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1 Introduction and summary

There is an interesting and fruitful approach of viewing lower dimensional superconfor-

mal field theories (SCFTs) from the vantage point of the (2, 0) theory in six dimensions.

Though we do not fully understand the (2, 0) theory, this viewpoint leads to useful insight
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to understand SCFTs in lower dimensions. Perhaps the most well-known example would be

the celebrated AGT conjecture [1]. Heuristically, the conjecture can be motivated by con-

sidering a twisted compactification of the (2, 0) theory on S4×Σg,h where Σg,h is a Riemann

surface of genus g with h punctures. The compactification leads to interesting SCFTs with

8 supercharges in 4-dimensions [2]. A supersymmetric partition function of the (2, 0) theory

on S4 × Σ is expected to give the S4-partition function of such 4d SCFTs. Pestun com-

puted the S4-partition function using localization techniques for theories whose Lagrangian

is known [3]. Throughout this paper, we will mainly focus on the A1 type of (2, 0) theory. In

this case, the 4d theories, denoted by TΣ, admit weakly coupled gauge theory descriptions

with gauge group SU(2)3g−3+h. On the other hand, the (2, 0) theory compactified on S4 is

expected to lead to a 2d conformal field theory. It turns out that for the A1 (2, 0) theory

this is Liouville theory.1 Hence, the A1 (2, 0) theory on S4×Σ gives the partition function

(correlation function) of the Liouville theory on Σ. Identifying the two partition functions

obtained from two different regimes of the compactification, we obtain the AGT conjecture

which relate S4 partition function of TΣ theory with Liouville correlation function on Σ.

One might wonder if a similar relation may be found in 3-dimensions by compactifying

the (2, 0) theory on some 3-manifold M . If so, it would lead to a plethora of N = 2

SCFTs in 3 dimensions. In fact, in [6, 7], Dimofte, Gaiotto, Gukov (DGG) introduced an

algorithm to construct the field theory TM associated with the 3-manifold M using the ideal

triangulation data of M . By specifying the gluing rules of the field theory corresponding

to those of the triangulation, one can construct a huge class of 3d SCFTs. One interesting

feature is that the same manifold with two different triangulations gives rise to two different

descriptions of the same SCFT. Some simple mirror pairs of 3d were shown to be described

in this way. Although it is difficult to see from their construction, the theory TM is believed

to be the 3d theory obtained by compactifying the A1 (2, 0) theory on M . Considering

the (2, 0) theory on M × S2 ×q S1 or M × S3
b ,2 we have the 3d-3d analogue of the AGT

conjecture. If we first compacitify on M , we obtain the superconformal index (S2 ×q S1)

or the sqaushed three-sphere partition function (S3
b ) for TM . On the other hand, if we

compactify on S2 ×q S1 or S3
b first, the theory is expected to be a SL(2,C) or SL(2,R)3

Chern-Simons (CS) theory on M [6, 7, 9, 10], respectively. From this analysis, we obtain

the following non-trivial prediction of the 3d/3d correspondence:

Superconformal index/S3
b partition function for TM

= SL(2,C)/SL(2,R) Chern-Simons partition function on M . (1.1)

One interesting class of the 3d-3d correspondence arises from the 3d duality domain

wall theory [9, 11–17] associated with 4d theory TΣ and a duality group element ϕ. The

1For a review of Liouville theory see, for example, the following review and references therein [4].
2S2×q S1 denote S1 bundle of two-sphere twisted with holonomy for a combination of U(1) R-symmetry

and space-time rotation symmetry. S3
b denote a squashed three-sphere (ellipsoid) [8].

3It is SL(2,R) CS theory in sense that the boundary Hibert-space looks like a quantization of SL(2,R)

flat connections on the boundary. In a recent paper [5], the 3d-3d relation is derived from the first principal

and find that the S3
b partition function corresponds to SL(2,C) CS theory with level k = 1. We expect

there’s an isomorphism between a Hilbert-space obtained by quantizing SL(2,R) flat connections and one

from SL(2,C) with k = 1.
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corresponding internal 3-manifold M is the mapping cylinder Σ ×ϕ I, where I = [0, 1]

is the unit interval, equipped with the cobordism ϕ : (x, 0) → (ϕ(x), 1). Here ϕ is an

element of the mapping class group for Σ, which can be identified with duality group for

TΣ. Further identifying the two ends of the interval by the cobordism ϕ, we obtain a

mapping torus Σ×ϕ S1. Identifying the two ends of the interval corresponds to gluing two

global SU(2)3g−3+h symmetries in the duality wall theory coupled to SU(2)3g−3+h gauge

symmetry in TΣ. On the other hand, the mapping torus admits an ideal triangulation and

the corresponding 3d theory can be constructed by the DGG algorithm. Hence the mapping

torus has two different realizations of the associated 3d SCFT. The one involving the

duality wall theory has a clear origin from M5-brane physics but identifying the 3d SCFT

for general Σ is very non-trivial. In the other one using the DGG algorithm, the physical

origin from M5-brane is unclear but generalization to arbitrary Σ is quite straightforward.

It boils down to the problem finding a triangulation of the mapping torus.

In this paper we are mainly interested in the 3d-3d correspondence between the su-

perconformal index for TM and SL(2,C) Chern-Simons theory on M , where M is mapping

cylinder or torus whose fiber is once-punctured torus, Σ1,1. The mapping torus Σ1,1×ϕ S1

will be denoted by tori(ϕ) for simplicity. The analysis of the 3d-3d correspondence (1.1) for

mapping torus was done at the semiclassical level using the S3
b partition function in [14];

see also [18–22] for interesting generalizations. To check the 3d-3d correspondence at the

full quantum level, we carefully define the Hilbert-space of SL(2,C) CS theory on R×Σ1,1
4

and construct quantum operators ϕ ∈ SL(2,Z), which turn out to be unitary operators.

Even though several basic ingredients of this construction were already given in refer-

ences [7, 14, 15, 23], working out the details of the Hilbert space turns out to be a non-trivial

and worthwhile task. We are particularly interested in the case when the CS level is purely

imaginary. In the case, the quantization is studied in a relatively recent paper [7]. In the pa-

per, the Hilbert-space is identified as L2(Z×Z) which have the same structure with 3d index.

We study the mapping-class group representation on the Hilbert-space which is a new and

interesting object. We show that the superconformal index for the duality wall theory asso-

ciated with ϕ ∈ SL(2,Z) is indeed a matrix element of ϕ in a suitable basis of the Hilbert-

space. According to an axiom of topological quantum field theory, the matrix element is

nothing but the SL(2,C) CS partition function on the mapping cylinder, and thus it pro-

vides an evidence for the 3d-3d correspondence (1.1) for the mapping cylinder.For mapping

torus, tori(ϕ), the CS partition function is given as a trace of an operator ϕ ∈ SL(2,Z). De-

pending on the choice of basis of the Hilbert-space, the expression for the Tr(ϕ) is equivalent

to the expression of superconformal index for mapping torus theory obtained either using

the duality wall theory or using the DGG algorithm. It confirms the equivalence of the two

descriptions for mapping torus theory at the level of the superconformal index and also con-

firms the 3d/3d correspondence (1.1) for M = tori(ϕ). We also give some evidences for an

isomorphism between the Hilbert-space of SL(2,C) CS theory on Σ1,1 and the Hilbert-space

canonically associated to the boundary S2×S1 of 4d (twisted) N = 2∗ theory on B3×S1.

4Or, simply we express “CS theory on Σ1,1” ignoring manifestly existing time-coordinate.
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The content of the paper is organized as follows. In section 2, we introduce the basic

setup for the 3d geometry of the mapping torus and its ideal triangulation. We also explain

the field theory realization, one as a ‘trace’ of the duality domain wall and the other as

an outcome of the DGG algorithm based on the triangulation. In section 3, we review

the quantization of SL(2,C) Chern-Simon theory on the Riemann surface Σ1,1. For later

purposes, we introduce several coordinate systems for the phase space and explain the

relation between them. The A-polynomial for mapping torus is analyzed in two different

ways. In section 4, we show that the superconformal index of TM with M being mapping

cylinder/torus is the SL(2,C) CS partition function on M . To calculate the CS partition

functions, we construct a Hilbert-space for SL(2,C) CS theory on Σ1,1. We further show

that the two computations of the mapping torus index are simply related by a basis change

of the Hilbert space in taking trace of ϕ ∈ SL(2,Z), thereby providing a consistency check

for the duality of the two descriptions of the mapping torus theory. In section 5, we

make comments on the partition function on the squashed sphere for the theory on the

mapping cylinder/torus. We indicate many parallels between the partition function and the

superconformal index and argue that most of our findings in section 4 can be carried over to

the context of the squashed sphere partition function. Several computations are relegated

to the appendices. For a technical reason, we mainly focus on general hyperbolic mapping

torus which satisfies |Tr(ϕ)| > 2 [24]. Extension of our analysis to the non-hyperbolic case

seems quite straightforward and some examples are given in section 4.1.

When we were finishing this work, an interesting article [62] appeared on arXiv.org,

which focuses on mapping cylinder and its triangulation. We expect that several expres-

sions for the SL(2,C) CS partition function on mapping cylinder in our paper can be

directly derived from their construction.

2 Two routes to mapping torus field theories

A mapping torus is specified by a Riemann surface Σg,h of genus g with h punctures and an

element ϕ of the mapping class group of Σg,h. Topologically, it is a bundle with Σ fibered

over an interval I = [0, 1] with Σ at one end of the interval identified with ϕ(Σ) at the

other end. In other words,

M = Σ×ϕ S1 = Σ× I/[(x, 0) ∼ (ϕ(x), 1)] . (2.1)

In this paper, we only consider the mapping torus for the once punctured torus Σ1,1 whose

mapping class group is SL(2,Z). The mapping torus associated with ϕ ∈ SL(2,Z) will be

denoted as tori(ϕ).

tori(ϕ) := Σ1,1 ×ϕ S1 . (2.2)

The 3d-3d correspondence [6, 7] states that one can associate a three-manifold M with

a 3d theory TM .5 Physically, TM can be thought of as a dimensional reduction of the 6d

5When M has boundary, the 3d theory TM also depends on the choice of polarization Π for the

boundary phase space MSL(2)(∂M), the space of SL(2) flat connections on ∂M . In a strict sense, the 3d

theory should be labelled by TM,Π.
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q1 q2 q3 q4 φ0

U(1)gauge 1 1 − 1 − 1 0

U(1)bot 1 − 1 1 − 1 0

U(1)punct
1
2

1
2

1
2

1
2 − 1

U(1)top 0 0 0 0 0

Table 1. T [SU(2)] theory. U(1)top denotes the topological U(1) charge, Jtop = ∗dAU(1)gauge .

(2,0) theory of A1-type on M .6 The mapping torus theory, TM with M = tori(ϕ), has two

different realizations.

In the first approach, one compactifies the 6d (2,0) theory on Σ1,1 to obtain the 4d

N = 2∗ theory and reduces it on S1 with a twist by ϕ to arrive at TM . The mapping class

group SL(2,Z) is the group of duality transformations in the sense of the 4d theory. From

this viewpoint, TM can be obtained by taking a proper “trace” action on a 3d duality wall

theory associated with ϕ.

In the other approach, one begins by triangulating the mapping torus using a finite

number of tetrahedra. Dimofte, Gaiotto and Gukov (DGG) [6] proposed a systematic algo-

rithm for constructing TM when the triangulation forM is known. One can construct TM by

applying the DGG algorithm to the known information on the triangulation of M = tori(ϕ).

2.1 Duality wall theory

Following [9, 11], we use the notation T [SU(2), ϕ] to denote the 3d theory living on the

duality wall between two copies of 4d SU(2) N = 2∗ theory associated with an element ϕ

of the duality group SL(2,Z).

We begin with the simplest case, T [SU(2), S], often shortened to T [SU(2)]. It is the 3d

N = 4 SQED with two fundamental hyper-multiplets. Let the four chiral fields in the two

hyper-multiplets be q1, q2, q3, q4 and the adjoint chiral field in the vector multiplet be φ0.

The theory has global symmetry SU(2)bot×SU(2)top×U(1)punct compatible with 3d N = 2

supersymmetries. The charge assignments for chiral fields under the Cartan subalgebras of

the gauge and global symmetries are summarized in table 1. U(1)top denotes the topological

symmetry whose conserved charge is a monopole charge for the U(1)gauge. In the infrared

(IR) limit, the U(1)top is known to be enhanced to SU(2)top. The quiver diagram for

T [SU(2)] is presented in figure 1(a). To emphasize that there is an additional quantum

SU(2) symmetry, one sometimes draws the quiver diagram as in figure 1(b).

Let us consider the generalization to T [SU(2), ϕ] for an arbitrary ϕ ∈ SL(2,Z). Firstly,

multiplying T k to S corresponds to adding Chern-Simons action of level k for back-

ground gauge fields coupled to the SU(2) global symmetries. Explicitly, one obtains the

T [SU(2), ϕ = T kST l] theory by coupling the T [SU(2)] theory with background gauge fields

through the CS action of level k for SU(2)top and of level l for SU(2)bot. Secondly, mul-

tiplication of two mapping class elements ϕ1 and ϕ2 corresponds to ‘gluing’ SU(2)bot in

6It can be generalized to (2,0) theory of general A,D,E type and the corresponding 3d theory T [M,g] is

labelled by 3-manifold M and Lie algebra g of gauge group [25].
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SU(2)U(1)

(a)

SU(2)U(1)SU(2)

(b)

Figure 1. Quiver diagrams for T [SU(2)].

T [SU(2), ϕ1] with SU(2)top in T [SU(2), ϕ2], where ‘gluing’ means gauging the diagonal sub-

group. In ultraviolet (UV) region, no SU(2)top symmetry is visible and the gluing procedure

can’t be implemented. To make the gluing procedure sensible in UV region, one need to

consider a dual description for the T [SU(2)] theory which allows the SU(2) symmetry vis-

ible in UV. Some examples of these dual description is given in appendix A. Nevertheless,

the gauging procedure for supersymmetric partition function can be implemented regard-

less of UV description choices since the partition function does not depend on the choice.

Since S and T generate all elements of SL(2,Z), one can construct all T [SU(2), ϕ] theories

by repeatedly using the field theory operations described above.

As a consistency check, we can examine the SL(2,Z) structure of the T [SU(2), ϕ] theory

constructed above. SL(2,Z) is generated by S and T subject to the two relations,

S4 = (ST )3 = I . (2.3)

In the next sections, we will check the equivalence between T [SU(2), S4ϕ] and T [SU(2), ϕ]

by computing supersymmetric quantities for two theories. On the other hand, the same

computations indicate that T [SU(2), (ST )3ϕ] can be identified with T [SU(2), ϕ] only after

an extra twist, namely,

T [SU(2), (ST )3ϕ] = T [SU(2), ϕ] + CS term with k =
1

2

for background gauge field coupled to U(1)punct

In terms of the 4d N = 2∗ theory, the above relation says that (ST )3 induces a θ-term,

Tr(Fpunct∧Fpunct) for the background gauge field coupled to the U(1)punct symmetry which

rotates an adjoint hyper.

In the context of 3d-3d correspondence, the duality wall theory is associated to a 3-

manifold Σ1,1 ×ϕ I called mapping cylinder [9, 13]. Topologically, a mapping cylinder is

a direct product of Σ1,1 and interval I = [0, 1]. At two ends of the interval (‘top’ and

‘bottom’), there are two boundary Riemann surfaces denoted as Σtop
1,1 and Σbot

1,1 . In 3d-3d

correspondence, global symmetries of TM are related to the boundary phase space of M ,

(Rank of global symmetry in TM ) =
1

2
dimC

[
MSL(2,C)(∂M)

]
. (2.4)

The two boundary phase spaces MSL(2)(Σ
top
1,1 ) and MSL(2)(Σ

bot
1,1 ) are related to SU(2)top

and SU(2)bot symmetries, respectively. The phase space associated to the ‘cusp’ boundary

made of the puncture on the Riemann surface is related to the U(1)punct symmetry.

– 6 –
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Figure 2. Mapping cylinder Σ1,1×ϕ I. A global symmetry in the duality wall theory is associated

to each component of boundary.

The mapping torus, tori(ϕ) := Σ1,1×ϕS1, can be obtained by gluing the two boundary

Riemann surfaces, Σtop
1,1 and Σbot

1,1 . In the duality wall theory, the gluing amounts to gauging

the diagonal subgroup of the two SU(2) global symmetries. The theory obtained by gluing

two SU(2)’s in a duality wall theory T [SU(2), ϕ] will be denoted as Tr(T [SU(2), ϕ]). From

the above discussion, we found a concrete realization of TM with M = tori(ϕ) in terms of

the duality wall theory. The theory will be denoted as T
T [SU(2)]
tori(ϕ) ,

T
T [SU(2)]
tori(ϕ) = Tr(T [SU(2), ϕ]) . (2.5)

2.2 Tetrahedron decomposition

In [6], Dimofte, Gaiotto, Gukov (DGG) proposed a powerful algorithm to construct TM
for a broad class of 3-manifolds M . We briefly review the DGG algorithm here. The basic

building block of a hyperbolic 3-manifold is the ideal tetrahedron ∆. The corresponding 3d

theory, T∆, is a theory of a free chiral field with a background CS action with level −1
2 . If

a 3-manifold M can be triangulated by a finite number of tetrahedra, TM can be obtained

by “gluing” copies of T∆ accordingly. Schematically,

M =

(
N⋃
i=1

∆i

)
/ ∼ ⇒ TM =

(
N⊗
i=1

T∆i

)
/ ∼ . (2.6)

Geometry of tetrahedra. An ideal tetrahedron has six edges and four vertices. To the

three pairs of diagonally opposite edges, we assign edge parameters (z, z′, z′′) which are the

exponential of complexified dihedral angles (Z,Z ′, Z ′′) of the edges.

z = exp(Z) with Z = (torsion) + i(angle) , etc. (2.7)

Using the equivalence between equation of motion for hyperbolic metrics and SL(2) flat

connections on a 3-manifold, these edge variables can be understood in terms of either

hyperbolic structure or SL(2) flat connection on a tetrahedron. Although latter interpreta-

tion is more physically relevant, the former is more geometrically intuitive. The hyperbolic

structure of an ideal tetrahedron is determined by the edge parameters (Z,Z ′, Z ′′) subject

to the conditions

Z + Z ′ + Z ′′ = πi+
~
2
, eZ + e−Z

′ − 1 = 0 . (2.8)

– 7 –
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The first condition defines the so-called boundary phase space with the symplectic form

Ω = 1
i~dZ ∧ dZ

′. The second condition defines a Lagrangian submanifold of the boundary

phase space. Due to the first condition, the second condition is invariant under the cyclic

permutation (z → z′ → z′′ → z).

The ideal triangulation requires that all faces and edges of the tetrahedra should be

glued such that the resulting manifold is smooth everywhere except for the cusp due to

the vertices of ideal tetrahedra. In particular, we have the smoothness condition at each

internal edge,

CI =

N∑
j=1

(
cIjZi + c′IjZ

′
j + c′′IjZ

′′
j

)
= 2πi+ ~ . (2.9)

The coefficients cIj , c
′
Ij , c

′′
Ij take values in {0, 1, 2}.

When all the edges of ∆i are glued, all but one of the gluing condition (2.9) give inde-

pendent constraints, since the sum of all constraints,
∑

I CI = (2πi+ ~)N trivially follows

from Zi+Z
′
i+Z

′′
i = πi+ ~

2 . The resulting manifold M has a cusp boundary, composed of the

truncated ideal vertices, which is topologically a torus T2. The two cycles of the torus, ‘lon-

gitude’ and ‘meridian’, describe the boundary phase space of M . The logarithmic variables

for the two cycles, V = log(`) and U = logm, are some linear combinations of (Zi, Z
′
i, Z
′′
i ).

Ideal triangulation of the mapping torus. The mapping torus tori(ϕ) = Σ1,1 ×ϕ S1

is known to be hyperbolic when |Tr(ϕ)| > 2. The tetrahedron decomposition of these

mapping torus is given explicitly in [24]. Any ϕ ∈ SL(2,Z) satisfying |Tr(ϕ)| > 2 admits a

unique decomposition of the following form,

ϕ = F (ϕNϕN−1 . . . ϕ2ϕ1)F−1 , ϕi = L or R . (2.10)

where we use the following convention for the SL(2,Z) generators,7

L =

(
1 1

0 1

)
, R =

(
1 0

1 1

)
= T , S =

(
0 −1

1 0

)
; L = S−1T−1S , S = L−1RL−1 . (2.11)

The overall conjugation by F is immaterial in the definition of the mapping torus and can

be neglected.

According to [24], to each letter L or R appearing in (2.10) one can associate a tetra-

hedron with edge parameters (Zi, Z
′
i, Z
′′
i ), or equivalently, (zi, z

′
i, z
′′
i ) = (eZi , eZ

′
i , eZ

′′
i ). The

index i runs from 1 to N with cyclic identification, N + 1 ∼ 1. L and R generate ‘flips’

on the triangulation of Σ1,1. Each flip corresponds to a tetrahedron (see figure 2 in [24]).

There are N tetrahedra in total and 3N edge parameters. In the mapping torus, all the

edges of tetrahedra are glued and there are N − 1 independent internal edge conditions.

How the internal edges are glued together is determined by the decomposition (2.10) of ϕ.

Taking account of the N equations Zi + Z ′i + Z ′′i = iπ + ~
2 for each i, there are in total

2N − 1 linear constraints on 3N edge parameters. These 2N − 1 constraints can be solved

7Our convention for the SL(2,Z) generators is the same as in [6, 7] but is the opposite from [15, 24, 26].

