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1 Introduction

The renormalization of vacuum expectation values (VEVs) in general gauge theories with

Rξ-gauge has been studied in our earlier work [1]. We showed that in Rξ-gauge the

VEVs renormalize differently from the respective scalar fields and explained the ori-

gin and behaviour of this difference. We computed VEV-counterterms and β-functions

at one-loop and leading two-loop level. The purpose of this subsequent paper is to

complete the two-loop renormalization of VEVs in general gauge theories and generic

supersymmetric theories.

The renormalization of a VEV v can generically be written in the two equivalent forms

v → v + δv =
√
Z (v + δv̄) , (1.1)

with
√
Z being the field renormalization constant of the corresponding scalar field. The

main insight of ref. [1] has been that δv̄ can be interpreted by the field renormalization
√

Ẑ

of a suitable chosen scalar background field. Thus, a simple computation becomes possible

in terms of a single two-point function.

In the present paper we address the following points:

1. The missing two-loop terms of the order g4 in
√

Ẑ are computed and the complete

two-loop VEV β-function for general gauge theories with Rξ gauge fixing can be

provided.
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2. Gauge kinetic mixing in case of several U(1) gauge factors is taken into account in

the computation of the g4 terms.

3. The complete results are specialised to general supersymmetric theories in the DR

scheme.

4. As a by-product the anomalous dimension γ(2) for generic N = 1 supersymmetric

theories is derived in DR for arbitrary values of ξ.

5. As application, the concrete results for anomalous dimensions and β-functions of

VEVs and tanβ are provided in the well-known supersymmetric models MSSM,

NMSSM, and E6SSM. These results can be readily applied in practical applications.

Moreover, they highlight various characteristic features of the general results.

This paper is organized as follows: section 2 provides a brief summary of the formalism and

notation. Section 3 is centred on the computation of the full two-loop results for general

gauge theories and supersymmetric theories. The application to the MSSM, NMSSM, and

E6SSM is carried out in section 4. Generally this paper provides a complete picture up

to two-loop level and summarizes all relevant expressions, but the one-loop and Yukawa-

enhanced two-loop results have already been published in [1].

2 General gauge theory and scalar background fields

The renormalization of vacuum expectations can be cast in an elegant scheme by employing

a scalar background field. As elaborated in our previous publication [1], we use the general

setting of real scalar fields ϕa, Weyl 2-spinors ψpα, and real (non-abelian) gauge fields V A
µ

in the notation of [2–5]. The Lagrangian is given as

Linv =− 1

4
FA
µνF

Aµν +
1

2
(Dµϕ)a (D

µϕ)a + iψα
p σ

µ
αα̇

(

D†
µψ̄

α̇
)

p

− 1

2!
m2

abϕaϕb −
1

3!
habcϕaϕbϕc −

1

4!
λabcdϕaϕbϕcϕd (2.1)

− 1

2

[

(mf )pq ψ
α
pψqα + h.c.

]

− 1

2

[

Y a
pqψ

α
pψqαϕa + h.c.

]

.

The VEVs va are replaced in this formalism by scalar background fields (ϕ̂a + v̂a). These

auxiliary fields allow to formulate a rigid (global) gauge invariant gauge fixing; analogous

to ref. [6] the gauge-fixing functional reads

FA = ∂µV A
µ + igξξ′ (ϕ̂ + v̂)a T

A
abϕb . (2.2)

By setting ϕ̂a to zero, one recovers the gauge theory in standard Rξ-gauge. But the

inclusion of ϕ̂a and the rigid (global) gauge invariant gauge fixing imply that the following

renormalization transformations are sufficient

ϕa →
√
Zab ϕb , (2.3a)

(ϕ̂ + v̂)a →
√
Zab

√

Ẑbc (ϕ̂ + v̂)c . (2.3b)
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An additional VEV counterterm is then prohibited. In the standard approach, without

background fields, the most generic renormalization transformation of the scalar fields

with shifts reads

ϕa + va →
√
Zab (ϕb + vb + δv̄b) =

√
Zab (ϕb + vb) + δva . (2.4)

The two formalisms are equivalent, with the following identifications

δva =
(√

Z
√

Ẑ − 1
)

ab
v̂b =

1

2

(

δZ + δẐ
)

ab
v̂b +O

(

~
2
)

, (2.5a)

δv̄a =
(√

Ẑ − 1
)

ab
v̂b =

1

2
δẐabv̂b +O

(

~
2
)

. (2.5b)

As a result, the β function of the VEV can be obtained as

β(va) = (γab + γ̂ab) vb , (2.6)

with the anomalous dimensions γ and γ̂ corresponding to the field renormalizations
√
Z

and
√

Ẑ, respectively.

