual approximation requires an examination of the region ρ > 1. As Â0 is small in this

region then the appropriate quantity to plot is log Â0, which is presented in figure 4 for

0 ≤ ρ ≤ 3. The lack of SO(4) symmetry is now more apparent, with a slower decay along

the z-axis than along the r-axis, as predicted by the analytic calculations.

To see a demonstrable difference between the self-dual instanton and the numerical

solution requires a value of Λ that is of order one. This is also the case if we are to provide

numerical evidence to support our analytic calculations concerning the applicability of the

linear and nonlinear descriptions of the soliton tail in different regions. The most relevant
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Figure 4. For the soliton with Λ = 200, the plot displays log Â0 against ρ along the r-axis (black

curve) and the z-axis (red curve). The flat space self-dual approximation (blue curve) is included

for comparison. There is a faster decay along the r-axis than along the z-axis.

Figure 5. The abelian potential Â0 for the soliton with Λ = 2. The left image displays plots of Â0

along the r-axis (black curve) and the z-axis (red curve). The flat space self-dual approximation

(blue curve) is included for comparison, together with the radial approximation (orange curve).

Note the faster decay along the r-axis than along the z-axis. The right image is a plot of Â0 in the

plane x2 = x3 = 0.

regime from the physical point of view is large Λ, but as we have seen, the three length

scales involved are of order 1/
√

Λ, 1, log Λ. For large Λ this gives a separation of scales that

is difficult to encompass within a single simulation. By going to parameter values of Λ that

are of order one, we can bring these three length scales closer together, so that all three

are simultaneously accessible within a feasible simulation.
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Figure 6. For the soliton with Λ = 2, the plot displays log Â0 against r along the r-axis (black

curve). The red curve is the exponential decay predicted by the linear approximation in curved

space and the blue curve is the algebraic decay predicted by the nonlinear approximation in curved

space. Exponential decay is a good approximation in the region 1 . r . 15 and algebraic decay is

a good approximation in the region r & 8.

Figure 5 displays a plot of Â0 for the value Λ = 2. The plot in the left image presents Â0

along the r and z axes, together with the self-dual instanton approximation and the radial

approximation described in section 3. The slower decay along the z axis than along the r

axis is now clearly visible. The self-dual instanton is a poor approximation for this value

of Λ, even for small ρ. The radial approximation improves on the self-dual approximation,

but there is still a considerable error, as expected from an approximation that assumes

SO(4) symmetry. The plot in the right image presents Â0 in the plane x2 = x3 = 0, and

clearly displays the lack of SO(4) symmetry. The abelian potential is stretched out along

the z direction, corresponding to the slower rate of decay along the holographic direction,

in agreement with the earlier analysis.

To examine the soliton tail, we plot log Â0 against r (along the r-axis) in figure 6. Also

included in this plot is the leading order exponential decay predicted by the linear analysis,

namely Â0 = α1e
−k1r/r, and the leading order algebraic decay predicted by the nonlinear

analysis, Â0 = α2/r
9, where α1,2 are constants. It can be seen that exponential decay is a

good approximation in the region 1 . r . 15, where the linear regime is valid, and algebraic

decay is a good approximation in the region r & 8, which is the nonlinear regime. The

slight discrepancy between the algebraic form and the numerical result at large r is due to

the finite boundary at r = r? = 40, which is not far beyond the range plotted in this figure.

In summary, the numerical results presented in this section demonstrate that the flat

space self-dual instanton is a good approximation to the Sakai-Sugimoto soliton for ρ . L,

providing Λ is large. Furthermore, we have provided numerical evidence to support the

analytic results obtained in this paper regarding the validity of the linear approximation
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immediately outside the soliton core, together with its breakdown at large scales, where

nonlinear terms are dominant.

6 Conclusion

Using a combination of analytic and numerical methods we have investigated the proper-

ties of the Sakai-Sugimoto soliton, together with a range of approximations that have been

applied to study this soliton. We have determined the regimes of validity of these approx-

imations and shown how they may be related in regions where they overlap. This analysis

has clarified the source of some contradictory results in the literature and resolved some out-

standing issues, including the applicability of the flat space self-dual instanton, the detailed

properties of the asymptotic soliton tail, and the role of the UV cutoff required in previous

investigations. We have shown how to relate the asymptotic fields to the self-dual instanton

description valid at the core, and revealed the existence of a new large scale, that grows log-

arithmically with the ’t Hooft coupling, at which the soliton fields enter a nonlinear regime.

The analysis described in this paper concerns the effective five-dimensional theory

obtained from the Sakai-Sugimoto model but a similar approach could be applied to other

models of holographic QCD, both of the bottom-up and top-down variety. For example,

the methods are applicable to the effective theory obtained from the Sakai-Sugimoto model

when the D8-branes and anti-D8-branes are non-antipodal on the compactified circle [18].

The leading order term in the soliton tail is provided by the massless pion field and the

classical inter-soliton force has the same structure as in the Skyrme model. Hence there

should be an attractive channel that leads to classical multi-soliton bound states that can be

quantized within a collective coordinate approximation to provide holographic nuclei. How-

ever, these multi-solitons are not expected to have the SO(3) symmetry of the single soliton,

so it will be a significant computational challenge to construct these solutions numerically.
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