– 8 –
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R

L
R

Z2̀

Z2 Z`2̀

Z2̀

Z2 Z`2̀

Z2̀

Z2 Z`2̀

Z2̀

Z`2̀

Z2

Z2̀

Z2 Z`2̀

Z2̀

Z`2̀

Z2Z1̀ Z`1̀

Z1

Z`1̀

Z1

Z1̀
Z1̀ Z`1̀

Z1

Z`1̀

Z1

Z1̀

Z2̀

Z`2̀

Z2 Z2̀

Z`2̀

Z2

Figure 3. Triangulation of boundary torus of tori(LR). Four triangles for each letter, L or R, come

from ‘small’ boundary triangles in ideal tetrahedron associated to the letter. See figure 3 in [24].

by parameterizing 3N edge parameters by N + 1 variables (Wi, V ) as shown in (2.12).

ϕiϕi−1 Zi Z ′i Z ′′i Ui

LL iπ + ~
2 −Wi Wi −

Wi−1 +Wi+1

2

Wi−1 +Wi+1

2
0

RR iπ + ~
2 −Wi

Wi−1 +Wi+1

2
Wi −

Wi−1 +Wi+1

2
0

LR iπ + ~
2 −Wi

Wi+Wi−1−Wi+1−V −πi
2

Wi−Wi−1+Wi+1+V +πi

2
−Wi

2

RL iπ + ~
2 −Wi

Wi−Wi−1+Wi+1+V +πi

2

Wi+Wi−1−Wi+1−V −πi
2

+
Wi

2

(2.12)

The particular form of the linear combination depends on the ordering of letters in (2.10).

The reparametrization is ‘local’ in the sense that the expressions for (Zi, Z
′
i, Z
′′
i ) involve Wi

and Wi±1 only. Among the remaining N + 1 variables, as was explained below eq. (2.9),

two are identified as ‘longitude’ and ‘meridian’. In (2.12), ` = eV is the longitude variable,

while the meridian variable m = eU is the product of all mi = eUi , U =
∑
Ui. As an

example, tetrahedron decomposition of a mapping torus with ϕ = LR is given in figure 3.

In the case ϕ = LR, it is known that the mapping torus becomes the figure eight knot

complement in S3.

From the figure, the two internal edges are identified as

C1 = Z1 + Z2 + 2Z ′′1 + 2Z ′′2 = 2πi+ ~ ,
C2 = Z1 + Z2 + 2Z ′1 + 2Z ′2 = 2πi+ ~ . (2.13)

Longitudinal (horizontal blue line) and meridian (vertical red line) variables from the figure

are

V = Z ′′2 − Z ′2 , U = Z ′′1 − Z ′2 . (2.14)
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Using (2.12), we will parameterize

Z1 = iπ +
~
2
−W1 , Z ′1 =

W1 + V + iπ

2
, Z ′′1 =

W1 − V − iπ
2

,

Z2 = iπ +
~
2
−W2 , Z ′2 =

W2 − V − iπ
2

, Z ′′2 =
W1 + V + iπ

2
.

In this parametrization, the internal edge conditions (2.13) are automatically satisfied.

From (2.12), the meridian variable U is W1−W2
2 which is the same as the meridian variable

in (2.14) via the above parametrization. But the longitudinal variable V in (2.14) become

V +iπ via the parametrization. The discrepancy iπ is subtle and the factor can be absorbed

by simple redefinition of V in (2.12). As we will see in section 4, however, the variable V

in (2.12) has a more direct meaning in the duality wall theory.

Field theory. We will give a very brief summary of the construction of TM,Π from the

tetrahedron decomposition data for M ; see [6, 7] for details. For each tetrahedron with

a polarization choice Π∆, we take a copy of the 3d theory T∆,Π∆
. For the polarization

Π∆ = ΠZ in which we take (Z,Z ′′) as (position, momentum), the theory (often called

“the tetrahedron theory”) is a free N = 2 chiral theory with a background CS term for

the U(1) global symmetry at CS level −1
2 . The 3d theory TM,ΠM associated a 3-manifold

M = ∪Ni=1∆i/ ∼ and its boundary polarization ΠM can be constructed in three steps.

First, we start with a direct product of N tetrahedron theories,

T{∆i},{ΠZi}
= ⊗Ni=1T∆i,ΠZi

(2.15)

Then, we perform a polarization transformation Π̃ = g ◦ {ΠZi} such that all internal edges

and positions in ΠM become position variables in Π̃. In the field theory, the polarization

transformation corresponds to an Sp(2N,Z) action8 involving the U(1)N global symmetries

in T{∆i},{ΠZi}
.

T{∆i},Π̃ = g ◦ T{∆i},{ΠZi}
. (2.16)

Finally, we impose the internal edges conditions (2.9) by adding the superpotential W =∑
OI which breaks the global ⊗IU(1)I symmetries of T{∆i},Π̃ associated to internal edges

CI . This completes the consturction of TM,Π:

TM,ΠM = T{∆i},Π̃ with superpotentail W =
∑
OI . (2.17)

Applying this general algorithm to the case M = tori(ϕ) using the tetrahedron decompo-

sition data described above, we give a description for the mapping torus theory. We will

denote the mapping torus theory by T∆
tori(ϕ).

3 Quantization of Chern-Simons theory on Riemann surface

In this section, we will explain the classical phase space and its quantization that are rele-

vant to a calculation of Chern-Simons (CS) partition function on a mapping torus/cylinder.

8It generalizes Witten’s SL(2,Z) action [27].
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Most parts of this section are reviews of known results but are included to make the paper

self-contained. More details can be found, e.g., in [15, 23].

For a compact gauge group G, the Chern-Simons action on a 3-manifold M is

ICS =
k

4π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (3.1)

where k is a quantized CS level. This is one of the most famous example of topologi-

cal quantum field theory (TQFT). When M is a mapping torus, the CS theory can be

canonically quantized on Σ1,1 regarding the S1 direction as time. The phase space MG
9

canonically associated to Σ1,1 is [28]

MG(Σ1,1) = {Flat G-connections on Σ1,1 with fixed puncture holonomy P}/ ∼ . (3.2)

where ∼ denotes the gauge equivalence. The conjugacy class of gauge holonomy P around

a puncture is fixed as a boundary condition. The symplectic form ΩG onMG derived from

the CS action is

ΩG =
k

4π

∫
Σ

Tr(δA ∧ δA) . (3.3)

One can geometrically quantize the classical phase space and obtain a Hilbert-space

HG(Σ1,1). Following an axiom of general TQFTs (see, e.g., [29]), the CS partition function

on the mapping cylinder with gauge group G can be computed as

ZΣ1,1×ϕI(xbot, xtop) = 〈xbot|ϕ|xtop〉 , (3.4)

which depends on the boundary conditions
(
xbot, ϕ(xtop)

)
on two boundary Σ1,1’s . The

CS partition function on the mapping torus with gauge group G can be computed as

Ztori(ϕ)(G) = Tr(ϕ) over HG(Σ1,1). (3.5)

Here ϕ is an operator acting on the Hilbert space HG obtained from quantizing a mapping

class group element ϕ which generates a coordinate transformation on MG.

When the gauge group is G = SL(2,C), the CS level becomes complex variables

t = k + is and t̃ = k − is. k should be an integer for consistency of the quantum theory

and unitarity requires s ∈ R or s ∈ iR [30].

ICS =
t

8π

∫
M

Tr

(
A ∧ dA+

2

3
A ∧A ∧A

)
+

t̃

8π

∫
M

Tr

(
Ā ∧ dĀ+

2

3
Ā ∧ Ā ∧ Ā

)
. (3.6)

The induced symplectic form from the CS action is

ΩSL(2,C) =
t

8π

∫
Σ

Tr(δA ∧ δA) +
t̃

8π

∫
Σ

Tr(δĀ ∧ δĀ) . (3.7)

9Since we are mainly focusing on the case Σ = Σ1,1 throughout the paper, we simply denote MG(Σ)

(phase space associated Riemann surface Σ and gauge group G) byMG when Σ = Σ1,1. We also sometimes

omit the subscript G when it is obvious in the context.
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In [7], the superconformal index ITM for the theory TM was claimed to be equivalent to

the SL(2,C) CS partition function on M with t = −t̃ = is ∈ iR.

ITM = ZM (SL(2,C)) , with q := e~ := e
4π
s . (3.8)

Here, q is a fugacity variable in the superconformal index to be explained in section 4.

Using the above map, the symplectic form becomes

ΩSL(2,C) :=
i

2~

∫
Σ

Tr(δA ∧ δA)− i

2~

∫
Σ

Tr(δĀ ∧ δĀ) . (3.9)

3.1 Classical phase space and its coordinates

In this subsection, we will review coordinate systems for the phase space (M,Ω)SL(2,C) on

once-punctured torus Σ1,1 and the action of ϕ ∈ SL(2,Z) on these coordinates. We also

consider a phase space (M,Ω)knot
SL(2,C) which is canonically associated to the cusp boundary

T2 of mapping torus. For mapping cylinder, the boundary phase space is given by, at least

locally, M(Σ1,1)2 ×Mknot.

Loop coordinates. Generally speaking, the moduli space of flat connections on

manifold M with gauge group G is parametrized by holonomy variables up to conjugation.

In other words,

MG(M) = Hom(π1(M), G)/conj. (3.10)

The fundamental group for Σ1,1 is

π1(Σ1,1) = {A,B, P |ABA−1B−1 = P} . (3.11)

Here A,B are two cycles of the torus and P denotes the loop around the puncture. Thus

MSL(2,C)(Σ1,1) is given by

MSL(2,C) = {A,B ∈ SL(2,C)|ABA−1B−1 = P}/conj . (3.12)

Conjugacy class of the holonomy P around the puncture is fixed by the following condition

eigenvalues of P = {`, `−1} . (3.13)

Loop coordinates (W,H,D) on MSL(2,C) are defined as trace of these holonomy variables

W = Tr(A) , H = Tr(B) , D = Tr(AB) . (3.14)

They are not independent and subject to the follwoing constraint:

W 2 +H2 +D2 −WHD + `+ `−1 − 2 = 0 . (3.15)

Anticipating close relations to gauge theory observables, we call the three loop coordinates

Wilson loop (W ), ‘t Hooft loop (H) and dyonic loop (D).10

10(W,H,D) here are the same as (−x,−y,−z) in [15]. See eq. (2.13) and figure 3 of [15].
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Figure 4. Triangulation of once-punctured torus, Σ1,1, represented as (R2 − Z2)/Z2. Each circle

in the figure denotes an image of the puncture in the covering space R2.

Shear coordinates. The shear coordinates (
√
t,
√
t′,
√
t′′) are associated to the three

edges appearing in the ideal triangulation of Σ1,1 depicted in figure 4. Naively, the shear

coordinates represent the partial holonomy eigenvalues along a path crossing each edge.

For more precise description of the shear coordinates, see, e.g., [31, 32]. Following the

description in the references, the holonomy A,B can be expressed in terms of the shear

coordinates as follows,

A(t, t′, t′′) = E(t)VE−1(t′)V−1 =

√tt′ √
tt′√

t′

t
1√
tt′

+
√

t′

t


B(t, t′, t′′) = E(t)V−1E−1(t′′)V =

√ t
t′′ +

√
tt′′
√

t
t′′

1√
tt′′

1√
tt′′

 , (3.16)

where

E(z) :=

(
0 z1/2

−z−1/2 0

)
, V :=

(
1 1

−1 0

)
. (3.17)

The relation ABA−1B−1 = P in (3.12) holds provided that

√
t
√
t′
√
t′′ =

√
−` . (3.18)

This relation states that products of partial holonomies around the three edges give the

square root of holonomy around a puncture. The logarithmic shear variables (T, T ′, T ′′)

are defined as

(eT/2, eT
′/2, eT

′′/2) = (
√
t,
√
t′,
√
t′′) . (3.19)

Note that the matrices (A,B) in eq. (3.16) are invariant under individual shifts of T, T ′, T ′′

by 4πi.11

T ∼ T + 4πi , T ′ ∼ T ′ + 4πi , T ′′ ∼ T ′′ + 4πi . (3.20)

11Under shifts by 2πi, A,B remains invariant up to a sign. Thus for G = PSL(2,C) = SL(2,C)/〈±1〉,
the periodicity for each of (T, T ′, T ′′) is 2πi.
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In the logarithmic variables, the condition (3.18) become

T + T ′ + T ′′ = iπ + V . (3.21)

From this, we see V is also periodic variable with periodicity 4πi. The symplectic

form (3.9) takes a simple form in the shear coordinates.

ΩSL(2,C) = − i

2~
dt

t
∧ dt

′

t′
+

i

2~
dt̄

t̄
∧ dt̄

′

t̄′
= − i

2~
dT ∧ dT ′ + i

2~
dT̄ ∧ dT̄ ′

= (cyclic permutation of T → T ′ → T ′′) . (3.22)

The SL(2,Z) generators act on the shear coordinates as follows.

ϕ
√
t 7→

√
t′ 7→

√
t′′ 7→

S
1√
t

√
t′′

1 + t−1

√
t′(1 + t)

L
1√
t′′

√
t′

1 + t′′−1

√
t(1 + t′′)

R
1√
t′

√
t

1 + t′−1

√
t′′(1 + t′)

(3.23)

Fenchel-Nielson coordinates. We adopt the modified Fenchel-Nielson (FN) coordi-

nates defined in [15]. Classically, the FN coordinates (λ, τ) := (exp Λ, exp T ) and the shear

coordinates are related by

√
t =

i(τ−1/2 − τ1/2)

λ− λ−1
,
√
t′ =

i(λ− λ−1)

λ−1τ1/2 − τ−1/2λ
,
√
t′′ =

i
√
`(λ−1τ1/2 − τ−1/2λ)

τ−1/2 − τ1/2
. (3.24)

The FN coordinates are defined up to Weyl-reflection Z2, whose generator σ acts as

σ : (Λ, T ) → (−Λ,−T ) . (3.25)

Note that the Weyl reflection leaves the shear coordinates invariant in the relation (3.24).

Phase space (M,Ω)knot
SL(2,C). So far we have considered a phase space associated to

the Riemann surface Σ1,1 in the tori(ϕ). There is another important phase space in

the computation of the CS partition function on tori(ϕ) which is associated to the cusp

boundary T2 = ∂(tori(ϕ)). We denote this phase space by Mknot
SL(2,C) :=MSL(2,C)(T2) and

parametrize it by the (logarithmic) holonomy variables (U, V )12 along the two cycles of

T2. The symplectic form Ωknot is given by

Ωknot
SL(2,C) =

1

i~
dU ∧ dV − 1

i~
dŪ ∧ dV̄ . (3.26)

Boundary phase space of mapping cylinder. The boundary is the genus two Rie-

mann surface without puncture, ∂(Σ1,1 ×ϕ I) = Σ2,0, which can be obtained by gluing

punctures in two once-punctured tori. The fundamental group for Σ2,0 is

π1(Σ2,0) = {A1, B1, A2, B2|A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 = 1} . (3.27)

The non-trivial cycles (Ai, Bi)s on Σ2,0 are depicted in figure 5.

12The eigenvalues for the longitudinal holonomy is given by (`, `−1) = (eV , e−V ). On the other hand, for

meridian holonomy, the eigenvalues are (m
1
2 ,m−

1
2 ) = (e

U
2 , e−

U
2 ).
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Figure 5. Generators of π1(Σ2,0).

Thus, by eq. (3.10)

MSL(2,C)(Σ2,0)={A1, B1, A2, B2∈SL(2,C)|A1B1A
−1
1 B−1

1 A2B2A
−1
2 B−1

2 =1}/conj . (3.28)

The corresponding phase spaceM(Σ2,0) can be sliced by a constant P := A1B1A
−1
1 B−1

1 =

(A2B2A
−1
2 B−1

2 )−1 surface. In the slice, the phase space locally looks like a GL(1,C)

bundle of two copies of M(Σ1,1) with the same ` = eV , an eigenvalue of P . The GL(1,C)

fiber direction corresponds to opposite GL(1,C) conjugation action on a representative

elements (A1, B1) and (A2, B2) of the twoM(Σ1,1)’s, where the GL(1,C) ⊂ SL(2,C) is the

stabilizer subgroup of P . Locally, the boundary phase space looks like M(Σ1,1)2 ×Mknot

where Mknot is parameterized by conjugacy class of P (or equivalently V ) and the

GL(1,C) fiber direction. In total, dimC
[
MSL(2,C)

(
∂(Σ1,1 ×ϕ I)

)]
= 6. As is obvious from

the construction ofM
(
∂(Σ1,1 ×ϕ I)

)
, the V variable inM

(
∂(Σ1,1 ×ϕ I)

)
can be identified

with the puncture variable V in M(Σ1,1). Considering the procedure of gluing two

boundary Σ1,1 components in Σ1,1×ϕ I to form a mapping torus Σ1,1×ϕS1, the V variable

can also be identified with the longitudinal variable V in Mknot =M
(
∂(Σ1,1 ×ϕ S1)

)
.13

3.2 A-polynomial

Consider a 3-manifold M with boundary ∂M . Obviously, the moduli space of SL(2,C) flat

connections on M can be thought of as a submanifold of the moduli space on the boundary.

M(M) ⊂M(∂M) . (3.29)

In fact, the submanifold is Lagrangian with respect to the symplectic form (3.3). For a

knot-complement M , the moduli spaceM(M) is (C∗)2/Z2 parametrized by ‘longitude’ and

‘meridian’ variable (`,m) modulo a Weyl-reflection (`,m) ∼ (`−1,m−1). In this case the

Lagrangian submanifold is given by the vanishing locus of the so-called “A-polynomial”,

A(`,m) [33]. Mapping torus is one example of knot-complement. In this section we will

analyze the A-polynomial for mapping torus from two different approaches and show their

equivalence.

13But there is a subtle difference between the two V variables. The V in Mknot is periodic with period

2πi, while the V inM(Σ1,1) has period 4πi. This discrepancy may be due to an additional Z2 quotient on

V during gluing the two Σ1,1’s. The Z2 action could be identified by carefully analyzing how flat connection

moduli space changes during the gluing procedure.

– 15 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
3

From tetrahedron decomposition. In (2.12), we presented a solution to the gluing

conditions for the mapping torus by parametrizing the 3N edge parameters (Zi, Z
′
i, Z
′′
i ) for

the N tetrahedra in terms of N+1 parameters (Wi, V ). The A-polynomial for the mapping

torus can be obtained by imposing additional N non-linear constraints, eZi + e−Z
′
i − 1 = 0,

and eliminating all Wi’s in favor of ` = eV and m =
∏
eUi .

For instance, consider the simplest example, ϕ = LR (ϕ2 = L,ϕ1 = R). From (2.12),

we find (wi := eWi)

z1 = − 1

w1
, z′1 =

√
w1(−`) , z′′1 =

√
w1

(−`)
,

z2 = − 1

w2
, z′2 =

√
w2

(−`)
, z′′2 =

√
w2(−`) , m =

√
w2

w1
. (3.30)

For the boundary phase spaces of the two tetrahedra, the equations for the Lagrangian

submanifolds (z′ + (z′′)−1 − 1 = 0) are

√
w1(−`) +

√
(−`)
w1
− 1 = 0 ,

√
w2

(−`)
+

1√
w2(−`)

− 1 = 0 . (3.31)

Eliminating w1 and w2 in favor of ` and m, we obtain the A-polynomial for the mapping

torus with ϕ = LR:

A(`,m) = `+ `−1 − (m−2 −m−1 − 2−m+m2) = 0 , (3.32)

which coincide with A-polynomial for figure eight knot complement; see [33].

From Lagrangian submanifold for mapping cylinder. The Lagrangian subman-

ifold for a mapping torus is a ‘diagonal’ subspace of a Lagrangian submanifold for the

corresponding mapping cylinder [15]. As explained above, the boundary phase space for

the mapping cylinder contains a product of two phase spaces associated with two Σ1,1’s

at the two ends of the interval I,

Mbot(Σ1,1)×Mtop(Σ1,1) ⊂M
(
∂(Σ1,1 ×ϕ I)

)
, (3.33)

where we labelled the two Riemann surface at the two ends of the interval I by ‘top’

and ‘bot’(bottom). The phase space Mbot,top can be parametrized by two copies of shear

coordinates (t, t′, t′′)bot,top with common `. The Lagrangian submanifold Lϕ for mapping

cylinder is [15]

Lϕ = {ttop−ϕ∗(t)bot = 0, t′top−ϕ∗(t′)bot = 0, t′′top−ϕ∗(t′′)bot = 0} ⊂ Mbot×Mtop . (3.34)

Here ϕ∗(O) is a coordinate for MSL(2,C) which is related to O by a mapping class

group element ϕ ∈ SL(2,Z). For example, ϕ∗(t) = 1/t′′ when ϕ = L as one can see

in (3.23). Among three equations between braces, only two equations are independent

and the remaining one is automatically satisfied due to the relation tt′t′′ = −`. Then, the

Lagrangian submanifold for mapping torus is

M(tori(ϕ)) = L1 ∩ Lϕ . (3.35)

– 16 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
3

L1 denotes a diagonal subspace of Mbot × Mtop which can be interpreted as the

Langrangian submanifold for mapping cylinder with ϕ = 1; see eq. (3.34).