One of the main results of ref. [1] was that the computation of δẐ can be reduced to

the very simple, unphysical two-point function

Γ
CT,(n)
q̂a,Kϕb

= − i

2
δẐ

(n)
ba . (2.7)

Here Kϕb
are the sources of the BRS transformation of the scalar field, and q̂a is the BRS

transformation of ϕ̂a. Both of these unphysical fields appear in a very simple and well

prescribed way in the Lagrangian.

Our formalism is independent of the actual value assigned to v̂a. We can therefore

choose v̂a as the minimum of the full loop-corrected scalar potential. Hence, our β-functions

describe the running of the full VEV, which is required, for example, in many supersym-

metry applications such as spectrum generators [7, 8]. Note that this running VEV has

to be distinguished from other definitions used for example in the Standard Model [9, 10],

which corresponds to the VEV defined explicitly in terms of the running tree-level potential

parameters

v(µ) =

√

m2(µ)

λ(µ)
. (2.8)

Ref. [9] contains a diagram exposing the difference in the running between the different

definitions.

– 3 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
8

q̂a Kϕb

(a)

q̂a Kϕb

(b)

q̂a Kϕb

(c)

q̂a Kϕb

(d)

Figure 1. All relevant graphs for determination of two-loop corrections to Γq̂a,Kϕb
:

graphs 1(a), 1(b), and 1(c) are O(g4)-contributions; graph 1(d) corresponds to O(g2Y Y †).

Diagram Ŝab A B

1(a) g4ξξ′C2
ac(S)C

2
cb(S) −3 + ξ 1 + ξ

1(b) g4ξξ′C2(G)C2
ab(S)

−3+ξ
4

1+ξ
4

1(c) g4ξξ′C2(G)C2
ab(S) − ξ

2
3−ξ
2

1(d) g2ξξ′C2
ac(S)Y

2
cb(S) 1 −1

Table 1. Singular parts of the two-loop diagrams for Γq̂a,Kϕb
. All relevant one-loop subdiagrams

have been renormalized such that the above expressions correspond to the two-loop diagrams de-

picted plus the necessary diagrams with one-loop counterterm insertions.

3 Results

3.1 General gauge theory

The one-loop results for the anomalous dimensions γab(S), γ̂ab(S) and β-functions β(va) in

a general gauge theory have been presented in [1] and read

γ
(1)
ab (S) =

1

(4π)2
[

g2 (3− ξ)C2
ab(S)− Y 2

ab(S)
]

, (3.1a)

γ̂
(1)
ab (S) =

1

(4π)2
2g2ξξ′C2

ab(S) , (3.1b)

β(1)(va) =
1

(4π)2
[

g2
(

3− ξ + 2ξξ′
)

C2
ab(S)− Y 2

ab(S)
]

vb . (3.1c)

At the two-loop level, the terms of O(g2Y Y †) of γ̂(2) [1] and the full γ(2) [2, 5] have

already been published. Therefore, the computation of O(g4)-terms in γ̂(2) remains at

two-loop. Figure 1 contains the four relevant graphs that generate the divergencies in the

loop corrections of Γq̂a,Kϕb
, wherein we implicitly understand one-loop subdivergencies to

be subtracted. As before, all calculations are carried out in MS or equivalently MS scheme.

In analogy to the presentation of Machacek & Vaughn [2–4], we provide the contribu-

tions of each diagram of figure 1 in table 1 with the notation

δẐ
(2)
ab =

1

(4π)4
Ŝab

(

A

η2
+
B

η

)

, (3.2)

wherein 1/η = 1/ǫ+ ln(4π)− γE .
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The completed two-loop results in the MS scheme read as follows

γ
(2)
ab (S) =

1

(4π)4

{

g4C2
ab(S)

[(

35

3
− 2ξ − 1

4
ξ2
)

C2(G)− 10

6
S2(F)−

11

12
S2(S)

]

(3.3a)

− 3

2
g4C2

ac(S)C
2
cb(S) +

3

2
H2

ab(S) + H̄2
ab(S)−

10

2
g2Y 2F

ab (S)− 1

2
Λ2
ab(S)

}

,

γ̂
(2)
ab (S) =

ξξ′

(4π)4

{

g4
[

2 (1 + ξ)C2
ac(S)C

2
cb(S) +

7− ξ

2
C2(G)C2

ab(S)

]

(3.3b)

− 2g2C2
ac(S)Y

2
cb(S)

}

,

β(2)(va) =
1

(4π)4

{

g4C2
ab(S)

[(

35

3
− 2ξ − 1

4
ξ2 +

7− ξ

2
ξξ′
)

C2(G)− 10

6
S2(F)−

11

12
S2(S)

]

+ g4
[

2ξξ′ (1 + ξ)− 3

2

]

C2
ac(S)C

2
cb(S)−

1

2
Λ2
ab(S) (3.3c)

+
3

2
H2

ab(S) + H̄2
ab(S)−

10

2
g2Y 2F

ab (S)− 2ξξ′g2C2
ac(S)Y

2
cb(S)

}

vb .