However, the above construction for the Langrangian submanifold of tori(ϕ) is in-

complete since all the algebraic equations depend on ` but not on m. We need an ad-

ditional algebraic relation involving m. As we saw above, U = logm is conjugate to

V = log `. Anticipating the consequences of quantization, which promotes m to a shift

operator (m : `→ q`), we propose the following prescription for m; see (3.65).

m = 1 , for ϕ = R

m =

√
ttop√
tbot

, for ϕ = L . (3.36)

Consider general ϕ which can be written as product of L and R,

ϕ = ϕN · · ·ϕ1 , ϕi = L or R . (3.37)

For each letter ϕi, we assign a mapping cylinder Σ1,1 ×ϕi I whose boundary phase space

associated to two boundary Σ1,1’s is parameterized by (ti, t
′
i, t
′′
i )bot,top. To glue Σbot

1,1 of i-th

mapping cylinder with Σtop
1,1 of i+ 1-th mapping cylinder, we parametrize

(ti, t
′
i, t
′′
i )bot = (ti+1, t

′
i+1, t

′′
i+1)top := (ti+1, t

′
i+1, t

′′
i+1) . (3.38)

i is a cyclic parameter running from 1 to N , N + 1 ∼ 1. In the parametrization, the

Lagrangian in (3.34) becomes

Lϕi(t∗i , t∗i+1) =

 {
√
ti − 1√

t′′i+1

= 0,
√
t′′i −

√
ti+1(1 + t′′i+1) = 0} , ϕi = L

{
√
ti − 1√

t′i+1

= 0,
√
t′i −
√
ti+1/(1 + 1/t′i+1) = 0} , ϕi = R

(3.39)

Equation involving m for mapping cylinder Σ1,1 ×ϕ I is

m =
N∏
i=1

mi , where

mi =

 1 , ϕi = R
√
ti√
ti+1

, ϕi = L
(3.40)

Since m act as a shift operator, m for ϕN . . . ϕ1 is product of mi for each ϕi. Then, the

A-polynomial for tori(ϕ) is given by solving all equations in (3.39), (3.40) in terms of (`,m).

Equivalence of two approaches. In the above, we explained two ways of calculating

the A-polynomial for the mapping torus. The equivalence of the two approaches can be

explicitly shown by i) finding a map between (wi) variables in the first approach and

(t∗i ) variables in the second approach and ii) showing that the equations (3.39), (3.40)

in the second approach are either trivially satisfied or mapped into equations in the first
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approach. The map we found is

ϕi−1 ti t′i t′′i

L
1

wi
(−`) wi

wi−1
wi−1

R
1

wi
wi−1 (−`) wi

wi−1

(3.41)

From the fact that a single flip (ϕi−1 =L or R) generate a tetrahedron whose edges

are originated from edges in a triangulation of Σ1,1, identification of 1
wi

(which is −zi)
with ti is understandable. For ϕi = L, the map (3.41) ensures that the transformation

rule
√
ti = 1/

√
t′′i+1 in (3.39) is trivially satisfied. The other transformation rule,√

t′′i =
√
ti+1(1 + t′′i+1), is equivalent to the constraint z′′i + (zi)

−1 − 1 = 0. Similarly,

for ϕi = R, the transformation rule
√
ti = 1/

√
t′i+1 in (3.39) is trivially satisfied, while√

t′i =
√
ti+1/(1 + 1/t′i+1) is equivalent to z′′i + (zi)

−1 − 1 = 0. Finally, we note that the

meridian variable m can be written in terms of the shear coordinates as

m =

∏
ϕiϕi−1=RL

√
wi∏

ϕiϕi−1=LR

√
wi

=
∏
ϕi=L

√
wi+1√
wi

=
∏
ϕi=L

√
ti√
ti+1

, (3.42)

which is the same as the last equation in (3.40).

Thus we have proved the classical equivalence of the two approaches using the A-

polynomial. This classical equivalence was already observed in [14]. In section 4.4.1, we

will prove the equivalence at the quantum level by computing the SL(2,C) CS partition

function from the two approaches and confirming an exact agreement. The quantized

(`,m) variables, denoted as (l,m), act as difference operators on the CS partition function.

The quantum A-polynomial A(l,m; q) annihilates the CS partition function. Taking the

classical limit, q → 1, we obtain the A-polynomial, A(`,m) discussed in this section.

3.3 Quantization for G = SL(2,C)

In this section, we will quantize the classical phase spaces (M,Ω)SL(2,C) and (M,Ω)knot
SL(2,C).

By quantization of the classical phase space (M,Ω), we mean finding the following maps:

Classical phase space M → Hilbert-space H
Observables (functions of coordinate xi) O(xi) → Operators O(xi) acting on H
Poisson bracket {O1, O2} = O3 → Commutation relation [O1,O2] = O3 . (3.43)

The two main ingredients of quantization are the Hilbert-space H and operators {O}
acting on it. In this section, we will focus on the latter. Operators and their commutation

relations can be considered before constructing a concrete Hilbert-space. The construction

of the Hilbert-space will be given in section 4 .
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Extended shear operators. After quantization, the shear coordinates T, T ′, T ′′ (and

its conjugations) become operators

(T, T ′, T ′′)→ (T+,T
′
+,T

′′
+) ,

(T̄ , T̄ ′, T̄ ′′)→ (T−,T
′
−,T

′′
−) . (3.44)

The commutation relations for these shear operators follow from the symplectic form (3.22),

[T±,T
′
±] = [T′±,T

′′
±] = [T′′±,T±] = ±2~ . (3.45)

[T∗±,T
∗∗
∓ ] = 0 , for any ∗, ∗ ∗ . (3.46)

The exponentiated operators (
√
t = e

1
2
T,
√
t′ = e

1
2
T′ ,
√
t′′ = e

1
2
T′′) satisfy

√
t
√
t′ = q

1
2

√
t′
√
t ,
√
t′
√
t′′ = q

1
2

√
t′′
√
t′ ,

√
t′′
√
t′ = q

1
2

√
t′
√
t′′ . (3.47)

Recall that the quantum parameter q is defined as q := e~. From here on, we will ignore

the subscript (±) and all expressions will be for (+) operators unless otherwise stated. The

same expressions hold for the (−) operators upon replacing q by q−1.

Quantizing (3.18), shear operators are subject to the following central constraint.

√
t
√
t′
√
t′′ = q

1
4

√
−` . (3.48)

In the logarithmic shear operators, the constraint becomes

T + T′ + T′′ = V + iπ . (3.49)

In the literature, the variable V is usually regarded as a central charge since they are

focusing on the Riemann surface Σ1,1 itself where V is a fixed parameter. But, when

considering mapping cylinder or torus, we need to elevate V to a quantum operator V and

introduce its conjugate operator U satisfying

[U,V] = ~ , (3.50)

since V appears as a dynamical variable (a coordinate for the boundary phase space).

Then, the central constraint is promoted to an operator relation

T + T′ + T′′ = V + iπ . (3.51)

Since V originates from the central constraint, it is natural to assume that

[V,T] = [V,T′] = [V,T′′] = 0 . (3.52)

We cannot require that U commute with all three shear coordinates; that would contradict

with (3.50) and (3.51). The best we can do is to demand that U commutes with two of

the shear coordinates and to determine the last commutator with (3.50) and (3.51). For

instance,

[U,T] = [U,T′] = 0 =⇒ [U,T′′] = ~ . (3.53)
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Alternatively, we may choose

[U′,T′] = [U′,T′′] = 0 =⇒ [U′,T] = ~ ,
[U′′,T′′] = [U′′,T] = 0 =⇒ [U′′,T′] = ~ . (3.54)

The three choices are related by simple canonical transformations,

U′ = U− 1

2
T′ , U′′ = U +

1

2
T . (3.55)

Among these choices, U (instead of U′,U′′) is identified as quantum counterpart of the

classical ‘meridian‘ variables U in Mknot. V is identified as a quantum counterpart of

‘longitudinal’ variable V in Mknot.

Now, we can give a more precise meaning to the expression in (3.4), (3.5). If we consider

V as a fixed parameter, the trace of ϕ will be a function on the parameter, Tr(ϕ)(V ). On

the other hand, the CS partition function Ztori should be understood as a wave-function

in the Hilbert space Hknot associated to a choice of polarization Π = (X ,P),

Ztori(ϕ)(x) = Π〈X = x|Ztori(ϕ)〉 , |Ztori(ϕ)〉 ∈ Hknot . (3.56)

Here Π〈X = x| denotes a position eigenstate in Π polarization. A more precise statement

of (3.5) is that the function Tr(ϕ)(V ) is a wave-function in the polarization Π = (V,U):

Tr(ϕ)(V ) = Π〈X = V |Ztori(ϕ)〉 , (3.57)

Using the quantum operator V, the above can be written as (in the choice Π = (V,U))

Tr(ϕ)(V ) = Π〈X = V |Tr(ϕ)(V)|P = 0〉Π
= Π〈X = V |Tr(ϕ)(V)|U = 0〉 . (3.58)

Thus, we find the following polarization-independent expression,

|Ztori(ϕ)〉 = Tr(ϕ)|U = 0〉 ∈ Hknot . (3.59)

Similarly, for mapping cylinder, the precise meaning of (3.4) is

|ZΣ1,1×ϕI〉 = ϕ|U = 0〉 ∈ H(Σ1,1)⊗H(Σ1,1)⊗Hknot . (3.60)

Recall that the boundary phase space of mapping cylinder is locally M(Σ1,1)2 ×Mknot

and quantization of the phase space gives a Hilbert-space H(Σ1,1) ⊗ H(Σ1,1) ⊗ Hknot. H
denote a dual Hilbert-space and the structure H⊗H is due to the two oppositely oriented

boundary Riemann surfaces.

Since (
√
t,
√
t′,
√
t′′, `) and (

√
t̄,
√
t̄′,
√
t̄′′, ¯̀) are related by complex conjugation, it is

natural to define the adjoint of their quantum counterparts as follows

(
√
t,
√
t′,
√
t′′, l := eV)†± = (

√
t,
√
t′,
√
t′′, l)∓ . (3.61)
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SL(2,Z) action. Under the action of the generators of SL(2,Z) in (2.11), the transfor-

mation rule for the quantum shear coordinates can be summarized as follows.

ϕ
√
t 7→

√
t′ 7→

√
t′′ 7→

S
1√
t

√
t′′

1

1 + q
1
2 t−1

√
t′(1 + q

1
2 t)

L
1√
t′′

√
t′

1

1 + q
1
2 t′′−1

√
t(1 + q

1
2 t′′)

R
1√
t′

√
t

1

1 + q
1
2 t′−1

√
t′′(1 + q

1
2 t′)

(3.62)

After quantization, the SL(2,Z) transformation ϕ becomes an operator acting on Hilbert-

space. Operator ϕ can be expressed in terms of (T,T′,T′′)±. For ϕ = L and R, the operator

is determined by the following conditions

L ·
√
t± =

1√
t′′±
· L , L ·

√
t′′± −

√
t±(1 + q±1/2t′′±) · L = 0 ,

R ·
√
t± =

1√
t′±
· R , R ·

√
t′′± −

√
t′′±(1 + q±1/2t′±) · R = 0 . (3.63)

The solution for the operator equation can be given as follows

L = L+L− =

( ∞∏
r=1

1 + qr−
1
2 (t′′+)−1

1 + qr−
1
2 (t′′−)−1

)
exp

[
− 1

4~
(
(T′′+ + T+)2 − (T′′− + T−)2

)]
,

R = R+R− =

( ∞∏
r=1

1 + qr−
1
2 t′−

1 + qr−
1
2 t′+

)
exp

[
1

4~
(
(T′+ + T+)2 − (T′− + T−)2

)]
. (3.64)

From the solution, we find that (m := eU)

m± · L ·m−1
± =

1
√
t±
· L ·
√
t±

m± · R ·m−1
± = R . (3.65)

We use that m± · t′′± · m−1
± = q±1t′′±. This give a derivation of (3.36). Note that these

operators are all unitary; see (3.61). Since all SL(2,Z) elements can be constructed by

multiplying L,R and their inverses, we can easily see that all ϕ ∈ SL(2,Z) are unitary

operators. As we will see in section 4, this unitarity is closely related to SL(2,Z) duality

invariance of the supeconformal index for 4d N = 2∗ theory.

Shear vs Fenchel-Nielson. Quantization of the FN coordinates can be summarized as

τ̂ = eT̂ , λ̂ = eΛ̂ , [T̂ , Λ̂] = ~ , τ̂ λ̂ = qλ̂τ̂ . (3.66)

The relation to quantum shear coordinates was given in [15].

√
t =

i

λ̂− λ̂−1
(τ̂−

1
2 − τ̂

1
2 ) ,
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√
t′ =

i

q−
1
4 λ̂−1τ̂

1
2 − q

1
4 τ̂−

1
2 λ̂

(λ̂− λ̂−1) ,

√
t′′ =

iq
1
4 l

1
2

τ̂−
1
2 − τ̂

1
2

(q−
1
4 λ̂−1τ̂

1
2 − q

1
4 τ̂−

1
2 λ̂) . (3.67)

Loop vs Fenchel-Nielson. Quantizing the loop coordinates (W,H,D) yields [15]

W = λ̂+ λ̂−1 ,

H =
q−

1
4 l

1
2 λ̂− q

1
4 l−

1
2 λ̂−1

λ̂− λ̂−1
τ̂−

1
2 +

q
1
4 l−

1
2 λ̂− q−

1
4 l

1
2 λ̂−1

λ̂− λ̂−1
τ̂

1
2 .

D =
q−

1
4 l

1
2 λ̂− q

1
4 l−

1
2 λ̂−1

λ̂− λ̂−1
q−

1
4 λ̂τ̂−

1
2 +

q
1
4 l−

1
2 λ̂− q−

1
4 l

1
2 λ̂−1

λ̂− λ̂−1
q−

1
4 λ̂−1τ̂

1
2 . (3.68)

4 Superconformal index/SL(2,C) CS partition function

The superconformal index for 3d SCFTs with global symmetry U(1)N is defined as [34–37]

I(q,mi, ui) = Tr(−1)F q
1
2
R+j3

N∏
i=1

uHii (4.1)

where the trace is taken over Hilbert-space H{mi} on S2, where background monopole

fluxes {mi} coupled to global symmetries U(1)N are turned on. R and j3 denote U(1)

R-charge and spin on S2 respectively. {ui} are fugacity variables for the U(1)N whose

generators are denoted by {Hi}. It is often useful to express the index in a charge basis

(mi, ei) instead of (mi, ui),

I(mi, ui) =
∑
ei

I(mi, ei)u
ei
i . (4.2)

In the charge basis, the Sp(2N,Z) transformation [27] on 3d SCFTs with U(1)N global

symmetry acts linearly. For two 3d SCFTs, T and g · T , related by g ∈ Sp(2N,Z), the

generalized indices for the two theories are related as [7]

Ig·T (m, e) = IT (g−1 · (m, e)) . (4.3)

In section 2, we gave two alternative descriptions for mapping torus theories which we

denote by T
T[SU(2)]
tori(ϕ) and T∆

tori(ϕ). The two descriptions give seemingly different expressions

for the index. We will denote the index for T
T[SU(2)]
tori(ϕ) and T∆

tori(ϕ) by I
T[SU(2)]
tori(ϕ) and I∆

tori(ϕ),

respectively. By proving

I
T[SU(2)]
tori(ϕ) = I∆

tori(ϕ) (4.4)

for general ϕ with |Tr(ϕ)| > 2, we will confirm the equivalence of two descriptions at the

quantum level. The 3d-3d correspondence [7] predicts that the index is the same as the

SL(2,C) CS partition function on the mapping torus, Ztori(ϕ)(SL(2,C)).

Itori(ϕ) = Ztori(ϕ)(SL(2,C)) . (4.5)
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There are also two independent ways of calculating Ztori(ϕ)(SL(2,C)) depending on the

way of viewing the 3-manifold tori(ϕ). Viewing tori(ϕ) as a 3-manifold obtained by gluing

tetrahedra, the CS partition can be calculated using a state integral model developed

in [23]. Let’s denote the CS partition function obtained in this way by Z∆
tori(ϕ)(SL(2,C)).

It was shown in [7] that the SL(2,C) CS partition function on M obtained from the state

integral model is always the same as superconformal index for TM theory obtained from

gluing tetrahedron theories, T∆’s. Thus, it is already proven that

Z∆
tori(ϕ)(SL(2,C)) = I∆

tori(ϕ) . (4.6)

Another way of calculating the SL(2,C) CS partition function is using the canonical quan-

tization of the CS theory on Σ1,1 viewing the S1 direction in tori(ϕ) as a time direction.

The partition function obtained in this approach will be denoted as Z
Tr(ϕ)
tori(ϕ)(SL(2,C)). As

mentioned in section 3,

Z
Tr(ϕ)
tori(ϕ)(SL(2,C)) = Tr(ϕ) on HSL(2,C) . (4.7)

We will show that two approaches are equivalent

Z
Tr(ϕ)
tori(ϕ)(SL(2,C)) = Z∆

tori(ϕ)(SL(2,C)) , (4.8)

by expressing the trace in (4.7) using a basis of HSL(2,C) called ‘SR basis’. On the other

hand, by expressing the trace in a basis called ‘FN basis’, we will show that

Z
Tr(ϕ)
tori(ϕ)(SL(2,C)) = I

T[SU(2)]
tori(ϕ) . (4.9)

Since the trace is independent of basis choice, the proof of (4.4) now follows from the

known proof of (4.6). Further, by showing that the matrix element of ϕ in the FN basis is

the same as the superconformal index for duality wall theory T [SU(2), ϕ] we also confirm

the 3d-3d dictionary (3.8) for mapping cylinder.

4.1 Duality wall theory: I
T [SU(2)]
tori(ϕ)

In this section, we will calculate the superconformal indices for duality wall theories

T [SU(2), ϕ] and mapping torus theories T
T [SU(2)]
tori(ϕ) = Tr(T [SU(2), ϕ]). First, consider the

case ϕ = S. The T [SU(2)] ≡ T [SU(2), S] theory is explained in detail in section 2.1

and summarized in table 1. The generalized superconformal index for the theory can be

obtained by the using general prescriptions in [34, 35, 37],14

Iϕ=S(mb, ub,mt, ut;mη, uη) =
∑

ms∈Z+mb+
1
2
mη

∮
dus

2πius
I(0)I(1) . (4.10)

Our notations for the fugacity and flux variables appearing in the index are summarized

in table 2.

14Throughout this paper, the Cantor integral
∮

du
2πiu

I(u) will be interpreted as picking up the coefficient

of u0 by regarding I(u) as an element in a ring Z[u1/p, u−1/p] with a positive integer p.
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q1 q2 q3 q4 φ0 fugacity flux

U(1)gauge 1 1 − 1 − 1 0 us ms

U(1)bot 1 − 1 1 − 1 0 ub mb

U(1)punct
1
2

1
2

1
2

1
2 − 1 uη mη

U(1)top 0 0 0 0 0 ut mt

Table 2. Fugacity, background monopole flux variables for symmetries in T [SU(2)] theory.

I(1) is the Plethystic exponential (PE) of the single letter indices from chiral-multiplets

I(1) =PE

[ ∑
ε1,ε2=±1

(uε1b u
1
2
η uε2s q

1/4 − u−ε1b u
− 1

2
η u−ε2s q3/4)q

1
2 |ε1mb+

1
2mη+ε2ms|

1− q
+
q

1
2+

1
2 |mη|

1− q
(u−1η −uη)

]
,

=

∞∏
l=0

( ∏
ε1,ε2=±1

(1− (uε1b u
1
2
η uε2s )−1q

3
4+

1
2 |ε1mb+

1
2mη+ε2ms|+l)

(1− (uε1b u
1
2
η u

ε2
s )q

1
4+

1
2 |ε1mb+

1
2mη+ε2ms|+l)

)
(1− uηq

1
2+

1
2 |mη|+l)

(1− u−1η q
1
2+

1
2 |mη|+l)

,

where

PE[f(q, us, uη, ub)] = exp

[ ∞∑
n=1

1

n
f(qn, uns , u

n
η , u

n
b )

]
. (4.11)

The above index can be rewritten as in (B.1) which is free from absolute values of magnetic

fluxes. We assign conformal dimension ∆ for chirals as follows

∆(qi) =
1

2
, ∆(φ0) = 1 , (4.12)

which is canonical for 3d N = 4 SCFTs.15 I(0) collects all contributions from classical

action and zero-point shifts

I(0) = u2ms
t u2mt

s qε0u
Fη,0
η u

Fb,0
b u

Fs,0
s (−1)sgn .

The u2s
t u

2mt
s term originates from the BF-term which couples background gauge field for

U(1)top to the field strength of U(1)gauge. The zero-point contributions, ε0, Fη,0, Fb,0, Fs,0
are given by [35]

ε0 :=
1

8

∑
ε1,ε2=±

(∣∣∣∣ε1mb +
1

2
mη + ε2ms

∣∣∣∣) ,

Fη,0 :=
1

2
|mη| −

1

4

∑
ε1,ε2=±

(∣∣∣∣ε1mb +
1

2
mη + ε2ms

∣∣∣∣) ,

Fb,0 := −1

2

∑
ε1,ε2=±

ε1

(∣∣∣∣ε1mb +
1

2
mη + ε2ms

∣∣∣∣) ,

Fs,0 := −1

2

∑
ε1,ε2=±

ε2

(∣∣∣∣ε1mb +
1

2
mη + ε2ms

∣∣∣∣) .