3.2 Kinetic mixing

The results of section 3.1 hold for simple gauge groups. The generalization to product

groups is obvious, except for gauge kinetic mixing of U(1) field strength tensors. In the

recent literature, the impact of gauge kinetic mixing on RGEs has been studied quite

extensively up to two-loop level [11–13]. Following the approach of refs. [12, 13], we need

to provide substitution rules for γ̂ to take kinetic mixing into account.

A generic gauge group G can be decomposed into

G =

(

⊗

k∈I

Gk

)

⊗
(

⊗

a∈J

U(1)a

)

, (3.4)

with the simple groups Gk and the two (finite) sets I, J ⊂ N. The part of the Lagrangian

describing kinetic mixing reads

L = −1

4

∑

k∈I

FAk

k,µνF
Ak,µν
k − 1

4

∑

a,b∈J

Fa,µνΞabF
µν
b + · · · . (3.5)

Analogously to refs. [12, 13], we define

ĝab :=
∑

c∈J

δacg
′
c

√
Ξ
−1

cb and Wa :=
∑

b∈J

Qbĝba , (3.6)

with the root defined by
√
Ξ
√
Ξ = Ξ.

The inspection of the graphs in figure 1 implies that there do not exist any gauge

kinetic mixing contributions to γ̂(1) and the O(g2Y Y †)-part of γ̂(2), because BRS-ghost

and -antighost are not affected by kinetic mixing. Graphs 1(b) and 1(c) are not affected

– 5 –
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either, as U(1)-gauge fields do not interact with the corresponding Faddeev-Popov-ghosts.

Hence, the only change for kinetic mixing stems from graph 1(a), in particular from the

one-loop insertion of the scalar self-energy. The relevant substitution rule is given by

g4C2(S)C2(S)
γ̂−−−−−→

kin. mix

[

∑

k∈I

g2kC
2
Gk

(X) +
∑

d∈J

Wd(X)Wd(X)

]

(3.7)

×
[

∑

k∈I

g2kC
2
Gk

(X) +
∑

d∈J

g′
2
dQ

2
d(X)

]

.

Here gk denote the non-abelian gauge couplings and g′d the abelian ones, with the corre-

sponding quantum numbers Qd. Further, X denotes the field under consideration, e.g. up-

or down-type Higgs. The substitution rules for γ can be found in [12, 13].

3.3 Supersymmetric gauge theory

The treatment of supersymmetric theories requires to take three subtleties into account:

(i) supersymmetric theories are formulated in terms of complex scalar fields, (ii) the

coupling structure is severely restricted by supersymmetry, and (iii) the use of the

supersymmetry-preserving renormalization scheme DR.

The first two points are merely computational issues, in the sense that one needs to

take care of the changed coupling structure and the scalar field representation. Hence, these

aspects will not be spelled out in detail and we directly present the results for complex

scalar fields in a notation based on ref. [14]. We will, however, give some details on the

conversion to DR, which requires transition counterterms for parameters [15] and fields [16].

The existence of such transition counterterms is due to the equivalence of dimensional

reduction and dimensional regularisation as shown in ref. [17].

At one-loop level the results have been provided earlier [1] and read

γ
(1)
ab (S)

∣

∣

∣

DR

SUSY
=

1

(4π)2

[

g2 (1− ξ)C2
ab(S)−

1

2
Y ∗
apqYbpq

]

, (3.8a)

γ̂
(1)
ab (S)

∣

∣

∣

DR

SUSY
=

1

(4π)2
2g2ξξ′C2

ab(S) , (3.8b)

β(1)(va)
∣

∣

∣

DR

SUSY
=

1

(4π)2

[

g2
(

1− ξ + 2ξξ′
)

C2
ab(S)−

1

2
Y ∗
apqYbpq

]

vb . (3.8c)

The first two-loop renormalization studies of softly broken N = 1 SUSY theories in DR

have been performed in [18–20], though not always in component fields as used here. To our

knowledge, the full result for γ(2) in a general supersymmetric theory is not available in the

literature, except for Landau gauge (ξ = 0) [14]. In order to obtain the result for arbitrary