15However, general R charge assignments can be easily incorporated.
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The subtle sign factor

sgn := 2mb +
1

2
(mη + |mη|) +

∑
ε1,ε2=±

1

2

(∣∣∣∣ε1mb +
1

2
mη + ε2ms

∣∣∣∣) , (4.13)

is chosen for the index to satisfy the so-called self-mirror property [13, 17, 38].

Iϕ=S(mb, ub,mt, ut;mη, uη) = Iϕ=S(mt, ut,mb, ub;−mη, u
−1
η ) . (4.14)

This sign factor (or more generally phase factor) always appears in the computation of

3d generalized index and lens space partition function [39]. To the best our knowledge,

a systematic method for fixing the subtlety has not been developed yet, though it has

survived numerous tests.

In our normalization, the background monopole charges (mb,mt) are half-integers and

(mη) is an integer.

2mb, 2mt,mη ∈ Z .

Note that the summation range, ms ∈ Z + mb + 1
2mη, is to satisfy the following Dirac

quantization conditions,

±mb +
1

2
mη ±ms ∈ Z . (4.15)

Multiplying ϕ ∈ SL(2,Z) by T k amounts to turning on a Chern-Simons term with level

k for the background gauge field of U(1)bot or U(1)top. It affects the index as follows

ITk·ϕ = (ub)
2kmbIϕ , Iϕ·Tk = (ut)

2kmtIϕ . (4.16)

Here the phase factors (ub)
2kmb and (ut)

2kmt come from the classical action for the added

CS term. The theory T [SU(2), ϕ2 · ϕ1] is obtained by gauging the diagonal subgroup of

SU(2)top from T [SU(2), ϕ2] and SU(2)bot from T [SU(2), ϕ1]. Accordingly, the index is glued

by � operation defined below under the SL(2,Z) multiplication

Iϕ2·ϕ1(mb, ub,mt, ut;mη, uη) = (Iϕ2 � Iϕ1)(mb, ub,mt, ut;mη, uη)

:=
∑
n∈ 1

2
Z

∮
[dv]nIϕ2(mb, ub, n, v;mη, uη)Iϕ1(n, v,mt, ut;mη, uη) . (4.17)

The integration measure [dv]m comes from the index for a N = 2 vector multiplet for the

diagonal subgroup of the two SU(2)’s,∮
[dv]n :=

∮
dv

2πiv
∆(n, v) ,

∆(n, v) :=
1

2
(q

n
2 v − q−

n
2 v−1)(q

n
2 v−1 − q−

n
2 v) . (4.18)

In terms of the charge basis for U(1)punct, the operation � is given by

(Iϕ2 � Iϕ1)(mb, ub,mt, ut;mη, eη) (4.19)

=
∑

eη,1eη,2

∑
n

∮
[dv]nδ

(
eη−

2∑
k=1

eη,k

)
Iϕ2(mb, ub, n, v;mη, eη,1)Iϕ1(n, v,mt, ut;mη, eη,2) .
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Using the � operation, one can write

ITk1 ·ϕ·Tk2 =

k1︷ ︸︸ ︷
IT � . . . IT �Iϕ �

k2︷ ︸︸ ︷
IT � . . . IT , where

Iϕ=T (mb, ub,mt, ut;mη, uη) = u2mb
b

δmb,mtδ(ub − ut)
∆(mb, ub)

. (4.20)

Using prescriptions in eq. (4.10), (4.16) and (4.19), one can calculate the index Iϕ for

general T [SU(2), ϕ]. The SL(2,Z) structure is encoded in the index. We find that

IS2·ϕ = (−1)mηIϕ , I(ST )3·ϕ = u
1
2
mη

η Iϕ , (4.21)

by calculating the index in q-series expansions. In appendix B, these SL(2,Z) structure

will be analyzed by studying classical difference equations for Iϕ. The factor u
1
2
mη

η can be

interpreted as a CS term for background gauge field coupled to U(1)punct.

Finally, the index I
T [SU(2)]
tori(ϕ) (mη, uη) for the mapping torus theory Tr(T [SU(2), ϕ]) is

given by

I
T[SU(2)]
tori(ϕ) (mη, uη) =

∑
n∈ 1

2
Z

∮
[du]nIϕ(m,u,m, u;mη, uη) . (4.22)

For ϕ = S the mapping torus index becomes extremely simple (checked in q expansion)

I
T[SU(2)]
tori(S) (mη, uη) =

{
(−1)

1
2
mη , mη ∈ 2Z

0 , mη ∈ 2Z + 1
(4.23)

This may imply that the corresponding Ttori(S) theory is a topological theory. See [40, 41] for

related discussion. The mapping torus index is also simple for ϕ = R−1L = −T−1ST−1S,

I
T[SU(2)]
tori(R−1L)

(mη, eη) = (−1)eηδmη ,−3eη . (4.24)

Actually the mapping torus with ϕ = R−1L is trefoil knot complement in S3 [26] and

the above index is identical to the corresponding index in [7] computed by gluing two

tetrahedron indices, up to a polarization difference (X ,P)here = (−P + πi,X )there. Refer

to section 4.2 for how polarization change affects the index. For ϕ = LR = ST−1S−1T ,

the mapping torus index is

I
T[SU(2)]
tori(LR) (mη = 0, uη) = 1− 2q + 2

(
uη +

1

uη

)
q3/2 − 3q2 +

(
2 + u2

η +
1

u2
η

)
q3 + · · · ,

I
T[SU(2)]
tori(LR) (mη = ±1, uη) = −

(
2− uη −

1

uη

)
q −

(
2− uη −

1

uη

)
q2 + · · · ,

I
T[SU(2)]
tori(LR) (mη = ±2, uη) =

(
uη +

1

uη

)
q1/2 − q − q2 −

(
uη +

1

uη

)
q5/2 · · · ,

I
T[SU(2)]
tori(LR) (mη = ±3, uη) = −

(
uη +

1

uη
− u2

η −
1

u2
η

)
q2 + · · · ,

I
T[SU(2)]
tori(LR) (mη = ±4, uη) =

(
u2
η +

1

u2
η

)
q −

(
uη +

1

uη

)
q5/2 + q3 + · · · . (4.25)
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Note that only integer powers of uη appear in the mapping torus indices. This is true for

any mapping torus index with ϕ being products of L and R.16 On the other hand, for

mapping cylinder indices, half-integer powers of uη may appear. For example, the index

for T [SU(2), ϕ = LR] is

ub + ubu
2
t

utu
1
2
η

q
1
4 +

ub(1 + u2
t )(1 + u4

t )

u3
tu

3
2
η

q
3
4 + . . . (4.26)

when (mb,mt,mη) = (1
2 , 0, 0). The disappearance of u

Z+ 1
2

η in mapping torus index is

closely related to the fact that periodicity of longitudinal variable V become half after

making mapping torus from mapping cylinder, as mentioned in the last paragraph in

section 3.1. We will come back to this point in section 4.3 during the construction of Hknot.

4.2 Tetrahedron decomposition: I∆
tori(ϕ)

In this section, we will explain how to calculate the superconformal index I∆
tori(ϕ) for

the theory T∆
tori(ϕ). In section 2, we briefly reviewed the construction of TM from the

tetrahedron decomposition data of M . Using this construction and well-developed

algorithms [34, 35, 37] for calculating the superconformal indices for general 3d theories,

we can calculate the superconformal indices for TM . The procedure of calculating indices

from tetrahedron gluing is well explained in [7] and the procedure is shown to be equivalent

to the procedure of calculating SL(2,C) CS partition function using the state integral

model developed [23]. First, we will review the procedure of calculating the indices for

general TM from the tetrahedron gluing data for M . Then, we will apply the general

procedure to M = tori(ϕ) with |Tr(ϕ)| > 2.

Suppose that M can be decomposed into N tetrahedra {∆i} (i = 1, . . . , N) with

proper gluing conditions ∼, M = (
⋃
i ∆i)/ ∼. For each tetrahedron ∆i we assign a “wave-

function” (index) IΠi
∆ (mi, ei) which depends on the choice of polarization Πi = (Xi,Pi) of

the tetrahedron’s boundary phase-space M(∂∆i). Recall that the phase space M(∂∆) is

a 2 dimensional space represented by three edge parameters Z,Z ′, Z ′′ with the constraint.

Z + Z ′ + Z ′′ = πi+
~
2
. (4.27)

The symplectic form on the phase space is

1

i~
dZ ∧ dZ ′ − 1

i~
dZ̄ ∧ dZ̄ ′ = (cyclic permutation in Z,Z ′, Z ′′) . (4.28)

For the choice of polarization Π = ΠZ := (Z,Z ′′), the index is given as [7] (see also [42])

IΠZ
∆ (m, ζ) =

∑
e∈Z
IΠZ

∆ (m, e)ζe =

∞∏
r=0

1− qr−
m
2

+1ζ−1

1− qr−
m
2 ζ

. (4.29)

16Due to the second property in (4.21), we need to specify decomposition of L,R in terms of S, T for

the index computation. If not, the index is defined only up to an overall factor u
1
2
mηZ

η . Throughout this

paper we use the simplest decomposition, R = T (instead of T (ST )3n with n 6= 0) and L = S−1T−1S, in

the index computation. In this choice, I
T [SU(2)]

tori(ϕ) and I∆
tori(ϕ) are the same without any polarization change

as we will see in section 4.4.2.
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The index can be understood as an element of Z[ζ, ζ−1]((q
1
2 )) by expanding the index in

q. An element of Z[ζ, ζ−1]((q
1
2 )) contains only finitely many negative powers of q and each

coefficient is written as Laurent series in ζ . In the infinite product, there is an ambiguity

when r = m where a factor 1
1−ζ appear. We formally interpret the factor as

1

1− ζ
=
∑
n

ζn ∈ Z[ζ, ζ−1] . (4.30)

The domain of (m, e) in the tetrahedron index IΠZ
∆ (m, e) is

m, e ∈ Z . (4.31)

For later use, we will extend the range of the function I∆ to {(m, e) ∈ Q+ iπQ+ ~
2Q}. For

(m, e) ∈ Q, we define the function as

I∆(m, e) :=

{
IΠZ

∆ (m, e) , (m, e) ∈ Z2

0 , (m, e) ∈ Q2 − Z2
(4.32)

For general (m+α, e+β) with (m, e) ∈ Q and (α, β) ∈ iπQ+ ~
2Q, the function is determined

by (4.32) and the following additional relation

I∆

(
m+ α, e+ β

)
:= eeα−mβI∆(m, e) . (4.33)

Under the polarization change from Π = (X ,P) to Π̃ = (X̃ , P̃), related by the following

SL(2,Q) and affine shifts17

(
X̃
P̃

)
= g ·

(
X
P

)
+ (πi+

~
2

)

(
αm

αe

)
, (4.34)

the tetrahedron index transforms as [7]

IΠ̃
∆(m, e) = (−q1/2)mαe−eαmIΠ

∆(g−1 · (m, e)) . (4.35)

Under the SL(2,Q) transformation, the domain of charge (m, e) also should be transformed.

The domain in the transformed polarization Π̃ is determined by demanding g−1 ·(m, e) is in

an allowed domain in the original polarization Π. The transformation rule can be written as

IΠ̃
∆(m̃, ẽ) = IΠ

∆(m, e) ,

(
m̃

ẽ

)
= g ·

(
m

e

)
+ (πi+

~
2

)

(
αm

αe

)
. (4.36)

Shifts by a linear combination of iπ and ~
2 in the arguments of the function I∆ is defined

in eq. (4.35). Comparing (4.34) with (4.36), we may identify

(m, e) ' (X ,P) , (4.37)

17In [7], the SL(2,Z) polarization change in CS theory on a tetrahedron ∆ is identified with Witten’s

SL(2,Z) action on the tetrahedron theory T∆. Witten’s SL(2,Z) action can be extended to SL(2,Q) by

including charge rescaling of U(1) global symmetry.
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as far as transformation rules under polarization changes are concerned. Three choices of

polarization, ΠZ = (Z,Z ′′),ΠZ′ = (Z ′, Z) and ΠZ′′ = (Z ′′, Z ′) of a single tetrahedron are

related to one another by discrete symmetries of tetrahedron. Demanding the conditions

IΠZ
∆ = IΠZ′

∆ = IΠZ′′
∆ , we obtain the following triality relations on I∆:

I∆(m, e) = (−q1/2)−eI∆(e,−e−m) = (−q1/2)mI∆(−e−m,m) . (4.38)

Another useful identity for the tetrahedron index is

I∆(m, e) = I∆(−e,−m) . (4.39)

The above identities on I∆(m, e) are valid only when (m, e) ∈ Z2.

The gluing conditions for M = (
⋃
i ∆i)/ ∼ can be specified by expressing linearly

independent internal edges CI (I = 1, . . . , k ≤ N − 1) in terms of linear combination (and

shifts) of Xi,Pi variables.

CI =
N∑
j=1

(cxIjXj + cpIjPj) + aI = 2πi+ ~ with coefficients {cxIj , c
p
Ij , aI}. (4.40)

The boundary phase space M(∂M) is given by a symplectic reduction

M(∂M) =

N∏
i=1

M(∂∆i)//{CI = 2πi+ ~}. (4.41)

The dimension of M(∂M) is 2d = 2(N − k) and we choose a polarization

Π∂M = (Xα,Pα)|dα=1 for the boundary phase space as

Xα =

N∑
j=1

(Xx
αjXj +Xp

αjPj) + aα , Pα =

N∑
j=1

(P xαjXj + P pαjPj) + bα , (4.42)

with coefficients {Xx
αj , X

p
αj , P

x
αj , P

p
αj , aα, bα} which guarantee that [Xα,Pβ] = −~δαβ and

[Xα, CI ] = [Pα, CI ] = 0 for all α, β, I.

Now let’s explain how to calculate the index I∆
M for TM , or equivalently the SL(2,C)

CS partition function Z∆
M (SL(2,C)), from the tetrahedron gluing data {CI ,Xα,Pα} for

M explained above. In the polarization Π∂M = (Xα,Pα), the index for TM theory with

M =
⋃N
i=1 ∆i/ ∼ is given as

IM (mα, eα) =
∑

(m∗,e∗)∈Z

δ2d(. . .)δk(. . .)
N∏
i=1

IΠi
∆ (mi, ei) (4.43)

Here, the Knocker delta functions δ2d(. . .) and δk(. . .) come from external polarization

choice (4.42) and internal edge gluing conditions (4.40), respectively. In view of the

identification (4.37), these constraints can be translated into constraints on charge

variables (mi, ei).

δ2d(. . .) =

d∏
α=1

δ

(
mα −

N∑
j=1

(Xx
αjmj +Xp

αjej)− aα
)
δ

(
eα −

N∑
j=1

(P xαjmj + P pαjej)− bα
)
,
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ϕiϕi−1 (L,L) (L,R) (R,R) (R,L)

Xi −Wi+1+2Wi−Wi−1

2
−Wi+1+Wi+Wi−1−V−iπ

2
Wi+1+Wi−1

2
Wi+1+Wi−Wi−1+V+iπ

2

Pi iπ + ~
2 −Wi iπ + ~

2 −Wi iπ + ~
2 −Wi iπ + ~

2 −Wi

Ui 0 −Wi
2 0 Wi

2

Table 3. Tetrahedron gluing for tori(ϕ) in the polarization (4.45).

δk(. . .) =

k∏
I=1

δ

( N∑
j=1

(cxIjmj + cpIjej) + aI − 2πi− ~
)
. (4.44)

Solving the 2d + k Knonecker deltas on 2N variables (mi, ei), we have remaining k

variables to be summed. Although the procedure described here looks different from the

description in [7], one can easily check that they are equivalent.

For each tetrahedron ∆i in tori(ϕ) =
⋃

∆i/ ∼, we choose the following polarization

Πi = ΠZ′ , for all i . (4.45)

Under this choice, tetrahedron gluing rule (2.12) can be written in terms of (Xi,Pi) as in

table 3.

In this polarization choice, the index for the i-th tetrahedron in the mapping torus

is given by I∆

(
Xi,Pi

)
. The i-th tetrahedron’s position/momentum variables (Xi,Pi) are

thought of as magnetic/electric charge of I∆i via (4.37). They are parametrized by the

variables W∗. The index for mapping torus can be constructed by multiplying all the

indices from each tetrahedron and summing over all Wi variables modulo a ‘meridian’

condition U =
∑

i Ui(W∗). The condition say that a particular linear combination of W∗
is fixed to be a meridian variable U.

I∆
tori(ϕ)(V,U) =

∑
Wi∈Z

δ

(
U−

∑
i

Ui(W∗)

) N∏
i=1

I∆

(
Xi(W∗),Pi(W∗)

)
(4.46)

The factors (iπ + ~
2) in the argument of I∆ can be understood from (4.33). The cusp

boundary variables (U,V) are in (Z,Z). As an example, for ϕ = LR

I∆
tori(LR)(V,U)

=
∑

W1,W2∈Z
δ

(
U− −W1 +W2

2

)
(q

1
2 )−

1
2

(W1+W2)I∆

(
W1 − V

2
,−W1

)
I∆

(
W2 + V

2
,−W2

)
.

To list a few non-vanishing results, we have

I∆
tori(LR)(0, 0) = 1− 2q − 3q2 + 2q3 + . . .

I∆
tori(LR)(0,±1) = 2q3/2 − 4q7/2 + . . .

I∆
tori(LR)(±1,±1) = q + q2 − 2q3 + . . .

I∆
tori(LR)(±1,±2) = q3 + 3q4 . . .
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Comparing these indices with (4.25), we find the following non-trivial agreement,

I∆
tori(LR)(V,U) := I

T[SU(2)]
tori(LR) (mη = V, eη = U) . (4.47)

In section 4.4, we will show that I∆
tori(ϕ) = I

T [SU(2)]
tori(ϕ) for general ϕ with |Tr(ϕ)| > 2.

4.3 Hilbert-spaces HSL(2,C) and Hknot
SL(2,C)

In this section, we quantize the classical phase spaces (M,Ω)SL(2,C) and (M,Ω)knot
SL(2,C)

studied in section 3 and construct the Hilbert-spaces HSL(2,C) and Hknot
SL(2,C). We show

explicitly how the quantum operators introduced in section 3 act on the Hilbert-spaces.

Based on constructions in this section, we will calculate SL(2,C) CS partition function on

mapping cylinder/torus in section 4.4.

Hilbert-space HSL(2,C). As explained in section 3, the phase spaceM(Σ1,1)SL(2,C) can

be parameterized by three shear coordinates (T,T′,T′′) with one linear constraint. The

symplectic form ΩSL(2,C) on the phase space is given in (3.22). Rewriting the symplectic

form in terms of real and imaginary parts of shear coordinates,

ΩSL(2,C) = −1

~
dIm(T ) ∧ dRe(T ′)− 1

~
dRe(T ) ∧ dIm(T ′) . (4.48)

To obtain the Hilbert-space, we first need to specify a choice of ‘real’ polarization. We will

choose the following polarization,(
X1, X2, P1, P2

)
=

(
Re(T ′),

1

2
Re(T ),−Im(T ), 2Im(T ′)

)
. (4.49)

In this choice of real polarization, as noticed in [7], the momenta are periodic vari-

ables (3.20) and thus their conjugate position variables should be quantized. Since the

periods for (P1, P2) are (4π, 8π) respectively, the correct quantization condition forX1, X2 is

X1 ∈
~
2
Z , X2 ∈

~
4
Z . (4.50)

Thus position eigenstates |X1, X2〉 are labelled by integers and we will introduce charge

basis |m, e〉 as

|m, e〉 := |X1 = m
~
2
, X2 = e

~
2
〉 , with m, 2e ∈ Z . (4.51)

The shear operator (T,T′)± = (2X2 ∓ iP2, X1 ± i
2P2) acts on the basis as

T± = e~± 2∂m , T′± = m
~
2
∓ ∂e . (4.52)

The exponentiated operators act as

〈m, e|
√
t±|I〉 = q

1
2
e〈m± 1, e|I〉 , 〈m, e|

√
t′±|I〉 = q

1
4
m〈m, e∓ 1

2
|I〉 . (4.53)

Using the basis, the Hilbert-space HSL(2,C) can be constructed as

HSL(2,C) = Hilbert-space spanned by a basis {|m, e〉}m,2e∈Z . (4.54)
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One may introduce another basis called fugacity basis {|m,u〉} which is related to charge

basis by Fourier expansion.

|m, e〉 =

∮
du

2πiu
ue|m,u〉 . (4.55)

In {|m,u〉}, m is integer and u1/2 is on a unit circle |u1/2| = 1 in complex plane. As

explained in [7], elements in this basis are position eigenstates under the following choice

of real polarization(
X1, X2, P1, P2

)
=
(
Re(T ′), Im(T ′),−Im(T ),−Re(T )

)
. (4.56)

Inner product on HSL(2,C). We defined the adjoint of shear operators in (3.61). Ad-

joint operation depends on the inner-product structure on HSL(2,C). Requiring consistency

between (3.61) and (4.53), one can uniquely determine the inner-product on HSL(2,C) up

to an overall factor κ.

〈m, e|m′, e′〉 = κδ(m−m′)δ(e− e′) . (4.57)

For simplicity, we will set κ = 1 by rescaling the charge basis.

Basis on HSL(2,C) associated to polarization Π. So far we have only considered two

choices of basis, {|m, e〉} and {|m,u〉} for HSL(2,C). We will introduce more bases {|m, e〉Π}
and {|m,u〉Π} for HSL(2,C), one for each polarization choice Π of the phase spaceMSL(2,C).

Polarization Π = (X ,P) is determined by identifying position variable X and its conjugate

momentum variable P satisfying the canonical commutation relation [X±,P±] = ∓~. A

simple choice of polarization is ΠT,T′ = (T′, 1
2T). The basis {|m, e〉Π=(X ,P)} is defined by

following conditions

Π〈m, e|eX± = q
m
2 Π〈m, e∓ 1| , Π〈m, e|eP± = q

e
2 Π〈m± 1, e| . (4.58)

These conditions determine the basis {|m, e〉Π} up to an overall constant which is universal

to all basis.18 In this notation, basis |m, e〉 in the above can be understood as |m, e〉Π
with Π = ΠT,T′ := (T′, 1

2T). Similarly fugacity basis |m,u〉Π associated to a polarization

Π can be defied as Fourier transformation on |m, e〉Π. Under a linear transformation of

the polarization (
X̃
P̃

)
±

= g ·

(
X
P

)
±

(
α

β

)
, g ∈ SL(2, Q) (4.59)

the basis transforms as

Π̃〈m, e| = Π〈g−1 · (m, e)|emβ−eα . (4.60)

Note that this transformation rule is equivalent to (4.35) after identifying the index

I(m, e) as matrix element 〈m, e|I〉. Under the polarization transformation, the range of

charge (m, e) also should be transformed accordingly.

18There is no guarantee that for given polarization Π there exist a basis satisfying these conditions.
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SR basis. We define ‘SR basis’ as a basis associated to a polarization ΠSR,

ΠSR := (S,R) :=
1

2
(T + T′,T− T′) . (4.61)

This basis will be denoted as |m, e〉SR := |m, e〉ΠSR
. From the basis transformation (4.60),

the quantization condition for (m, e) in the SR basis |m, e〉SR is determined:

m, e ∈ Z
2
, with a condition m+ e ∈ Z . (4.62)

The inner-product on SR basis takes the same form as (4.57),

SR〈m, e|m′, e′〉SR = δ(m−m′)δ(e− e′) . (4.63)

Thus, the completeness relation in the SR basis is

1HSL(2,C)
=

∑
(2m,2e)∈Z:m+e∈Z

|m, e〉SR〈m, e| . (4.64)

This SR basis will play a crucial role in section 4.4 in proving Z∆
tori(ϕ) = Z

Tr(ϕ)
tori(ϕ).

FN basis. We will introduce yet another basis, called FN (Fenchel-Nielsen) basis, which

will play important roles in section 4.4 in proving I
T [SU(2)]
tori(ϕ) = Z

Tr(ϕ)
tori(ϕ)(SL(2,C)). The FN

charge basis |m, e〉FN is not defined on HSL(2,C) but on H̃SL(2,C), which will be identified

with a double cover of HSL(2,C). The Hilbert-space H̃SL(2,C) is defined as

H̃SL(2,C) = Hilbert-space whose basis are {|m, e〉FN}2m,e∈Z . (4.65)

FN fugacity basis can be defined as Fourier expansion of FN charge basis

FN〈m, e| =
∮

du

2πiu
u−e FN〈m,u| . (4.66)

In the FN basis, the FN operators (Λ̂, T̂ ), introduced in (3.66), (3.67) act like (X ,P),

FN〈m, e|λ̂± = q
m
2 FN〈m, e∓ 1| , FN〈m, e|τ̂± = q

e
2 FN〈m± 1, e| ,

FN〈m,u|λ̂± = q
m
2 u FN〈m,u| , FN〈m,u|τ̂± = e

~
2
u∂u

FN〈m± 1, u| . (4.67)

In terms of the fugacity basis, the inner-product on H̃SL(2,C) is defined as

FN〈m1, u1|m2, u2〉FN = ∆(m1, u1)−1δ(m1 −m2)δ(u1 − u2) . (4.68)

where ∆(m,u) is the measure factor appearing in the � operation (4.18). The delta

function δ(u1, u2) is defined by following condition∮
du1

2πiu1
δ(u1, u2)f(u2) = f(u1) , for arbitrary f(u). (4.69)

The inner product (4.68) implies the completeness relation in H̃SL(2,C) in the FN basis,

1H̃(SL(2,C))
=
∑

m∈Z/2

∮
du

2πiu
∆(m,u)|m,u〉FN〈m,u| . (4.70)
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With respect to the inner product, the adjoint of FN operators are

(λ̂±)† = λ̂∓ , (τ̂±)† =
1

λ̂∓ − λ̂−1
∓
τ̂∓(λ̂∓ − λ̂−1

∓ ) . (4.71)

To establish an isomorphism between HSL(2,C) and a subspace of H̃SL(2,C), we use the

operator relation (3.67) between FN and shear operators. Combining (3.67) and (4.71),

one can show that

(
√
t,
√
t′,
√
t′′)†± = (

√
t,
√
t′,
√
t′′)∓ , (4.72)

with respect to the inner product (4.68), precisely as we anticipated in (3.61).

Using these relations, one can determine the action of the SR operators

(s, r)± := (exp(S±), exp(R±)) in the FN basis. We will consider states |m,u〉
S̃R

in

H̃SL(2,C) on which operator (S,R) acts like (X ,P),

S̃R
〈m,u|s± = q

m
2 u±1

S̃R
〈m,u| ,

S̃R
〈m,u|r± = e

~
2
u∂u

S̃R
〈m+ 1, u| . (4.73)

As we will see in appendix D, from the above condition one can explicitly express the basis

|m,u〉
S̃R

in terms of FN basis |m,u〉FN up to overall constant. The explicit expression

copied from appendix D is

S̃R
〈m,u| =

∑
m̃

∮
dũ

2πiũ
∆(m̃, ũ)(−q

1
2u)mI∆(−m− m̃, u−1ũ−1)I∆(m̃−m, ũ/u)FN〈m̃, ũ| .

(4.74)

As argued in appendix D, the range of charge (m, e) for the charge basis |m, e〉
S̃R

, which

is related to |m,u〉
S̃R

by Fourier expansion, is the same as that of SR basis |m, e〉SR (4.62)

and the inner product on |m, e〉
S̃R

is also the same as that of SR basis (4.63). Furthermore,

by definition of |m, e〉
S̃R

in (4.73), the action of shear operators are the same on the two

basis |m, e〉SR and |m, e〉
S̃R

. Thus one can naturally identify

|m, e〉
S̃R
∈ H̃SL(2,C) with |m, e〉SR ∈ HSL(2,C) . (4.75)

From the above identification, we can consider the SR basis |m, e〉SR as an element in

H̃SL(2,C) and the Hilbert-space HSL(2,C) as a subspace of H̃SL(2,C). The subspace is spanned

by {|m, e〉
S̃R
}. The Weyl-reflection operator σ in (3.25) acts on H̃SL(2,C) as

σ : |m,u〉FN → | −m,u−1〉FN , or equivalently

|m, e〉FN → | −m,−e〉FN . (4.76)

From the explicit expression (4.74), one can easily see that the SR basis |m,u〉SR is

Weyl-reflection invariant. Thus we see that

HSL(2,C) ⊆ {σ-invariant subspace in H̃SL(2,C)} . (4.77)

Furthermore, it is argued in appendix D that the equality holds. In other words, the

Weyl-reflection invariant combination of the FN basis states {|m, e〉SFN} form a complete

basis for HSL(2,C).

|m, e〉SFN :=
1

2
(|m, e〉FN + | −m,−e〉FN) . (4.78)
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Hilbert-space Hknot
SL(2,C). As we have seen in section 3.1, the phase space Mknot is

parametrized by ‘longitude’ and ‘meridian’ variables, ` = eV and m = eU . The symplectic

form is (3.26)

Ωknot
SL(2,C) =

1

i~
dU ∧ dV − 1

i~
dŪ ∧ dV̄ (4.79)

We choose the real polarization as

(X1, X2, P1, P2) = (Re(V ),Re(U),−2Im(U), 2Im(V )) (4.80)

Again, since the momenta are periodic variables, their conjugate position variables are

quantized. Considering mapping torus, the periodicity of U and V are 4π and 2π,

respectively as we saw in the last paragraph in 3.1. Thus the correct quantization for

X1, X2 seems to be

X1 ∈
~
4
Z , X2 ∈

~
2
Z . (4.81)

However, there is an additional quantum Z2 symmetry which shifts meridian variable U

by 2πi for CS theories on knot complement (see secion 4.2.5 and section 4.2.7 in [43]19).

Taking account of this quantum Z2 effect, the quantization condition is modified as

X1 ∈
~
2
Z , X2 ∈

~
2
Z . (4.82)

This is compatible with the quantization condition for (mη, eη) ∈ Z in the mapping torus

index computation in section 4.1. When we consider mapping cylinder, as we already

mentioned in section 3.1, the period for V is doubled, and the correct quantization is

X1 ∈
~
2
Z , X2 ∈

~
4
Z . (4.83)

This quantization is also compatible with the quantization conditions for (mη, 2eη) ∈ Z
in mapping cylinder index computation. Since we are also interested in the mapping

cylinder index, we will use this quantization conditions in constructing Hknot. After

making mapping torus by gluing two boundary Σ1,1’s, the SL(2,C) CS partition function

vanishes automatically when X1 = ~
2(Z + 1

2) as we will see in section 4.4.1. We introduce

the charge basis |mη, eη〉 for Hknot as

|mη, eη〉 := |X1 =
~
2
mη, X2 =

~
2
eη〉 , (mη, 2eη) ∈ Z . (4.84)

and we define

Hknot
SL(2,C) = Hilbert-space spanned by {|mη, eη〉} . (4.85)

Using Fourier transformation, we can introduce fugacity basis {|mη, uη〉},

{|mη, uη〉 : mη ∈ Z , u
1
2
η = eiθ (0 ≤ θ < 2π)} . (4.86)

19The normalization of meridian variable in [43] is different from ours, mours = m2
theirs. In the reference,

the Z2 symmetry is shown for knot complements in S3. We expect that the Z2 symmetry also exists for our

mapping torus case. One evidence is that the A-polynomial analyzed in section 3.2 is always polynomial

in m instead of m1/2.
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On the charge basis, the operators (V±,U±), quantum counterparts of (V, V̄ , U, Ū), act as

V± =
~
2
mη ∓ ∂eη , U± =

~
2
eη ± ∂mη . (4.87)

In terms of the exponentiated operators (l±,m±) := (eV± , eU±), the action is given by

〈mη, uη|l± = 〈mη, uη|q
1
2
mηu±1

η , 〈mη, uη|m± = e
~
2
uη∂uη 〈mη ± 1, eη| ,

〈mη, eη|l± = 〈mη, eη ∓ 1|q
1
2
mη , 〈mη, eη|m± = 〈mη ± 1, eη|q

1
2
eη . (4.88)

The inner-product on the Hilbert space is defined as

〈mη, eη|m′η, e′η〉 = δ(mη −m′η)δ(eη − e′η) , (4.89)

which ensures that

l†± = l∓ , m†± = m± . (4.90)

The completeness relation in Hknot
SL(2,C) is

1Hknot
SL(2,C)

=
∑
mη

∮
duη

2πiuη
|mη, uη〉〈mη, uη| =

∑
mη ,eη

|mη, eη〉〈mη, eη| . (4.91)

Consider operators Oi(V±) constructed using only V± but not U±. As already mentioned

in section 3, these operators Oi can be understood as a state |Oi〉 in Hknot through the

following map,

O(V±)⇔ |Oi〉 := Oi|U = 0〉 ,

where |U = 0〉 = |P1 = 0, X2 = 0〉 =
∑
mη

|mη, eη = 0〉 . (4.92)

Using the basis |mη, uη〉, Oi(V±) can be further mapped to a “wave-function”,

Oi(V±)⇔ Oi(mη, uη) := 〈mη, uη|Oi〉 = 〈mη, uη|Oi|U = 0〉 ,
= 〈mη, uη|Oi(V±)|mη, eη = 0〉 . (4.93)

The function Oi(mη, uη) obtained in this way is nothing but

Oi(mη, uη) = Oi(V±)V±→ ~
2
mη±logq uη

. (4.94)

The multiplication of two operator O1 · O2 is simply mapped to the multiplication of two

functions. The following relations also hold

〈mη, eη|Oi|mη, eη = 0〉 = Fourier transformation on uη of Oi(mη, uη) ,

〈mη, eη|O1 . . .ON |mη, 0〉 = Fourier transformation on uη of O1(mη, uη) . . .ON (mη, uη)

=
∑

eη1 ,...,eηN

δ

(
eη −

N∑
i=1

eη,i

)
O1(mη, eη,1) . . .ON (mη, eη,N )

=
∑

eη1 ,...,eηN

δ

(
eη −

N∑
i=1

eη,i

)
〈mη, eη,1|O1|mη, 0〉 . . . 〈mη, eη,N |ON |mη, 0〉 . (4.95)

These properties will be used in the below.
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4.3.1 The Hilbert-space from 4d gauge theory

The AGT relation [1], which relates the S4 partition function for a 4d theory TΣ
20 to a

correlation function in 2d Liouville theory on Σ, can be recast as an isomorphism between

the Hilbert-space H(S3) associated with the 4d theory on an omega-deformed four-ball B4

(whose boundary is a squashed S3) and the Hilbert-space HLiouv(Σ) on the 2d Liouville

theory [44, 45]. Using dualities among 2d Liouville/Teichmuller/CS theory [46–50] the

Hilbert-space can be identified with HSL(2,R)(Σ), the Hilbert-space for SL(2,R) CS theory

on Σ. In this subsection, we try to make parallel stories in the ‘superconformal index

version’ of AGT relation [51, 52], which relates a superconformal index for 4d theory to a

correlation function in 2d TQFT.

In the above we constructed the Hilbert-space HSL(2,C) on which operators studied

in section 3 act. There is an another space where the operators naturally act on. That

is a space of half-indices for 4d N = 2∗ theory which will be denoted as H(S2 × S1). As

first noticed in [7], Schur superconformal index for 4d SU(2) N = 2∗ can be written in the

following form

IN=2∗(q, uη) =
∑
m∈ Z

2

∮
du

2πiu
∆(m,u)Π†(m,u;uη)Π(m,u;uη) ,

Π(m,u;uη) := δ(m)
∞∏
r=0

(1− q1+ru2)(1− q1+r)(1− q1+ru−2)

(1− q1/2+ruηu2)(1− q1/2+ruη)(1− q1/2+ruηu−2)
. (4.96)

The Schur index is defined by [52, 53]

IN=2∗(q, uη) := Tr(−1)F q
1
2
R+j3u

Hη
η , (4.97)

where the trace is taken over a Hilbert-space of the N = 2∗ theory on S3(× time). j3 is

a Cartan of the diagonal SU(2) isometry of SU(2) × SU(2) of S3 and R is a Cartan of

the SU(2) R-symmetry. Hη is a charge of global U(1)punct which rotates the phase of an

adjoint hypermultiplet. The half index Π(m,u) can be understood as a (twisted) partition

function on three ball B3 (half of S3) with supersymmetric boundary condition labelled

by (m,u) imposed on SU(2) vector multiplet at the boundary S2 × S1 (= ∂B3 × S1).

The half index can also be interpreted as a wave-function in a Hilbert-space canonically

associated to the boundary. We will identify the half index Π(m,u;uη) as a coherent state

|0〉 ∈ HSL(2,C)
21 as follows

|0〉 :=
∑
m∈ Z

2

∮
du

2πiu
∆(m,u)Π(m,u;uη)|m,u〉FN . (4.98)

Then the 4d index is given by the norm of this state,

IN=2∗(q, uη) = 〈0|0〉 . (4.99)

20As defined in section 1, TΣ denotes a 4d theory of class S obtained from A1 type of (2, 0) theory on a

Riemann surface Σ.
21|0〉 can be viewed as a state in HSL(2,C) ⊗Hknot

SL(2,C) with mη = 0 by regarding Π(uη) as 〈mη = 0, uη|0〉.
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One can ‘excite’ the vacuum state |0〉 by acting operators studied in section 3. For example,

by acting loop operators OL = W,H,D on |0〉 one obtains a half-index |OL〉 := OL|0〉
with insertion of the loop operators. Taking the norm of the state, we could get the 4d

superconformal index for N = 2∗ theory with insertion of loop operators at both north

and south poles of S3.

ILN=2∗(q, u) = 〈OL|OL〉 , 4d index with loop operators L . (4.100)

We will define the space of half-indices, H(S2 × S1), as the set of all half-indices |O〉
obtained by acting all quantum operators O(

√
t,
√
t′,
√
t′′) on |0〉.

H(S2 × S1) := {|O〉 := O · |0〉 : for all O} . (4.101)

It is obvious that H(S2 × S1) is a subspace of HSL(2,C). The SL(2,Z) action is closed in

the subspace H(S2 × S1). In [17], the following integral relation was found∑
mt

∮
dut

2πiut
∆(mt, ut)Iϕ(mb,mt, ub, ut;mη = 0, uη)Π(mt, ut;uη)

= Π(mb, ub;uη) for any ϕ ∈ SL(2,Z) . (4.102)

In section 4.4.2 (see eq. (4.122)), we will identify the duality wall theory index Iϕ as a

matrix element of an SL(2,Z) operator ϕ acting on HSL(2,C). In this interpretation, the

above integral relation can be rewritten in the following simple form,

ϕ · |0〉 = |0〉 for anly ϕ ∈ SL(2,Z) . (4.103)

For general element |O〉 ∈ H(S2 × S1),

ϕ|O〉 = ϕ · O|0〉 = ϕ∗(O) · ϕ|0〉 = |ϕ∗(O)〉 ∈ H(S2 × S1) . (4.104)

In [53], it was argued that the 4d superconformal index for N = 2∗ theory is invariant

under SL(2,Z) duality. As an example, it is checked in [53] that a superconformal index

with Wilson line operators is the same as an index with ‘t Hooft line operators, which

is S-dual of the Wilson line. This SL(2,Z) invariance of the index implies that every

SL(2,Z) operator ϕ are unitary operators in H(S2 × S1).

〈ϕ∗(O1)|ϕ∗(O2)〉 = 〈O1|ϕ†ϕ|O2〉 = 〈O1|O2〉 , for all O1,O2

∴ ϕ†ϕ = 1 in H(S2 × S1) . (4.105)

It is compatible with the observation in section 3 that every ϕ ∈ SL(2,Z) are unitary in

HSL(2,C).

Turning off the puncture variable (setting uη → q
1
2 as in [52]) , the ‘vacuum state’ |0〉

be drastically simplified

|0〉T2 = |0〉
uη→q

1
2

=

∮
du

2πiu
∆(m = 0, u)|m = 0, u〉 . (4.106)
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Turning off the puncture, the once-puncture torus Σ1,1 becomes a torus T2. Then, the

phase space (M,Ω)SL(2,C) becomes much simpler (for example, see [54]) and the corre-

sponding Hilbert-space HSL(2,C) also becomes simpler. Note that the above ‘vacuum state’

|0〉T2 is the same as a vacuum state |0v〉 in [54] obtained by quantizing the CS theory on T2.

So far we have only considered operators of the form O(
√
t,
√
t′,
√
t′′) which depends

only on l but not on m. One can excite |0〉 by an operator O which depends on m. These

operators corresponds to surface operators [55] coupled to U(1)punct in 4d N = 2∗ theory.

This interpretation is consistent with the results in [56], which relate surface operators

in 4d TΣ theory with Wilson loop along S1 direction in Σ × S1 in the context of 2d/4d

correspondence. Recall that m is obtained by quantizing the meridian variable m = eU

which measures the holonomy along the S1 direction in Σ1,1 ×ϕ S1.