ξ we proceed in the following steps. We first reevaluate the Feynman graphs in ref. [2] with

a generic N = 1 supersymmetric Lagrangian.1 Then we apply transition counterterms

for the conversion from MS to DR. This step differs from the case of the DR β-functions

computed in ref. [18]. Since the β-functions in that reference are gauge invariant, physical

1Note the remarks by ref. [5] on the implicitly real spinors of Machacek & Vaughn.
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quantities, only transition counterterms for physical parameters were required, and those

were provided in ref. [15]. In the present case of γ-functions, also transition counterterms

for field renormalization and gauge parameters are necessary. These were presented in

ref. [16]. Fortunately, however, the needed additional transition counterterms for the scalar

field renormalization and for the gauge parameter are zero,

δZ(1),trans
ϕ = 0, (3.9)

δZ
(1),trans
ξ = 0. (3.10)

The transition for γ̂ to supersymmetry and DR could be carried out in an analogous

way, by employing transition counterterms. However, it is also possible and simpler to use

the fact that there is no difference between MS and DR for any diagram contributing to δẐ

at the two-loop level. Hence, γ̂ is equal in the MS and DR schemes. From this knowledge,

one can then derive additional transition counterterms as a by-product: δẐ(1),trans = 0,

and owing to the non-renormalization of the gauge fixing,

δZ
(1),trans
ξ′ = −δZ(1),trans

g +
1

2
δZ

(1),trans
V =

1

(4π)2
g2

3
C2(G) , (3.11)

where δZ
(1),trans
V denotes the transition counterterm for the gauge field, as obtained

in ref. [16]. With these ingredients, the full gauge-dependent two-loop results for the

anomalous dimensions γ and γ̂ as well as for the VEV β-function can be obtained. In DR

they read

γ
(2)
ab (S)

∣

∣

∣

DR

SUSY
=

1

(4π)4

{

g4
[(

9

4
− 5

3
ξ − 1

4
ξ2
)

C2(G)− S2(S)

]

C2
ab(S) (3.12a)

− 2g4C2
ac(S)C

2
cb(S) +

1

2
Y ∗
arcYrpqY

∗
pqdYbcd

+ g2
[

C2
ac(S)Y

∗
cpqYbpq − 2Y ∗

apqC
2
pr(S)Ybrq

]

}

,

γ̂
(2)
ab (S)

∣

∣

∣

DR/MS

SUSY
=

ξξ′

(4π)4

{

g4
[

7− ξ

2
C2(G)C2

ab(S)− 2 (1− ξ)C2
ac(S)C

2
cb(S)

]

(3.12b)

− g2C2
ac(S)Y

∗
cpqYbpq

}

,

β(2)(va)
∣

∣

∣

DR

SUSY
=

1

(4π)4

{

g4
[(

9

4
− 5

3
ξ − 1

4
ξ2 +

7− ξ

2
ξξ′
)

C2(G)− S2(S)

]

C2
ab(S) (3.12c)

− g4
[

2ξξ′ (1− ξ) + 2
]

C2
ac(S)C

2
cb(S) +

1

2
Y ∗
arcYrpqY

∗
pqdYbcd

+ g2
[

1− ξξ′
]

C2
ac(S)Y

∗
cpqYbpq − 2g2Y ∗

apqC
2
pr(S)Ybrq

}

vb .
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4 Application to concrete supersymmetric models

This section provides the explicit two-loop results for the renormalization of all VEVs in

the MSSM, NMSSM, and E6SSM, using the notation of ref. [1]. For completeness and

convenience, we provide the full results including previously known ones.

4.1 MSSM

One-loop. The one-loop results for the anomalous dimensions of the MSSM Higgs

doublets read

(4π)2γ
(1),DR
MSSM (Hu) = (1− ξ)

(

3

20
g21 +

3

4
g22

)

−NcTr
(

yuyu†
)

, (4.1a)

(4π)2γ̂
(1),DR
MSSM (Hu) = 2ξξ′

(

3

20
g21 +

3

4
g22

)

. (4.1b)

(4π)2γ
(1),DR
MSSM (Hd) = (1− ξ)

(

3

20
g21 +

3

4
g22

)

−NcTr
(

ydyd†
)

− Tr
(

yeye†
)

, (4.2a)

(4π)2γ̂
(1),DR
MSSM (Hd) = 2ξξ′

(

3

20
g21 +

3

4
g22

)

. (4.2b)

The β-function of tanβ follows then as

β
(1),DR
MSSM (tanβ)

tanβ
= − 1

(4π)2

[

NcTr
(

yuyu†
)