4.4 Z∆
tori(ϕ) = Z

Tr(ϕ)
tori(ϕ) = I

T[SU(2)]
tori(ϕ)

4.4.1 Z
Tr(ϕ)
tori(ϕ) = Z∆

tori(ϕ)

In this section, we calculate the CS partition function on tori(ϕ) with |Tr(ϕ)| > 2 using

the canonical quantization on Σ1,1. As explained in section 3, the partition function can

be represented as a trace of a SL(2,Z) operator ϕ (see (3.64) for ϕ = L,R) on the Hilbert-

space HSL(2,C) and the partition function will be denoted by Z
Tr(ϕ)
tori(ϕ). We compare the CS

partition function with the partition function Z∆
tori(ϕ)(=I

∆
tori(ϕ)) calculated in section 4.2

using tetrahedron decomposition and find an exact match. Classical equivalence of the two

approaches was already proven in section 3.2 by analyzing A-polynomial, see also [14].22

For a concrete computation of trace of ϕ on HSL(2,C), we need to choose a basis of the

Hilbert-space. In this section, we use the SR basis introduced in section 4.3. In the SR

basis, the matrix element for ϕ = L,R (3.64) is

ISR
ϕ=L(m2, e2,m1, e1;mη, uη) :=SR 〈m2, e2|L(mη, uη)|m1, e1〉SR ,

ISR
ϕ=R(m2, e2,m1, e1;mη, uη) :=SR 〈m2, e2|R(mη, uη)|m1, e1〉SR . (4.107)

According to (3.4), the right hand sides are the SL(2,C) CS partition functions for

mapping cylinders Σ ×ϕ=L,R I in the polarization where positions are (sbot, stop, l) and

momenta are (rbot, rtop,m). Recall that the boundary phase space for the mapping cylinder

is locally Mbot(Σ1,1) ×Mtop(Σ1,1) ×Mknot and (s, r) are shear coordinates for M(Σ1,1)

and (`,m) are (longitude, meridian) variable forMknot. Since every operator ϕ ∈ SL(2,Z)

depends only on V± but not on U±, ϕ can be understood as function on (mη, uη) as

explained in the paragraph just above section 4.3.1. Using properties in (4.95), the above

indices in charge basis (mη, eη) are

ISR
ϕ=L(m2, e2,m1, e1;mη, uη)

=SR 〈(m2, e2), (mη, eη)|L|(m1, e1), (mη, eη = 0)〉SR

= (−1)e2−e1δ(−e1 + 2m2 −m1 −mη)δ(e2 − e1 + 2eη +m2 −m1)

22In [14], they consider the case G = SL(2,R) instead of SL(2,C). But the A-polynomial computation in

section 3.2 does not depends on weather G = SL(2,C) or SL(2,R).
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× q
1
4

(−e2+m2+e1−m1)I∆

(
1

2
(−e1 +m1 + e2 −m2),m1 + e1

)
, (4.108)

and

ISR
ϕ=R(m2, e2,m1, e1;mη, eη)

=SR 〈(m2, e2), (mη, eη)|R|(m1, e1), (mη, eη = 0)〉SR

= (−1)e2−e1(−1)m2−e2δ(m2+m1−e2+e1)δ(eη)q
1
2

(m2+e1)I∆(−e1−m2,m1+e1) . (4.109)

Here, the state |(m, e), (mη, eη)〉SR denotes a basis state |m, e〉SR ⊗ |mη, eη〉 in HSL(2,C) ⊗
Hknot

SL(2,C). A derivation for the above formula is given in appendix C. The SR basis charges

(mi, ei) are half-integers with an additional condition mi + ei ∈ Z. The puncture variables

(mη, eη) are in (Z,Z/2). For later use, we will express these indices in the following form

ISR
ϕ (m2, e2,m1, e1;mη, eη) = (−1)e2−e1δϕ(. . .)I∆(Mϕ, Eϕ) , (4.110)

For ϕ = L,R

(M,E)ϕ =

(
−e1 +m1 + e2 −m2

2
,m1 + e1 +

~
2

)
,

δϕ(. . .) = δ(−e1 + 2m2 −m1 −mη)δ(e2 − e1 + 2eη +m2 −m1) , for ϕ = L

and

(M,E)ϕ =

(
− e1 −m2 + iπ,m1 + e1 +

~
2

)
,

δϕ(. . .) = δ(eη)δ(m2 +m1 − e2 + e1) , for ϕ = R . (4.111)

Factors like (−1)...(q1/2)... in (4.109) is reflected in a shift of (M,E) by iπQ+ ~
2Q. Recall our

definition of I∆(M,E) in (4.33). The SL(2,C) CS partition function on tori(ϕ) is given by

Z
Tr(ϕ)
tori(ϕ)(SL(2,C))(mη, uη) = TrHSL(2,C)

(
ϕ(mη, uη)

)
in fugacity basis ,

Z
Tr(ϕ)
tori(ϕ)(SL(2,C))(mη, eη) = 〈mη, eη|TrHSL(2,C)

ϕ|mη, 0〉 in charge basis. (4.112)

Any element ϕ ∈ SL(2,Z) with |Trϕ| > 2 can be written as (up to conjugation)

ϕ = ϕNϕN−1 . . . ϕ2ϕ1 , ϕi = L or R . (4.113)

Using the completeness relation (4.64), the partition function can be written as (the

subscript SR is omitted to avoid clutter)

Z
Tr(ϕ)
tori(ϕ)(SL(2,C))(mη, eη) = 〈mη, eη|TrHSL(2,C)

ϕ|mη, 0〉

=
∑

{eη,∗,mη,∗,m∗,e∗}

〈(m1, e1), (mη, eη)|ϕN |(mN , eN ), (mη,N , eη,N )〉 . . .

. . . 〈(m2, e2), (mη, eη,2)|ϕ1|(m1, e1), (mη, 0)〉 ,
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(ϕi, ϕi−1) (L,L) (L,R) (R,R) (R,L)

Mi
−wi+1+2wi−wi−1

2
−wi+1+wi+wi−1−mη−iπ

2
wi−1+wi+1

2
wi+1+wi−wi−1+mη+iπ

2

Ei iπ + ~
2 − wi iπ + ~

2 − wi iπ+ ~
2−wi iπ + ~

2 − wi
eη,i

1
2(wi+1 − wi) 1

2(wi+1 − wi) 0 0

Table 4. Solution for constraints from 2N Knonecker delta’s.

=
∑

{eη,∗,m∗,e∗}

δ(eη −
N∑
k=1

eη,k) 〈(m1, e1), (mη, eη,N )|ϕN |(mN , eN ), (mη, 0)〉 . . .

. . . 〈(m2, e2), (mη, eη,1)|ϕ1|(m1, e1), (mη, 0)〉 ,

=
∑

{eη,∗,m∗,e∗}

δ(eη −
N∑
k=1

eη,k) . . . I
SR
ϕi+1

(mi+2, ei+2,mi+1, ei+1,mη, eη,i+1)

× ISR
ϕi (mi+1, ei+1,mi, ei,mη, eη,i)I

SR
ϕi−1

(mi, ei,mi−1, ei−1,mη, eη,i−1) . . . . (4.114)

In the second line, we used the fact that ϕi depends only on V± but not on U± and the

property in eq. (4.95). IΠSR
ϕi in the third line can be written as23

ISR
ϕi = δϕi(. . .)I∆(Mϕi , Eϕi) , (4.115)

where (Mϕi , Eϕi , δϕi(. . .)) for ϕi = L,R are given in (4.111) with (m2, e2,m1, e1,mη, eη)

replaced by (mi+1, ei+1,mi, ei,mη, eη,i). The index i runs cyclically from 1 to N . There

are 2N + 1 Knoneker deltas in the above expression (4.114). Among them, 2N equa-

tions come from δϕi(. . .)|i=1,...,N . These 2N equations can be solved by parametrizing

(Mϕi , Eϕi , eη,i)|Ni=1 variables (3N in total) in terms of N variables {wi}

Mϕi = Mi(wi+1, wi, wi−1) ,

Eϕi = Ei(wi+1, wi, wi−1) ,

eη,i = eη,i(wi) , (4.116)

where the Mi, Ei, eη,i is given in table 5.

From straightforward calculation, one can check that these parametrizations satisfy all

equations from the 2N Kronecker deltas. Substituting this solution into eq. (4.114), the

CS partition function can be written as

Z
Tr(ϕ)
tori(ϕ)(SL(2,C))(mη, eη) =

∑
w∗

δ

(
eη,

1

2

∑
ϕk=L

(wk+1 − wk)
) N∏
i=1

I∆(Mi(w∗), Ei(w∗)) .

(4.117)

Comparing this index with the index in (4.46) and comparing table 3 and table 4, we see

the following identification

wi ↔Wi, (Mi, Ei)↔ (Xi, Pi), mη ↔ V . (4.118)

23The factor (−1)ei+1−ei in IΠSR
ϕi is ignored in this expression since

∏N
i=1(−1)ei+1−ei =1 and thus the

sign factors do not appear in the final expression for Z
Tr(ϕ)

tori(ϕ).
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Under the identification, we see that

N∏
i=1

I∆(Mi(w∗), Ei(w∗)) =
N∏
i=1

I∆

(
Xi(W∗), Pi(W∗) . (4.119)

The electric charge eη for U(1)η is related to U in the following way

U =
∑
i

Ui = −1

2

∑
(ϕi,ϕi−1)=(L,R)

Wi +
1

2

∑
(ϕi,ϕi−1)=(R,L)

Wi ,

eη =
∑
i

eη,i =
1

2

∑
ϕi=L

(wi+1 − wi) = U , under the identification wi = Wi . (4.120)

From the above identifications, we see that

Z
Tr(ϕ)
tori(ϕ)(SL(2,C))(mη, eη) = I∆

tori(ϕ)(V,U)|V=mη ,U=eη . (4.121)

for general ϕ with |Tr(ϕ)| > 2. One remarkable property of Z
Tr(ϕ)
tori(ϕ)(SL(2,C)) is that it

always vanishes when eη ∈ Z + 1
2 .

4.4.2 Z
Tr(ϕ)
tori(ϕ) = I

T[SU(2)]
tori(ϕ)

Duality wall index as matrix element in FN basis. We will argue that the mapping

cylinder index Iϕ studied in section 4.1 can be written as the matrix element of ϕ ∈ SL(2,Z)

in the FN basis. More explicitly,

Iϕ(mb, ub,mt, ut,mη, uη) :=FN 〈mb, ub|ϕ(mη, uη)|mt, ut〉FN , or equivalently

Iϕ(mb, ub,mt, ut,mη, eη) :=FN 〈(mb, ub), (mη, eη)|ϕ|(mt, ut), (mη, 0)〉FN . (4.122)

for any operator ϕ ∈ SL(2,Z) acting on a Hilbert space HSL(2,C).
24 The right hand side

is the SL(2,C) CS partition function for mapping cylinder in the polarization where

positions are (λ̂bot, λ̂top, l) and momenta are (τ̂bot, τ̂top,m). Thus, the above statement is

nothing but the 3d-3d dictionary in (3.8) for M = Σ1,1 ×ϕ I. Assuming eq. (4.122) holds,

the index for mapping torus theory can be represented as

I
T [SU(2)]
tori(ϕ) (mη, uη) =

∑
m

∮
du

2πiu
∆(m,u)Iϕ(m,u,m, u,mη, uη) , from (4.22)

=
∑
m

∮
du

2πiu
∆(m,u) FN 〈mb, ub|ϕ(mη, uη)|mt, ut〉FN , from (4.122)

= TrHSL(2,C)
ϕ(mη, uη) , using (4.70) . (4.123)

Note that the quantity in the last line is nothing but Z
Tr(ϕ)
tori(ϕ)(SL(2,C)). Thus the

proposal (4.122) automatically ensures that Z
Tr(ϕ)
tori(ϕ)(SL(2,C)) = I

T[SU(2)]
tori(ϕ) , which is the

24More precisely, Iϕ(mb, ub,mt, ut) = S
FN〈mb, ub|ϕ|mt, ut〉SFN where |m,u〉SFN is a Weyl-reflection invariant

combination of FN basis (4.78). However, it does not matter since operator ϕ is Weyl-reflection invariant,

FN〈mb, ub|ϕ|mt, ut〉FN = S
FN〈mb, ub|ϕ|mt, ut〉SFN, and we will not distinguish them.

– 42 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
3

main result of this section. How can we justify the proposal in (4.122)? There are two

steps in the argument for the proposal. First we will argue that the proposal holds for

ϕ = L,R by i) showing the two sides in (4.122) satisfy the same difference equations and

ii) by directly comparing the two sides in q-expansion. Then, we will prove that

If the proposal (4.122) holds for ϕ1, ϕ2, then it also holds for ϕ = ϕ2 · ϕ1. (4.124)

From the two arguments, we can claim that (4.122) holds for general ϕ ∈ SL(2,Z) which

can be written as a product of L’s and R’s.

Proof of (4.124). Since the second argument is much simpler to prove, let’s prove it first.

Suppose (4.122) holds for ϕ1 and ϕ2, then

FN〈mb, ub|ϕ2ϕ1|mt, ut〉FN

=
∑
m′

∮
du′

2πiu′
∆(m′, u′)〈mb, ub|ϕ2|m′, u′〉〈m′, u′|ϕ1|mt, ut〉 , using (4.70)

=
∑
m′

∮
du′

2πiu′
∆(m′, u′)Iϕ2(mb, ub,m

′, u′;mη, uη)Iϕ1(m′, u′,mt, ut;mη, uη) ,

= Iϕ2ϕ1(mb, ub,mt, ut;mη, eη) , using (4.17) . (4.125)

Thus the proposal also holds ϕ = ϕ2 · ϕ1.

Check of (4.122) for ϕ = L,R by difference equations. The index for T [SU(2)]

described in section 4.1 satisfies the following difference equations,

(
Wb − (HT)t

)
± · Iϕ=S = 0 , (Hb − (WT)t)± · Iϕ=S = 0 ,(
pη −

(
1

p
1
2 − p−

1
2

(x− x−1)

)
b

)
±
· Iϕ=S = 0 . (4.126)

The Wilson loop operator W and ‘t Hooft operator H are given by (cf. (3.68))25

W± = x± + x−1
± ,

H± =
q∓1/4x±x

1
2
η;± − q±1/4x−1

± x
− 1

2
η,±

x± − x−1
±

p
− 1

2
± +

q±1/4x±x
− 1

2
η,± − q∓1/4x−1

± x
1
2
η,±

x± − x−1
±

p
1
2
± . (4.127)

Basic operators (x±, p±) act on the charge basis index as

x± := exp

(
~
2
m∓ ∂e

)
, p± := exp

(
~
2
e± ∂m

)
. (4.128)

On the fugacity basis index, they act as

x± := exp

(
~
2
m± log u

)
, p± := exp

(
~
2
∂log u ± ∂m

)
. (4.129)

25In (3.68), loop operators act onHSL(2,C). On the other hand, loop operators here are difference operators

acting on a function I(mb, ub,mt, ut;mη, uη).
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Depending on the subscript (b, t, η), they act on (‘bot’,‘top’,‘punct’) parameters, respec-

tively. The notation OT denotes a ‘transpose’ of O to be defined for each operator. For W,

H, the transposed operators are

WT = W , HT = H/.{q → q−1, p→ p−1} . (4.130)

The difference equations can be simplified using ‘shear’ operators. Shear operators

(
√
t,
√
t′,
√
t′′)± := (exp(1

2T), exp(1
2T
′), exp(1

2T
′′))± are defined as (cf. (3.67))

(
√
t)± =

i

x± − x−1
±

(p
−1/2
± − p1/2

± ) ,

(
√
t′)± =

i

q∓1/4x−1
± p

1/2
± − q±1/4p

−1/2
± x±

(x± − x−1
± ) ,

(
√
t′′)± = q∓1/4x

1
2
η,±

i

p
−1/2
± − p1/2

±
(q∓1/4x−1

± p
1/2
± − q±1/4p

−1/2
± x±) . (4.131)

In terms of the shear operators, the difference equations can be written as((
1√
t

)
b

− (
√
t
T

)t

)
±
· Iϕ=S = 0 ,

(√
t′(1 + q

1
2 t)b − (

√
t′′

T
)t
)
± · Iϕ=S = 0 ,(

pη − i
(

1√
t

)
b

)
±
· Iϕ=S = 0 . (4.132)

For shear operators, the transposed operators are

(
√
t,
√
t′,
√
t′′)T = (

√
t,
√
t′,
√
t′′)/.{q → q−1, p→ p−1} . (4.133)

For ϕ = L(= S−1T−1S),R(= T ), the corresponding duality wall theory indices Iϕ satisfy

following difference equations.((
1√
t′′

)
b

− (
√
t
T

)t

)
±
· Iϕ=L = 0 ,

(√
t±(1 + q±1/2t′′±)b − (

√
t′′

T

±)t
)
· Iϕ=L = 0 ,(

pη −
(
√
t
T

)t

(
√
t)b

)
±
· Iϕ=L = 0 , (4.134)((

1√
t′

)
b

− (
√
t
T

)t

)
±
· Iϕ=R = 0 ,

(√
t′′±(1 + q±1/2t′±)b − (

√
t′′

T

±)t
)
· Iϕ=R = 0 ,(

pη − 1
)
± · Iϕ=R = 0 . (4.135)

One can check these difference equations by series expansion in q at any desired order. For

ϕ = R, we have a closed expression (4.20) for Iϕ, from which we can check that

(xt − xb)± · Iϕ=R = 0 , (pη,± − 1) · Iϕ=R = 0 ,((
1

x± − x−1
±
p
− 1

2
± (x± − x−1

± )

)
t

− (q∓
1
4x−1
± p

1/2
± )b

)
· Iϕ=R = 0 , (4.136)

by a brute-force computation. Expressing these difference equations in terms of shear

operators, we obtain the difference equations for Iϕ=R in (4.135).
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Among the three difference equations in each of (4.132), (4.134) and (4.135), two are

of the form ϕ∗(O)b − OT
t ' 0. From a purely 3d field theory point of view, there is no

prior reason for that. As we will see below, this structure of the difference equations can

be naturally understood from (4.122). Another interesting property of these difference

equations is that they are always in ± pair. It is related to the factorization of 3d super-

conformal indices [57, 58] and this property is not restricted on duality wall theories. How

can we guess these difference equations? Difference equations of the form ϕ∗(O)b−OT
t ' 0

are largely motivated by the difference equations for S3
b partition function for T [SU(2), ϕ]

theory studied in [15]. From the works [6, 7], we know that the S3
b partition function and

S2 × S1 superconformal index satisfy the same form of difference equations. A direct way

of obtaining the difference equations is expressing the mapping cylinder indices in terms

of tetrahedron indices and using the gluing rules for difference equations explained in [23]

(see also [7]). As we will see in appendix B, Iϕ=S can be expressed by gluing 5 tetrahe-

dron indices with two internal edges. However, the corresponding operator equations for

difference equation gluing is too complicated to solve. In appendix B, we consider classical

Lagrangian (set of difference equations in the limit q → 1) for Iϕ=S . In the classical limit,

operator equations become equations for ordinary commuting variables that are relatively

easy to solve. In this way, we obtain the difference equations for Iϕ=S in the classical limit

and check these exactly matches the difference equations in eq. (4.126) with q = 1. We want

to emphasize that a pair of difference equations involving pη is obtained from quantization

of a classical equation involving pη in the classical Lagrangian obtained in appendix B. The

ordering ambiguity is fixed by checking corresponding difference equation in q expansion.

Now let us consider difference equations satisfied by the matrix element in right-hand

side of (4.122). From the operator equations (3.63) for ϕ = L,R and the following

observations,

FN〈m, e|O(λ̂±, τ̂±)|I〉 = O(x±, p±) · FN〈m, e|I〉 ,

〈I|O(λ̂±, τ̂±)|m,−e〉FN = OT(x±, p±) · 〈I|m,−e〉FN ,

〈mη, eη|m± · O ·m−1
± |mη, eη = 0〉 = pη,± · 〈mη, eη|O|mη, eη = 0〉 , (4.137)

one can check that the matrix element in (4.122) satisfies the same difference equations

in (4.134) and (4.135) for ϕ = L,R. The transposed operator OT is defined by OT = (O†)∗,

where the complex conjugation ∗ is given as

(c λ̂m1
± τ̂m2
± lm3
± qm4)∗ = c∗λ̂m1

∓ τ̂−m2
∓ lm3

∓ qm4 , c : c-number (4.138)

Transpose of shear operators are (using eq. (4.72))

(
√
t,
√
t′,
√
t′′)T = (

√
t,
√
t′,
√
t′′)/.{q → q−1, τ̂ → τ̂−1} . (4.139)

It is compatible with (4.133).

Check of (4.122) for ϕ = L,R by direct computation in q expansion. A more

direct evidence for the proposal in (4.122) is an explicit comparison of both sides in q-

– 45 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
3

expansion. Plugging the completeness relation in the SR basis into (4.122),

(right-hand side in (4.122))

=
∑

(m1,e1)

∑
(m2,e2)

FN〈mb, ub|m2, e2〉SR〈m2, e2|ϕ|m1, e1〉SR〈m1, e1|mt, ut〉FN , (4.140)

and using the following relation between SR and FN basis in (D.13)26

SR〈m1, e1|mt, ut〉FN =
∑
e∈Z

(−1)m1q
1
2
m1u−2e−e1+m1

t I∆(−m1−mt, e)I∆(−m1+mt,−e1+m1−e) ,

one obtains the following expression

FN〈(mb, ub), (mη, eη)|ϕ|(mt, ut), (mη, 0)〉FN

=
∑

(m1,e1)

∑
(m2,e2)

∑
e,e′∈Z

(−1)m1−m2q
1
2

(m1+m2)u2e+e2−m2
b u−2e′−e1+m1

t

× I∆(−m2 −mb, e)I∆(−m2 +mb,−e2 +m2 − e)I∆(−m1 −mt, e
′)

× I∆(−m1 +mt,−e1 +m1 − e′)SR〈(m2, e2), (mη, eη)|ϕ|(m1, e1), (mη, 0)〉SR . (4.141)

The summation ranges are over mi, ei ∈ Z
2 such that ei+mi ∈ Z due to the completeness re-

lation in SR basis. Plugging the matrix elements in eq. (4.109) into eq. (4.141), one obtains

FN〈(mb, ub), (mη, eη)|L|(mt, ut), (mη, 0)〉FN

=
∑

m1,e1,m2,e2,e,e′

(−1)m1−m2+e2−e1q
1
4

(m1+e1+3m2−e2)u2e+e2−m2
b u−2e′−e1+m1

t

× δ(−e1 + 2m2 −m1 −mη)δ(e2 − e1 + 2eη +m2 −m1)

× I∆(−m2 −mb, e)I∆(−m2 +mb,−e2 +m2 − e)I∆(−m1 −mt, e
′)

× I∆(−m1 +mt,−e1 +m1 − e′)I∆

(
1

2
(−e1 +m1 + e2 −m2),m1 + e1

)
. (4.142)

We show some examples of explicit evaluation of the above formula in q-expansion

FN〈mb, ub|L(mη, uη)|mt, ut〉FN for (mb,mt,mη) = (0, 0, 0)

=
∑

eη∈Z/2
FN〈(mb, ub), (mη, eη)|L|(mt, ut), (mη, 0)〉FN u

eη
η for (mb,mt,mη) = (0, 0, 0)

= 1+

(
1

uη
χ1(ut)+uηχ1(ub)

)
q

1
2 +
(
− 1−χ1(ub)−χ1(ut)+u−2

η χ2(ut)+u2
ηχ2(ub)

)
q+O(q

3
2 )

FN〈mb, ub|L(mη, uη)|mt, ut〉FN for (mb,mt,mη) = (0, 0, 1)

=
(
u−1
η χ 1

2
(ub)χ 1

2
(ut)− χ 1

2
(ub)χ 1

2
(ut)

)
q +O(q

3
2 )

26To compute FN〈mb, ub|m2, e2〉SR, we need to take the complex conjugation on the expression. In taking

the conjugation, we regard (−1) as eiπ. Thus,

FN〈mb, ub|m2, e2〉SR =
∑
e∈Z

(−1)−m2q
1
2
m2u2e+e2−m2

b I∆(−m2 −mb, e)I∆(−m2 +mb,−e2 +m2 − e) .
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FN〈mb, ub|L(mη, uη)|mt, ut〉FN for (mb,mt,mη) = (1, 0, 1)

=
ub
uη
χ 1

2
(ut)q

1
2 +

(
u−1
b χ 1

2
(ut)− ub(−u−2

η + u−1
η )χ 3

2
(ut)

)
q

3
2 +O(q2)

where χj(u) is the character for 2j + 1 dimensional representation of SU(2),

χj(u) :=
∑j

l=−j u
2j . The result agrees with the index IL(mb, ub,mt, ut;mη, eη) ob-

tained using the duality domain wall theory in section 4.1.