−NcTr
(

ydyd†
)

− Tr
(

yeye†
)]

. (4.3)

Two-loop. The application of the general two-loop results yields for the MSSM

(4π)4γ
(2),DR
MSSM (Hu) = −207

200
g41 −

9

20
g21g

2
2 −

(

3 +
5

2
ξ +

3

8
ξ2
)

g42 (4.4a)

−
(

4

15
g21 +

16

3
g23

)

NcTr
(

yuyu†
)

+NcTr
(

yuyd†ydyu†
)

+ 3NcTr
(

yuyu†yuyu†
)

,

(4π)4γ̂
(2),DR
MSSM (Hu) = −ξξ′

{(

3

10
g21 +

3

2
g22

)

[

NcTr
(

yuyu†
)]

+RMSSM

}

, (4.4b)

(4π)4γ
(2),DR
MSSM (Hd) = −207

200
g41 −

9

20
g21g

2
2 −

(

3 +
5

2
ξ +

3

8
ξ2
)

g42 (4.5a)

−
(

− 2

15
g21 +

16

3
g23

)

NcTr
(

ydyd†
)

− 6

5
g21 Tr

(

yeye†
)

+ 3NcTr
(

ydyd†ydyd†
)

+NcTr
(

ydyu†yuyd†
)

+ 3Tr
(

yeye†yeye†
)

,

(4π)4γ̂
(2),DR
MSSM (Hd) = −ξξ′

{(

3

10
g21+

3

2
g22

)

[

NcTr
(

ydyd†
)

+Tr
(

yeye†
)]

+RMSSM

}

, (4.5b)

with

RMSSM = (1− ξ)
9

2

(

1

100
g41 +

1

10
g21g

2
2 +

1

4
g42

)

− 3
7− ξ

4
g42 . (4.6)
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The explicit calculations confirm our earlier statement [1] that the same RMSSM terms in

γ̂(2) appear for up- and down-Higgs. Thus, we obtain the two-loop β-function for tanβ as

β
(2),DR
MSSM (tanβ)

tanβ
=

1

(4π)4

{

−
(

4

15
g21 +

16

3
g23

)

NcTr
(

yuyu†
)

(4.7)

+

(

− 2

15
g21 +

16

3
g23

)

NcTr
(

ydyd†
)

+
6

5
g21 Tr

(

yeye†
)

+ 3NcTr
(

yuyu†yuyu†
)

−3NcTr
(

ydyd†ydyd†
)

−3Tr
(

yeye†yeye†
)

}

+
1

(4π)2
ξξ′
(

3

10
g21 +

3

2
g22

)

β
(1),DR
MSSM (tanβ)

tanβ
.

The gauge-dependence of tanβ at two-loop stems solely from the γ̂ terms.

4.2 NMSSM

One-loop. The one-loop anomalous dimensions for the Higgs doublets Hu,d in the

NMSSM resemble the corresponding MSSM results:

γ
(1),DR
NMSSM(Hu,d) = γ

(1),DR
MSSM (Hu,d)−

1

(4π)2
|λ|2 , (4.8a)

γ̂
(1),DR
NMSSM(Hu,d) = γ̂

(1),DR
MSSM (Hu,d) . (4.8b)

The NMSSM Higgs singlet S has the following RGE coefficients:

γ
(1),DR
NMSSM(S) = − 1

(4π)2
2
(

|λ|2 + |κ|2
)

, (4.9a)

γ̂
(1),DR
NMSSM(S) = 0 . (4.9b)

Due to the unchanged gauge group the one-loop result for tanβ is identical to the MSSM

β
(1),DR
NMSSM(tanβ) = β

(1),DR
MSSM (tanβ) . (4.10)

Two-loop. The two-loop results for the Higgs-doublets are given by

γ
(2),DR
NMSSM(Hu) = γ

(2),DR
MSSM (Hu)+

|λ|2
(4π)4

[

2|κ|2+3|λ|2+NcTr
(

ydyd†
)

+Tr
(

yeye†
)]

, (4.11a)

γ̂
(2),DR
NMSSM(Hu) = − ξξ′

(4π)4

{

(

3

10
g21 +

3

2
g22

)

[

NcTr
(

yuyu†
)

+ |λ|2
]

+RNMSSM

}

, (4.11b)

γ
(2),DR
NMSSM(Hd) = γ

(2),DR
MSSM (Hd) +

|λ|2
(4π)4

[

2|κ|2 + 3|λ|2 +NcTr
(

yuyu†
)]

, (4.12a)

γ̂
(2),DR
NMSSM(Hd) = − ξξ′

(4π)4

{

(

3

10
g21 +

3

2
g22

)

[

NcTr
(

ydyd†
)

+Tr
(

yeye†
)

+ |λ|2
]

(4.12b)

+RNMSSM

}

,
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with RNMSSM = RMSSM. Again, the RNMSSM terms in γ̂(2) are equal for up- and down-

Higgs. Next, we can provide the results for the two-loop gauge singlet:

(4π)4γ
(2),DR
NMSSM(S) = 8|κ|4 + 8|κ|2|λ|2 + 4|λ|4 −

(

6

5
g21 + 6g22

)

|λ|2 (4.13a)

+ 2|λ|2
[

NcTr
(

ydyd†
)

+Tr
(

yeye†
)

+NcTr
(

yuyu†
)]

,

γ̂
(2),DR
NMSSM(S) = 0 . (4.13b)

Finally, the two-loop β-function for tanβ turns out to be modified by the additional

Yukawa-coupling λ in comparison to the MSSM

β
(2),DR
NMSSM(tanβ)

tanβ
= γ

(2),DR
MSSM (Hu)− γ

(2),DR
MSSM (Hd) +

|λ|2
(4π)2

β
(1),DR
MSSM (tanβ)

tanβ
(4.14a)

+
1

(4π)2
ξξ′
(

3

10
g21 +

3

2
g22

)

β
(1),DR
MSSM (tanβ)

tanβ

=
β
(2),DR
MSSM (tanβ)

tanβ
+

|λ|2
(4π)2

β
(1),DR
MSSM (tanβ)

tanβ
. (4.14b)

4.3 E6SSM

The E6SSM introduces a new feature: the U(1)N -extension of the SM-gauge group leads

inevitably to gauge kinetic mixing. The notations for kinetic mixing of section 3.2 can be

specialized to the E6SSM as

ĝ =

(

g1 g11′

g1′1 g′1

)

and Q(X) :=





√

3
5QY (X)

√

1
40QN (X)



 . (4.15)

Note that eq. (4.15) contains the GUT-normalized U(1)Y - and U(1)N -charges for any field

X. The quantum-numbers QY (X) and QN (X) are those of ref. [21].

One-loop. In comparison to our earlier results [1] the one-loop anomalous dimensions

γ and γ̂ are now extended for the general case of gauge kinetic mixing already present at

tree-level. For the Higgs-doublets Hu/d,3 and the SM-singlet S3 our computations yield

γ
(1),DR
E6SSM

(Hu,3) = γ
(1),DR
MSSM (Hu) +

1

(4π)2

[

1

10
(1− ξ)g′1

2 − |λ3|2
]

(4.16a)

+
1− ξ

(4π)2

(

3

20
g211′ +

1

10
g21′1 −

1

5

√

3

2
g11′g

′
1 −

1

5

√

3

2
g1′1g1

)

,

γ̂
(1),DR
E6SSM

(Hu,3) = γ̂
(1),DR
MSSM (Hu) +

1

(4π)2
1

5
ξξ′g′1

2
. (4.16b)
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γ
(1),DR
E6SSM

(Hd,3) = γ
(1),DR
MSSM (Hd) +

1

(4π)2

[

9

40
(1− ξ) g′1

2 − |λ3|2
]

(4.17a)

+
1− ξ

(4π)2

(

3

20
g211′ +

9

40
g21′1 +

3

10

√

3

2
g11′g

′
1 +

3

10

√

3

2
g1′1g1

)

,

γ̂
(1),DR
E6SSM

(Hd,3) = γ̂
(1),DR
MSSM (Hd) +

1

(4π)2
9

20
ξξ′g′1

2
. (4.17b)

(4π)2γ
(1),DR
E6SSM

(S3) =
5

8
(1− ξ)

(

g′1
2
+ g21′1

)

− 2Tr
(

λλ†
)

−NcTr
(

κκ†
)

, (4.18a)

(4π)2γ̂
(1),DR
E6SSM

(S3) =
5

4
ξξ′g′1

2
. (4.18b)

Thus, the one-loop β-function for tanβ is given by

β
(1),DR
E6SSM

(tanβ)

tanβ
=
β
(1),DR
MSSM (tanβ)

tanβ
− 1

(4π)2
1

8

(

1− ξ + 2ξξ′
)

g′1
2

(4.19)

− 1− ξ

(4π)2

[

1

8
g21′1 +

1

2

√

3

2

(

g11′g
′
1 + g1′1g1

)

]

.

Eq. (4.19) illustrates once more the gauge dependence of tanβ at one-loop level due to the

different U(1)N -quantum numbers of the Higgs doublets, see [1].