For ϕ = R, we will start from the index in the FN basis. In eq. (4.20), we found that

Iϕ=R =FN 〈mb, ub|R|mt, ut〉FN = u2mb
b δ(mb −mt)

δ(ub − ut)
∆(mt, ut)

. (4.143)

Performing the basis change from FN to SR, we find

SR〈m2, e2|R|m1, e1〉SR =
∑
mb

∮
dub

2πiub
u2mb
b ∆(mb, ub)SR〈m2, e2|mb, ub〉FN〈mb, ub|m1, e1〉SR .

Using (D.13), the above formula can be explicitly evaluated in q-expansion, which matches

with ISR
ϕ=R in (4.109).

5 Squashed sphere partition function/SL(2,R) CS partition function

The squashed three sphere partition function of T [SU(2), ϕ] has been discussed extensively

in recent literature [6, 9, 14, 15, 45], where its relation to the SL(2,R) CS partition func-

tion and quantum Teichmüller theory was pointed out. In this section, we review some

salient features of the these work to help clarify the similarities and differences between

the superconformal index of the previous section and the three sphere partition function.

Quantum dilogarithm identities. Before we proceed, let us take a brief digression to

review some properties of the non-compact quantum dilogarithm (QDL) function [59, 60]

which plays a fundamental role throughout this section and in comparison with section 4.

1. Definition (q± = e2πib±2
):

eb(x) =
∞∏
r=1

1 + (q+)r−
1
2 e2πbx

1 + (q−)
1
2
−re2πx/b

= exp

(
1

4

∫
R+iε

dw

w

e−2ixw

sinh(wb) sinh(w/b)

)
. (5.1)

2. The zeros (zmn) and poles (pmn) of eb(x) are located at

zmn = −cb − i(mb+ nb−1) , pmn = +cb + i(mb+ nb−1) , (m,n ∈ Z≥0) . (5.2)

with cb = i(b+ b−1)/2.

3. Inversion formula:

eb(x)eb(−x) = e
πi
12

(b2+b−2)eπix
2
. (5.3)
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4. Quasi-periodicity and difference equation:

eb(x+ ib) = (1 + q
1
2
+e

2πbx)−1 eb(x) , eb(x− ib) = (1 + q
− 1

2
+ e2πbx) eb(x) , (5.4)

eb(x+ i/b) = (1 + q
1
2
−e

2πx/b)−1 eb(x) , eb(x− i/b) = (1 + q
− 1

2
− e2πx/b) eb(x) , (5.5)

The second identity in (5.4) can be rewritten as(
e−ib∂x − q−

1
2

+ e2πbx − 1

)
eb(x) = (ẑ′′ − ẑ−1 − 1)eb(x) = 0 , (5.6)

with ẑ′′ ≡ e−ib∂x , ẑ ≡ q
1
2 e−2πbx satisfying ẑ′′ẑ = qẑẑ′′.

5. Generalized Fourier transform:

Ψn(α1, . . . , αn;β1, . . . , βn−1;w) ≡
∫
R
dx e2πix(w−cb)

n∏
j=1

eb(x+ αj)

eb(x+ βj − cb)
(5.7)

with βn = i0 satisfy a number of identities, the simplest of which include

Ψ1(α;w) = eπi(b
2+b−2+3)/12 eb(α)eb(w)

eb(α+ w − cb)
, (5.8)

Ψ2(α1, α2;β;w) =
eb(α1)

eb(β − α2)
Ψ2(β − α2;w;α1 + w;α2) . (5.9)

5.1 Duality wall theory

The partition function on the squashed three sphere, S3
b , is obtained in [8] for general 3d

N = 2 gauge theories. Here b is the dimensionless squashing parameter normalized such

that b = 1 corresponds to the round sphere.

Let us first consider the partition function for the mass-deformed T [SU(2), ϕ = S]

ZS(µ, ζ,m) = sb(−m)

∫
dσ
sb(µ+ σ + m

2 + cb
2 )sb(µ− σ + m

2 + cb
2 )

sb(µ+ σ − m
2 −

cb
2 )sb(µ− σ − m

2 −
cb
2 )
e4πiσζ . (5.10)

Here, µ denotes the mass for fundamental hyper-multiplets and ζ the FI parameter. The

phase factor e4πiσζ originates from the FI term. The double sine function sb(x) is defined as

sb (cb(1− r)− σ) =
∏

m,n≥0

(
mb+ nb−1 + iσ − icb(2− r)
mb+ nb−1 − iσ − icbr

)
, (5.11)

where cb = i(b+ b−1)/2. This function is related to the QDL function eb(x) by

eb(x) = e
πi
24

(b2+b−2)e
πi
2
x2
. (5.12)

To simplify (5.10), we used an identity sb(x)sb(−x) = 1 which is equivalent to (5.3).

The double sine function in (5.11) is a contribution to the one-loop determinant from a

free chiral multiplet with R-charge r (for the scalar field) which is coupled to a background

– 48 –



J
H
E
P
0
1
(
2
0
1
4
)
0
6
3

U(1) . Thus sb(−m) in eq. (5.10) originates from the adjoint chiral multiplet of T [SU(2)],

and the other four sb functions are from the four fundamental chiral multiplets; see table 1.

Let us first generalize (5.10) to the partition function of T [SU(2), T kST l]. Recall that

the multiplication of T k and T l elements add background CS terms with level k and l

for the two SU(2)’s to the theory. The classical contributions from the CS terms shall be

multiplied to the partition function as follows,

ZT lSTk(µ, ζ,m) = e−2πilµ2
e−2πikζ2ZS(µ, ζ,m) .

For the multiplication of SL(2,Z) elements, ϕ = ϕ2 · ϕ1, the partition function can be

obtained by ‘gluing’

Zϕ2·ϕ1(µ, ζ,m) =

∫
[dν]Zϕ2(µ, ν,m)Zϕ1(ν, ζ,m) ,

where [dν] = dν sinh(2πbν) sinh(2πb−1ν) is the measure with the contribution from a

vector multiplet of the gauged SU(2) global symmetry.

As an application of the QDL identities, we prove the ‘self-mirror’ property of ZS :

ZS(µ, ζ,m) = ZS(ζ, µ,−m) . (5.13)

For b = 1, this property was proved earlier in [13]. We begin with replacing sb in (5.10) by

eb. Up to an overall normalization that may depend on b but no other parameters, we find

ZS(µ, ζ,m) = eπi(2µ+m−cb)(2ζ−m−cb)−πi2 m
2
eb(−m)Ψ2(m, 2µ+m; 2µ; 2ζ −m) , (5.14)

where the function Ψn was defined in (5.7). The self-mirror property follows easily from

the identity (5.9) and (5.14).

5.2 Tetrahedron decomposition

The computation of the S3
b partition function of TM using the tetrahedron decomposition of

M was explained in [6], which parallels the computation of the index reviewed in section 4.2.

In the polarization ΠZ , the partition function is given by

Z∆(x) = eb(cb − x) =
∞∏
r=1

1− (q+)re−2πbx

1− (q−)1−re−2πx/b
, (5.15)

where the real and imaginary part of the complex parameter x correspond to the twisted

mass and the R-charge of the elementary chiral multiplet φZ .

The SL(2,Z) polarization change acts on Z∆ as follows,

T : Z∆(x) → Z ′(x) = e−πix
2Z∆(x) ,

S : Z∆(x) → Z ′(x′) =

∫
dxe−2πixx′Z∆(x) . (5.16)

The computation of the partition function for TM can be done in three steps (see section

6.2 of [6]). First, one takes Z∆i(xi), for each tetrahedron ∆i in the triangulation and
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multiplies them all. Second, act with Sp(2N,Z) to transform to a polarization in which all

internal edges are “positions”. Third, set the parameters xI corresponding to the internal

edges equal to 2cb.

Thus, the procedure is conceptually identical to that of the superconformal index.

In practice, the partition function is slightly more difficult to deal with because the S

operation in (5.16) involves Fourier transformation, whereas the S operation for the index

can be treated as a linear transformation on the lattice of basis states of the Hilbert space.

5.3 Quantization for G = SL(2,R)

An (approximate) isomorphism of operator algebra. In the previous sections, we

saw how the CS theory with the non-compact gauge group G = SL(2,C) is related to

the superconformal index of 3d field theories. For the squashed sphere partition functions

being discussed in this section, the relevant gauge group is G = SL(2,R).

Since SL(2,R) is a real slice of SL(2,C), the phase space MSL(2,R) is also a real slice

of MSL(2,C) in a suitable sense. Recall that we obtained the (±) pair of operators after

quantization because the coordinates forMSL(2,C) are complex variables, and that the (+)

operators commute with the (−) operators. In contrast, the coordinates are real variables

for MSL(2,R). So, at first sight, the splitting into (+) and (−) operators seem unlikely.

Remarkably, as first noted in [46, 60] and brought into the present context in [15],

the algebra of exponentiated operators for G = SL(2,R) does factorizes into two mutually

commuting subalgebras. To be explicit, we begin by introducing rescaled (logarithmic)

shear operators as follows,

(T,T′,T′′) = 2πb(T̂, T̂′, T̂′′) , [T̂, T̂′] = [T̂′, T̂′′] = [T̂′′, T̂] =
i

π
. (5.17)

The (±) pair of exponentiated shear operators are defined by

t± := exp(2πb±1T̂) , similarly for t′±, t
′′
± . (5.18)

Note that

[t∗+, t
∗∗
− ] = 0 , for any ∗, ∗∗ . (5.19)

The (+) shear operators are nothing but the original shear operators. The (−) shear

operators satisfy formally the same commutation relations but with the original quantum

parameter q+ := q = e2πib2 replaced by q− := exp(2πib−2).

If we consider composite operators made of integer powers of (t±, t
′
±, t
′′
±) only,

there exists an isomorphism between the operator algebra for G = SL(2,R) and that

for G = SL(2,C) with the understanding that (q±)SL(2,R) are mapped to (q±1)SL(2,C).

However, this isomorphism breaks down slightly if the square-root operators (
√
t,
√
t′,
√
t′′)

are included. For instance,
√
t±
√
t′∓ =

√
t∓
√
t′± in the SL(2,C) case whereas√

t±
√
t′∓ = −

√
t∓
√
t′± in the SL(2,R) case.

The (approximate) operator isomorphism will be the key to understanding a large

degree of similarity between the computations in section 4 and those in this section.
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Shear/SR basis for the Hilbert-space. The Hilbert space HSL(2,R) is the familiar

L2(R) for the quantum mechanics on a real line [59]. To see this, we recombine two

independent shear coordinates, (T,T′), to form a position-momentum pair.27

[T,T′] = 2~ = 4πib2 =⇒ (2πb)S ≡ T + T′

2
, (2πb)R ≡ T− T′

2
, [R,S] =

i

2π
. (5.20)

Unlike in section 4, we take T, T′ to be Hermitian. Then, S and R, also Hermitian, can be

identified with the position/momentum operators for quantum Teichml̈ler theory originally

introduced in [59]. We define the ‘position’ and ‘momentum’ basis in the usual manner,28

〈x|S = x〈x| , 〈x|R =
i

2π

∂

∂x
〈x| , 〈x|x′〉 = δ(x− x′) ,

∫ ∞
−∞
|x〉〈x| = 1 .

〈p|R = p〈p| , 〈p|S =
1

2πi

∂

∂p
〈p| , 〈p|p′〉 = δ(p− p′) ,

∫ ∞
−∞
|p〉〈p| = 1 . (5.21)

The transformation between the two bases can be performed as usual,

〈x|p〉 = e−2πipx ,

∫
e−2πip(x−x′)dp = δ(x− x′) . (5.22)

The exponentiated SR operators,

s± ≡ e2πb±S , r± ≡ e2πb±R . (5.23)

satisfy the following commutation relations,

r±s± = q±s±r± , [r±, r∓] = 0 , [r+, r−] = 0 = [s+, s−] . (5.24)

If we only needed operators of the type rasb with (a, b) ∈ Z2, the isomorphism between the

operator algebra of this section and that of section 4 would have been exact, with minor

modifications in the hermiticity condition and the definition of q±. But, the operators
√
t,√

t′ forces us to include ‘half-integer points’ (a, b) ∈ Z/2 with a + b ∈ Z in the lattice of

operators, which induces subtleties such as
√
t±
√
t′∓ = −

√
t∓
√
t′±.

In the previous section, we encountered lattices of states such as |m, e〉 as well as

lattices of operators such as rasb. Here, while it is not clear how to organize the states of

the Hilbert space on a lattice, we can still untilize the lattice structure of operators. For

instance, it is useful to consider the generators of linear SL(2,Z) polarization changes (not

to be confused with the SL(2,Z) of QTT which acts non-linearly on the shear coordinates)

e±πiS
2

(
S
R

)
e∓πiS

2
= R±1

(
S
R

)
, e±πiR

2

(
S
R

)
e∓πiR

2
= L∓1

(
S
R

)
, (5.25)

where R and L are as in (2.11).

27The logarithmic operators (S,R) are rescaled by a factor (2πb) from those in previous sections.
28We flipped the sign of the ‘momentum’ R to match the convention of [6, 7].
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QDL and isomorphism of operator algebra revisited. We can promote the QDL

function eb(x) to an operator by substituting x for x,

eb(x) =

∞∏
r=1

1 + (q+)r−
1
2 e2πbx

1 + (q−)
1
2
−re2πx/b

=

∞∏
r=1

1 + (q+)r−
1
2 eX+

1 + (q−)
1
2
−reX−

≡ Eq+,q−(X+,X−) . (5.26)

We will often use the short-hand notation E(X ) for Eq+,q−(X+,X−). Similar operators can

be defined in other polarizations of L2(R) by replacing X± by linear combinations of X±
and P± = 2πb±1p with integer coefficients. Here, we assume [x, p] = (2πi)−1.

This quantum version of the QDL function underlies essentially all non-trivial

identities among various constructions. In addition, through the isomorphism of the

operator algebra, the QDL function can also be used to illuminate the parallel between

this section and section 4. To see this, note that Z∆(x) of the tetrahedron decomposition

can be regarded as a collection of eigenvalues,

〈x|E(X+,X−) = 〈x|Z∆(cb − x) . (5.27)

Similarly, we can define the QDL operator E(X ) for the index computation by

E(X ) =

∞∏
r=1

1 + (q+)r−
1
2 eX+

1 + (q−)
1
2
−reX−

, (5.28)

where eX± operators are defined as in (4.58) and q± is to be understood as q± = q±1. By

construction, E(X ) is diagonal in the fugacity basis,

〈m,u|E(X ) = I∆(−m, (−q
1
2 )u−1)〈m,u| , (5.29)

where I∆ on the right-hand-side is precisely the tetrahedron index (4.29). Now, let us see

how the QDL identities imply identities for I∆. From the operator version of the inversion

identity (5.3) and the SL(2,Z) polarization change (5.25), we find∑
e1

(−q
1
2 )e+2e1I(−m, e1)I(m, e+ e1) = δe,−m . (5.30)

This identity appeared in [7] in the computation of the index for the trefoil knot

complement. Similarly, by taking the matrix elements of the quantum pentagon relation,

E(X )E(P) = E(P)E(X + P)E(X ) , (5.31)

and reshuflling the indices using the parity (4.39) and triality (4.38), we find

I∆(m1 − e2, e1)I∆(m2 − e1, e2)

=
∑
e3

qe3I∆(m1, e1 + e3)I∆(m2, e2 + e3)I∆(m1 +m2, e3) . (5.32)

This identity was used in [7] to show the equivalence bewteen the two mirror descriptions

of the bipyramid theory.
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FN basis. The isomophism of the operator algebras allows us to use the same relation

between the shear and FN operators (3.67). In [59], what we might call the FN basis, in

which λ̂ + λ̂−1 becomes diagonal, was defined through its relation to the SR basis. Using

the loop-FN-shear triality explained in section 3.3, we take the Wilson loop operators

W± = (r±)−1 + s± + (s±)−1 . (5.33)

In addition, we introduce the Dehn twist operator [59],

D = e2πi(S2−c2b)eb(S −R) . (5.34)

The loop operators and the Dehn twist operator commute with each other,

[W+,W−] = 0 , [D,W±] = 0 . (5.35)

Next, following [59], but slightly modifying the normalization to conform to the convetions

of [15], we introduce the states |µ) (µ ∈ R+) by specifying the matrix elements,

〈x|µ) =
eb(µ+ x+ cb − i0)

eb(µ− x− cb + i0)
e−2πi(x+cb)µ+πiµ2

= (q+q−)−
1
24Z∆(−x− µ)Z∆(−x+ µ)e−πi(x+cb)

2
. (5.36)

As proved in [59], the FN basis vectors are simultaneous eigenstates of the loop and Dehn

twist operators,

O±|µ) = 2 cosh(2πb±µ)|µ) ≡ (λ̂± + (λ̂±)−1)|µ) , D|µ) = e2πi(µ2−c2b)|µ) , (5.37)

The second expression in (5.36) makes it clear that 〈x|−µ) = 〈x|µ) for all x, µ ∈ R. To avoid

double-counting, we restrict the range of µ to R+, which reflects the Z2 Weyl symmetry

of the T [SU(2)] theory. The FN basis vectors satisfy the orthogonality and completeness

relations compatible with the results of section 5.1.

(µ|ν) =
δ(µ− ν)

4 sinh(2πµb) sinh(2πµ/b)
,

∫ ∞
0

4 sinh(2πµb) sinh(2πµ/b)|µ)(µ|dµ = 1 . (5.38)

We close this subsection by noting that the following hermiticity of the FN operators,

(λ±)† = λ± , (τ±)† =
1

λ± − λ−1
±
τ±(λ± − λ−1

± ) , (5.39)

is compatible with the measure in (5.38) and the hermiticity of the shear operators.

Proving the equivalence: Z∆
tori(ϕ) = Z

Tr(ϕ)
tori(ϕ) = ZT[SU(2)]

tori(ϕ) . Given the close parallel

between the computation of the index and that of the partition function, it is natural to

expect that the equality of three quantities explained in 4.4 can be carried over to this

section. The second equality is essentially a basis change between the shear basis and the

FN basis. Since an explicit form of the basis change is known (5.36), the proof in 4.4 can

be repeated with little modification by using the isomorphism of operator algebra. The

first equality is somewhat less trivial. The Hilbert space for the partition function does

not exhibit a lattice structure on which the SL(2,Z) polarization change (5.25) linearly.

Nevertheless, we expect that the proof of section 4.4.1 can be adapted to the current

context by a suitable combination of SL(2,Z) actions in (5.16).
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A Alternative descriptions of T [SU(2)]

In this section, we will discuss other possible descriptions of T [SU(2)].

The first dual theory is N = 2 SU(2) Chern-Simons theory of level k = 1 with four

fundamental and three neutral chiral multiplets, found in [16]. The authors of the paper

found that the squashed three sphere partition function of the mass-deformed T [SU(2)]

theory can be interpreted as a partition function of the dual theory. The 3d superconformal

index for the dual theory also has been shown to coincide with the index for T [SU(2)] [17].

The dual theory has the following advantage. The SO(4) ' SU(2)×SU(2) flavor symmetry

of the dual theory, which corresponds to SU(2)top×SU(2)bot global symmetry of T [SU(2)],

is manifest in the Lagrangian. Thus the operations on the superconformal index described

in section 4.1 (i.e., adding Chern-Simons action and/or gluing) can be incorporated at the

Lagrangian level. Accordingly, the resulting theory dual to T [SU(2), ϕ] has a Lagrangian

description.