Two-loop. We restrict the list of two-loop results to the γ̂ and the β-function for tanβ.

The two-loop results for the E6SSM Higgs doublets are

(4π)4γ̂
(2),DR
E6SSM

(Hu,3) = −ξξ′
{

(

3

10
g21+

3

2
g22+

1

5
g′1

2
)

[

NcTr
(

yuyu†
)

+|λ3|2
]

+Ru

}

, (4.20a)

(4π)4γ̂
(2),DR
E6SSM

(Hd,3) = −ξξ′
{

(

3

10
g21 +

3

2
g22 +

9

20
g′1

2
)

(4.20b)

×
[

NcTr
(

ydyd†
)

+Tr
(

yeye†
)

+ |λ3|2
]

+Rd

}

,

with

Ru = RMSSM + (1− ξ)
1

10
g′1

2
[

3

5
g21 + 3g22 +

1

5
g′1

2
]

(4.21a)

+ (1− ξ)
1

200

[

3g211′ + 2g21′1 − 2
√
6
(

g11′g
′
1 + g1′1g1

)

] (

2g′1
2
+ 3g21 + 15g22

)

,

Rd = RMSSM + (1− ξ)
9

40
g′1

2
[

3

5
g21 + 3g22 +

9

20
g′1

2
]

(4.21b)

+ (1− ξ)
9

800

[

2g211′ + 3g21′1 + 2
√
6
(

g11′g
′
1 + g1′1g1

)

] (

3g′1
2
+ 2g21 + 10g22

)

.

The new result of eqs. (4.20) and (4.21) are the R-terms for up- and down-type Higgs.

They differ non-trivially because of the U(1)N -quantum numbers, and Ru −Rd does not
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vanish in the E6SSM in contrast to the MSSM and NMSSM cases. The two-loop γ̂ for the

singlet field reads

(4π)4γ̂
(2),DR
E6SSM

(S3) = −ξξ′
{

5

4
g′1

2
[

2Tr
(

λλ†
)

+NcTr
(

κκ†
)]

+Rs

}

, (4.22a)

Rs =
25

32
(1− ξ)g′1

2
(

g′1
2
+ g21′1

)

. (4.22b)

The complete two-loop β-function of tanβ requires additionally the two-loop γ’s, which

can be computed but will not be spelled out here. The RGE coefficients then reads

(4π)4
β
(2),DR
E6SSM

(tanβ)

tanβ
= (4π)4

β
(2),DR
MSSM (tanβ)

tanβ
+ (4π)2|λ3|2

β
(1),DR
MSSM (tanβ)

tanβ
(4.23)

+
3

40

[

−3 + ξξ′ (1− ξ)
]

g′1
2
g21 +

3

8

[

1 + ξξ′ (1− ξ)
]

g′1
2
g22

+
1

160

[

201 + 13ξξ′ (1− ξ)
]

g′1
4

− 1

5

(

1− 9

4
ξξ′
)

g′1
2
[

3Tr
(

ydyd†
)

+Tr
(

yeye†
)]

+
3

10

(

1− 2ξξ′
)

g′1
2
Tr
(

yuyu†
)

− 1

2

(

1− 1

2
ξξ′
)

g′1
2|λ3|2

+
3

40

[

11 +
1

2
ξξ′ (1− ξ)

]

(

g211′g
′
1
2
+ g21′1g

2
1

)

+
1

80

[

201 +
13

2
ξξ′ (1− ξ)

]

g21′1g
′
1
2
+

3

8

[

1 +
1

2
ξ′ξ (1− ξ)

]

g21′1g
2
2

+
1

20

√

3

2

[

99 +
7

2
ξξ′ (1− ξ)

]

(

g11′g
′
1 + g1′1g1

)

g′1
2

+
1

10

√

3

2

[

51 +
3

2
ξξ′ (1− ξ)

]

(

g11′g
′
1 + g1′1g1

)

g21

+
3

2

√

3

2

[

1 +
1

2
ξξ′ (1− ξ)

]

(

g11′g
′
1 + g1′1g1

)

g22

+
51

10

√

3

2

(

g11′g
′
1 + g1′1g1

)

g211′ +
99

20

√

3

2

(

g11′g
′
1 + g1′1g1

)

g21′1

+
21

10
g11′g1′1g

′
1g1 +

201

160
g41′1 −

9

40
g211′g

2
1′1

−
[

1

2
g21′1 +

√
6
(

g11′g
′
1 + g1′1g1

)

]

|λ3|2

−
[

2

5
g211′ +

3

5
g21′1 +

2

5

√
6
(

g11′g
′
1 + g1′1g1

)

]

Tr
(

ydyd†
)

−
[

−6

5
g211′ +

1

5
g21′1 +

3

5

√

3

2

(

g11′g
′
1 + g1′1g1

)

]

Tr
(

yeye†
)

−
[

+
4

5
g211′ −

3

10
g21′1 +

3

5

√

3

2

(

g11′g
′
1 + g1′1g1

)

]

Tr
(

yuyu†
)

.
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The connection with the more conventional treatment [21, 22] of the kinetic mixing in the

E6SSM

L = −1

4
Fµν
Y FY,µν −

1

4
Fµν
N FN,µν −

sinχ

2
Fµν
Y FN,µν + · · · (4.24a)

is established by the coupling matrix (cf. eq. (4.15))

ĝ =

(

g1 −g1 tanχ
0

g′
1

cosχ

)

. (4.24b)

5 Conclusions

We completed the calculation of the two-loop VEV β-functions for general gauge theories

and generic supersymmetric theories. The result complements the well-known set of RGE

coefficients of refs. [2–5] for general gauge theories as well as the supersymmetric gauge

theories of refs. [14, 18]. In particular, we achieved the following

• Completion of γ̂(2) by the missing O(g4)-contributions of our earlier results [1].

• Extension of γ(2)
∣

∣

DR

SUSY
to arbitrary values of the gauge fixing parameter ξ.

As a consequence, we were able to provide the full VEV β-function for general and super-

symmetric gauge theories in the MS and DR scheme up to the two-loop level. The result

was applied to the MSSM, NMSSM, and E6SSM and we proved the statements made in [1]

on the O(g4)-terms:

1. Ru −Rd = 0 in the MSSM and NMSSM,

2. Ru −Rd 6= 0 for the E6SSM.
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[1] M. Sperling, D. Stöckinger and A. Voigt, Renormalization of vacuum expectation values in

spontaneously broken gauge theories, JHEP 07 (2013) 132 [arXiv:1305.1548] [INSPIRE].

[2] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 1. Wave Function Renormalization, Nucl. Phys. B 222 (1983) 83

[INSPIRE].

[3] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 2. Yukawa Couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

– 13 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1007/JHEP07(2013)132
http://arxiv.org/abs/1305.1548
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1548
http://dx.doi.org/10.1016/0550-3213(83)90610-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B222,83
http://dx.doi.org/10.1016/0550-3213(84)90533-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B236,221


J
H
E
P
0
1
(
2
0
1
4
)
0
6
8

[4] M.E. Machacek and M.T. Vaughn, Two Loop Renormalization Group Equations in a General

Quantum Field Theory. 3. Scalar Quartic Couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

[5] M.-x. Luo, H.-w. Wang and Y. Xiao, Two loop renormalization group equations in general

gauge field theories, Phys. Rev. D 67 (2003) 065019 [hep-ph/0211440] [INSPIRE].

[6] E. Kraus and K. Sibold, Rigid invariance as derived from BRS invariance: The Abelian

Higgs model, Z. Phys. C 68 (1995) 331 [hep-th/9503140] [INSPIRE].

[7] V.D. Barger, M. Berger and P. Ohmann, The supersymmetric particle spectrum,

Phys. Rev. D 49 (1994) 4908 [hep-ph/9311269] [INSPIRE].

[8] D.M. Pierce, J.A. Bagger, K.T. Matchev and R.-j. Zhang, Precision corrections in the

minimal supersymmetric standard model, Nucl. Phys. B 491 (1997) 3 [hep-ph/9606211]

[INSPIRE].

[9] A. Bednyakov, A. Pikelner and V. Velizhanin, Three-loop Higgs self-coupling β-function in

the Standard Model with complex Yukawa matrices, arXiv:1310.3806 [INSPIRE].

[10] F. Jegerlehner, M.Y. Kalmykov and B.A. Kniehl, On the difference between the pole and the

MSbar masses of the top quark at the electroweak scale, Phys. Lett. B 722 (2013) 123

[arXiv:1212.4319] [INSPIRE].

[11] M.-x. Luo and Y. Xiao, Renormalization group equations in gauge theories with multiple

U(1) groups, Phys. Lett. B 555 (2003) 279 [hep-ph/0212152] [INSPIRE].

[12] R.M. Fonseca, M. Malinsky, W. Porod and F. Staub, Running soft parameters in SUSY

models with multiple U(1) gauge factors, Nucl. Phys. B 854 (2012) 28 [arXiv:1107.2670]

[INSPIRE].
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