Other dual theories of T [SU(2)] can be found from the brane set-up for T [SU(2)]

theory given in figure 6-(a). Taking a limit where the length between NS5-branes is very

small, the theory on a D3-brane becomes a 3d U(1) theory. Two D5-branes give rise to two

fundamental hyper-multiplets. Taking T-dual transformation of SL(2,Z) of type IIB theory

on (a) results in (b), i.e., two NS5-branes are mapped to (NS5,D5)=(1,1)-branes while

D5-branes are invariant. The IR limit of (b) corresponds to U(1)1×U(1)0×U(1)−1 Chern-

Simons theory where subscripts denote the CS levels. The theory has two bi-fundamental

hyper-multiplets with charges (1,−1, 0) and (0, 1,−1) under the gauge group. Crossing a

D5-brane over the left NS5-brane in (b), a D3-brane is created between the 5-branes due

to Hanany-Witten effect, as depicted in (c). It corresponds to U(1)−1 × U(1)1 × U(1)−1

theory with bi-fundamental hyper-multiplets. Crossing the other D5-brane over NS5-brane

in turn results in the brane set-up in (d), which corresponds to U(1)0 × U(2)−1 × U(1)0

theory. Since all four theories have Lagrangian descriptions, we can use the prescription

in [35] to write down index formulas. We checked that the superconformal indices as a

function of fugacity for ε+ j coincide with one aother to several orders in fugacity.
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Figure 6. Brane setups for dual theories of T [SU(2)]. Horizontal/vertical/tilted lines represent

D3/D5/(1,1)-branes. Crossed circles represent NS5-branes.

B Difference equations for T [SU(2), ϕ] at classical limit

The index (4.10) of T [SU(2)] can be constructed from tetrahedron indices I∆ as follows

Iϕ=S(mb,mt,mη;ub, ut, uη)

= (−1)2mbI∆(−mη, u
−1
η q

1
2 )u

mη
η

∑
ms

∮
dus

2πius
u2mt+2ms
s u2ms

t u2mb
b q−

1
4
mη

×
∏

ε1,ε2=±1

I∆

(
ε1mb +

1

2
mη + ε2ms, u

ε1
b u

1
2
η u

ε2
s q

1
4

)
. (B.1)

In the charge basis, the index become

Iϕ=S(mb,mt,mη; eb, et, eη) =
∑

e1,e2∈Z

5∏
i=1

I∆(m̃i, ẽi) , where

(m̃1, ẽ1) =

(
−mη +

~
2
, e1 −

~
4

)
, (m̃2, ẽ2) =

(
mb +

1

2
mη +

et
2

+
~
4
, e2 − iπ

)
,

(m̃3, ẽ3) =

(
−mb +

1

2
mη −

et
2

+
~
4
, e2 −

eb
2

+
et
2

+mb +mt

)
,

(m̃4, ẽ4) =

(
−mb +

1

2
mη +

et
2

+
~
4
, e1 − e2 + eη −

et
2
−mη −mt + iπ

)
,

(m̃5, ẽ5) =

(
mb +

1

2
mη −

et
2

+
~
4
, e1 − e2 +

eb
2

+ eη −mb −mη

)
. (B.2)

We have five difference equations for the index
∏5
i=1 I∆(m̃i, ẽi),

x̃−1
i + p̃i − 1 = 0 , for i = 1, 2, . . . , 5 .

where x̃i, p̃i can be written in terms of (p1, p2, xb, xt, xη, pb, pt, pη) from eq. (B.2); see

also (4.37)). We will focus on the classical limit, ~→ 0 from here on. In the classical limit,

x̃1 =
1

xη
, x̃2 = p

1
2
t xbx

1
2
η , x̃3 = p

− 1
2

t x−1
b x

1
2
η , x̃4 = p

1
2
t x
−1
b x

1
2
η , x̃5 = p

− 1
2

t xbx
1
2
η ,

p̃1 = p1, p̃2 = −p2, p̃3 =
p

1
2
t p2xbxt

p
1
2
b

, p̃4 = − pηp1

p
1
2
t p2xηxt

, p̃5 =
p

1
2
b pηp1

p2xbxη
.
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The summations
∑

e1,e2
corresponds to integrating out p1, p2 from difference equations.

We use the first two equations, x̃1 + p̃−1
1 −1 = 0 and x̃2 + p̃−1

2 −1 = 0 to integrate out p1, p2

p1 = 1− xη, p2 =
1− p

1
2
t xbx

1
2
η

p
1
2
t xbx

1
2
η

. (B.3)

Thus we are left with three equations of six variables, x̃−1
i + p̃i− 1 = 0 for i = 3, 4, 5 where

p1, p2 in x̃i, p̃i are replaced by the above conditions

{x̃−1
i + p̃i − 1 = 0, for i = 3, 4, 5.}/.

{
p1 → 1− xη, p2 →

1− p
1
2
t xbx

1
2
η

p
1
2
t xbx

1
2
η

}
. (B.4)

which are classical difference equations of Iϕ=S . After some algebraic manipulations, the

equations can be written as

xb + x−1
b =

x
1
2
η x
−1
t − x

− 1
2

η xt

x−1
t − xt

p
− 1

2
t +

x
− 1

2
η x−1

t − x
1
2
η xt

x−1
t − xt

p
1
2
t

x
1
2
η xb − x

− 1
2

η x−1
b

xb − x−1
b

p
− 1

2
b +

x
− 1

2
η xb − x

1
2
η x
−1
b

xb − x−1
b

p
1
2
b = xt + x−1

t

pη =
p
− 1

2
t − p

1
2
t

x−1
t − xt

=
xb − x−1

b

p
− 1

2
b − p

1
2
b

. (B.5)

which are indeed the classical limit, ~ → 0 i.e. q → 1, of the difference equations of Iϕ=S

given in eq. (4.126). These equations are the same as algebraic equations studied in [61]

which define a moduli space of vacua for T [SU(2)]. In terms of shear operators (4.131),

the classical difference equations are

Lϕ=S =

{
(
√
t
T

)t −
(

1√
t

)
b

= 0 , (
√
t′′

T
)t −
√
t′(1 + t)b = 0 , pη = − i√

tb

}
. (B.6)

For ϕ = T , classical difference equations are (see eq. (4.136))

Lϕ=T =
{
xt = xb , p

− 1
2

t = p
1
2
b x
−1
b , pη = 1

}
. (B.7)

In terms of shear coordinates,

Lϕ=T =

{
(
√
t
T

)t −
(

1√
t′

)
b

= 0 , (
√
t′′

T
)t −
√
t′′(1 + t′)b = 0 , pη = 1

}
. (B.8)

A general ϕ ∈ SL(2,Z) can be written as a product of S and T . Thus, to obtain the

classical difference equation for general ϕ, we only need to know the gluing rules for the

classical difference equations. For ϕ = ϕ2ϕ1, the classical Lagrangian can be obtained by

1. Identify (
√
t
T
,
√
t′

T
,
√
t′′

T
)t of ϕ2 with (

√
t,
√
t′,
√
t′′)b of ϕ1.

2. If pη = pη,i for ϕi=1,2, then pη = pη,2pη,1 for ϕ = ϕ2ϕ1.
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3. Integrate out (
√
t
T
,
√
t′

T
,
√
t′′

T
)t of ϕ2 (or equivalently (

√
t,
√
t′,
√
t′′)b of ϕ1) .

Using the gluing rules, the classical Lagrangian for ϕ = S2 and ϕ = (ST )3 become

Lϕ=S2 ={(
√
t
T

)t − (
√
t)b = 0 , (

√
t′′

T
)t − (

√
t′′)b = 0 , pη = −1 }

Lϕ=(ST )3 =

{
(
√
t
T

)t−(
√
t)b=0 , (

√
t′′

T
)t−(
√
t′′)b=0 , pη=

−i√
tbt
′
bt
′′
b

=x
− 1

2
η

}
. (B.9)

In the last equation, we used the fact
√
tt′t′′ = −ix

1
2
η in the classical limit. These classical

difference equations reflect the SL(2,Z) structure (4.21) for index Iϕ.

C Derivation of eq. (4.109)

For ϕ = L, let us first define a convenient basis {|(m, e)〉ΠL
} where the polarization ΠL is

defined by

ΠL =
(
XL,PL)± =

(
− T′′± ± iπ + log l± ∓

~
2
,
1

2
(T± + T′′± − log l±)

)
. (C.1)

ΠL is related to the ΠSR in (4.61) in the following way(
XL

PL

)
±

=

(
2 0

−1
2

1
2

)(
XSR

PSR

)
±

±

(
−~

2
iπ
2

)
. (C.2)

In terms of XL±,PL± (position, momentum) operators in ΠL, operator L in (3.64) can be

written as

L =

( ∞∏
r=1

1− qreXL+ l−1
+

1− qr−1eXL− l−1
−

)
exp

[
− 1

~

((
PL+ +

1

2
log l+

)2

−
(
PL−+

1

2
log l−

)2)]
. (C.3)

Let us suppress the subscript L of XL±,PL± hereafter. For instance, eq. (4.58) would be

written as

L〈m, e|eX± = L〈m, e∓ 1|q
m
2 , L〈m, e|eP± = L〈m± 1, e|q

e
2 . (C.4)

Using eq. (4.60), one can find a relation between L〈(m, e)| and SR〈(m, e)| such as29

SR〈m, e| =L 〈2m,
1

2
(e−m)|q

1
4

(m−e)(−1)−m , (C.6)

L〈m, e| =SR 〈
1

2
m, 2e+

1

2
m|q

1
2
e(−1)

m
2 . (C.7)

The second equation results in the following inner product of L〈m, e| basis

L〈m2, e2|m1, e1〉L = qe1δm1,m2δe1,e2 , (C.8)

29The (−1) in eq. (C.6) should be regarded as (eiπ), thus the kets are related as follows,

|m, e〉SR = q
1
4

(m−e)(−1)m|m, e〉L . (C.5)
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which follows from the inner product of SR basis given in eq. (4.63). Using eq. (C.6), The

evaluation of L operator in SR〈m, e| basis can be rewritten as follows

SR〈(m2, e2), (mη, eη)|L|(m1, e1), (mη, 0)〉SR (C.9)

= q
1
4

(m2−e2+m1−e1)(−1)−m2+m1
L〈
(

2m2,
e2 −m2

2

)
, (mη, eη)|L|

(
2m1,

e1 −m1

2

)
, (mη, 0)〉L

To evaluate the right hand side, we first note that the infinite product part of L operator

acts on the bra as follows

L〈(m2, e2), (mη, eη)|
∞∏
r=1

1− qreX+ l−1
+

1− qr−1eX− l−1
−

=

∮
du2

2πiu2

∮
duη

2πiuη
u−e2u

−eη
η L〈(m2, u2), (mη, uη)|

∞∏
r=1

1− qreX+ l−1
+

1− qr−1eX− l−1
−

=
∑
e′

L〈(m2, e2 + e′), (mη, eη − e′)|I∆(mη −m2, e
′) , (C.10)

and that the exponential part of L operator acts on the ket as follows

exp

[
− 1

~

((
P+ +

1

2
log l+

)2

−
(
P− +

1

2
log l−

)2)]
|(m1, e1), (mη, eη)〉L

= ( L〈(m1, e1), (mη, eη)| exp

[
− 1

~

((
P− +

1

2
log l−

)2

−
(
P+ +

1

2
log l+

)2)]
)†

= |(m1 + 2e1 +mη, e1),

(
mη, eη − e1 −

1

2
mη

)
〉L . (C.11)

Here we used the fact that the adjoint of operators are given by

(P±,L)† = P∓,L, (l±)† = l∓ , (C.12)

and that they can be written as P± = ±∂m + ~
2e, ln l± = ∓∂eη + ~

2mη. Using

eq. (C.10), (C.11), and then (C.8), the evaluation of L operator in eq. (C.9) can be

rewritten as

SR〈(m2, e2), (mη, eη)|L|(m1, e1), (mη, 0)〉SR

= δ...δ...(−1)m1−m2q
1
4

(e1−e2−m1+m2)I∆

(
mη − 2m2,

1

2
(e1 − e2 −m1 +m2)

)
= δ...δ...(−1)e2−e1q

1
4

(e1−e2−m1+m2)I∆

(
− e1 −m1,

1

2
(e1 − e2 −m1 +m2)

)
= δ...δ...(−1)e2−e1q

1
4

(e1−e2−m1+m2)I∆

(
−e1 +m1 + e2 −m2

2
,m1 + e1

)
where δ...δ... denotes the following combination of Kronecker delta functions,

δ...δ... = δ(−e1 + 2m2 −m1 −mη)δ(e2 − e1 + 2eη +m2 −m1) . (C.13)
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In the third line, we changed the first argument in the tetrahedron index and the power

of (−1) using Kronecker delta functions. In the last line, we used the identity of I∆ in

eq. (4.39). This completes the derivation of the first part of (4.109).

For ϕ = R, we basically repeat the previous derivation for ϕ = L using a polarization

ΠR instead of the polarization ΠL. ΠR is defined by

ΠR = (XR,PR)± =

(
T′± ± iπ ±

~
2
,
1

2
(T′± + T±)

)
, (C.14)

thus it is related to ΠSR as follows(
XR

PR

)
±

=

(
1 −1

1 0

)
·

(
XSR

PSR

)
±

±

(
~
2 + iπ

0

)
(C.15)

In terms of momentum and position operators in this polarization, R operator in (3.64)

can be written as

R =

( ∞∏
r=1

1− qreXR−

1− qr−1eXR+

)
exp

[
1

~
(P2

R+ − P2
R−)

]
. (C.16)

The basis change between SR- and R-basis can be obtained as

SR〈m, e| =R 〈m− e,m|(−1)mq
m
2 , R〈m, e| =SR 〈e, e−m|(−1)−eq−

e
2 ,

where the inner product of R-basis is

R〈m2, e2|m1, e1〉R = δm1,m2δe1,e2q
−e2 .

In the R〈m, e| basis, the expectation value of R can be evaluated similarly to eq. (C.10)

and (C.11), which results in

R〈(m2, e2)|R|(m1, e1)〉R =
∑
e′

I∆(−m2, e
′)R〈m2, e2 − e′|m1 − 2e1, e1〉R .

To evaluate the charge shifts of the ket basis, we used the adjoint relation of PR,±

(PR,±)† = PR,∓ (C.17)

which can be deduced from the adjoint relation of PSR,±. Thus, we obtain

SR〈m2, e2|R|m1, e1〉SR = (−1)m2−m1q
m1+m2

2
R 〈m2 − e2,m2|R|m1 − e1,m1〉R

= (−1)m2+e1q
1
2

(m2+e1)I∆(−e1 −m2,m1 + e1)δm2+m1−e2+e1,0 .

In the second line, the Kronecker delta function was used to change the first argument

of I∆, then the triality relation (4.38) was used in turn. This gives a derivation for the

second part in eq. (4.109).
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D Basis change between SR and FN basis

Recall that ΠSR = (S,R) := (1
2(T+T′), 1

2(T−T′)). Explicit expressions for s = exp(S), r =

exp(R) in terms of Fenchel-Nielsen operators, (λ̂, τ̂) are given by

s± = exp(S±) = q±1/4 1

(q∓1/4λ̂−1
± τ̂

1/2
± − q±1/4τ̂

−1/2
± λ̂±)

(τ̂
1/2
± − τ̂−1/2

± ) . (D.1)

r± = exp(R±) = q±1/4 1

λ̂± − λ̂−1
±

(τ̂
−1/2
± − τ̂1/2

± )
1

λ̂± − λ̂−1
±

(q∓1/4λ̂−1
± τ̂

1/2
± − q±1/4τ̂

−1/2
± λ̂±) .

We will express SR fugacity basis 〈m,u| :=
S̃R
〈m,u| in terms of FN fugacity basis

〈m̃, ũ| :=FN 〈m̃, ũ|,

〈m,u| =
∮

dũ

2πiũ
∆(m̃, ũ, q)〈m,u|m̃, ũ〉〈m̃, ũ| . (D.2)

By imposing the following conditions, we obtain difference equations for the basis change

coefficients 〈m,u|m̃, ũ〉.

〈m,u|s±|m̃, ũ〉 = x± · 〈m,u|m̃, ũ〉

= 〈m,u|s±(λ̂±, τ̂±)|m̃, ũ〉 = sT±(x̃±, p̃±) · 〈m,u|m̃, ũ〉
〈m,u|r±|m̃, ũ〉 = p± · 〈m,u|m̃, ũ〉

= 〈m,u|r±(λ̂±, τ̂±)|m̃, ũ〉 = rT±(x̃±, p̃±) · 〈m,u|m̃, ũ〉 . (D.3)

Here OT denote the transpose of O, OT
± := (O†±)∗. For SR operators, their transpose

operators are

(s±, r±)T = (s±, r±)/.{q → q−1, τ → τ−1} . (D.4)

The operators (x, p)±, (x̃, p̃)± are given

x± = q
m
2 u±1 , p± = e±∂m+ 1

2
~u∂u , x̃± = q

m̃
2 ũ±1 , p̃± = e±∂m̃+ 1

2
~ũ∂ũ . (D.5)

To make the action of FN, SR operators simple, we introduce new variables (a, b), (s, t)

defined as follow

qa := q
m̃
2 ũ, qb = q

m̃
2 ũ−1, qs := q

m
2 u, qt = q

m
2 u−1 . (D.6)

Let’s denote 〈m,u|m̃, ũ〉 in terms of these variables as C(a, b|s, t).

C(a, b|s, t) := 〈m,u|m̃, ũ〉/.{m̃→ a+ b,m→ s+ t, ũ→ q
a−b

2 , u→ q
s−t

2 } . (D.7)

One advantage of these variables is that + (−) type operators act only on a, s (b, t) variables.

Thus the difference equations (D.3) for C(s, t|a, b) factorizes into ± parts and we can set

C(s, t|a, b) = C+(s|a)C−(t|b) . (D.8)

Then, the difference equations for C+ are

(1− q−a+s)C+(s|a) = (1− qs+a+1)C+(s|a+ 1) ,
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(qa − q−a)C+(s+ 1|a)

=
q−(a+1/2)C+(s|a)− qa+1/2C+(s|a+ 1)

qa+1/2 − q−(a+1/2)
− q−(a−1/2)C+(s|a− 1)− qa−1/2C+(s|a)

qa−1/2 − q−(a−1/2)
.

For C−, the difference equations are

(1− qb+t)C−(t|b) = (1− qt−b−1)C−(t|b+ 1) ,

(qb − q−b)C−(t− 1|b)

=
q−(b−1/2)C−(t|b)− qb−1/2C−(t|b− 1)

qb−1/2 − q−(b−1/2)
− q−(b+1/2)C−(t|b+ 1)− qb+1/2C−(t|b)

qb+1/2 − q−(b+1/2)
. (D.9)

We use the fact that

(x+, x−, p+, p−) = (qs, qt, e∂s , e−∂t) , (x̃+, x̃−, p̃+, p̃−) = (qa, qb, e∂a , e−∂b) . (D.10)

Solving the two difference equations, we find the following solutions

C+(s|a) = (−1)aq−a(a+1)/2−as
∞∏
r=0

1− qr+1q−a+s

1− qrq−a−s
,

C−(t|b) = (−1)bqb(b−1)/2+bt
∞∏
r=0

1− qr+1q−b−t

1− qrq−b+t
.

Therefore,

C(s, t|a, b) = (−1)a+bq−a(a+1)/2−as+b(b−1)/2+bt
∞∏
r=0

1− qr+1q−a+s

1− qrq−a−s
∞∏
r=0

1− qr+1q−b−t

1− qrq−b+t
.

(D.11)

In the original fugacity variables(m,u), (m̃, ũ), the basis change matrix is given by

〈m,u|m̃, ũ〉 = C(s, t|a, b)|a→ m̃
2

+logq ũ,b→ m̃
2
−logq ũ,s→m

2
+logq u,t→m

2
+logq u

= (−ũq1/2)−m̃
I∆(m̃−m, ũ/u)

I∆(m̃+m,uũq−1)
u−m̃ũ−m ,

= (−q
1
2u)mI∆(−m− m̃, u−1ũ−1)I∆(m̃−m, ũ/u) . (D.12)

In the SR charge basis, we have

〈m, e|m̃, ũ〉 =
∑
e1∈Z

(−q
1
2 )mũ−2e1−e+mI∆(−m− m̃, e1)I∆(−m+ m̃,−e+m− e1) . (D.13)

This basis change matrix element can be thought of as SL(2,C) CS partition function

on a mapping cylinder Σ1,1 ×ϕ I with ϕ = identity in the polarization where positions

are (sbot, λtop, l) and momenta are (rbot, τtop,m). Identifying FN operators (λ, τ) as UV

operators and SR operator (s, r) as IR operators, the mapping cylinder is called a RG

manifold in [62].

Note that the SR basis is Weyl-reflection invariant and thus the states are in

HSL(2,C) ⊂ H̃SL(2,C). For the charge basis |m, e〉 to be an (non-zero) element in HSL(2,C),

we need to impose following conditions

〈m, e|m̃, ũ〉 6= 0 , for some m̃ ∈ Z/2 . (D.14)
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This condition implies that

m, e ∈ Z/2, m+ e ∈ Z . (D.15)

Furthermore, we claim that SR charge basis are complete basis for HSL(2,C). How can

we prove the completeness? One simple answer uses the fact that a operator s+s− is

self-adjoint. Since 〈m, e| are eigenstates for the operator with eigenvalues qm, they form

a complete basis. Using the property (s±, r±)† = (s∓, r∓) and

〈m, e|s+ = 〈m, e∓ 1|q
m
2 , 〈m, e|r± = 〈m± 1, e|q

e
2 , (D.16)

One can see that

〈m, e|m′, e′〉 = κδm,m′δe,e′ . (D.17)

Here κ is (m, e)-independent constant and it is 1 in (D.12). From this orthonormality and

the fact the basis 〈m, e| are complete basis in HSL(2,C), one obtain following completeness

relation

1HSL(2,C)
=
∑
(m,e)

|m, e〉〈m, e| . (D.18)

More directly, the completeness relation is equivalent to the following identity,∑
(m,e)

〈m̃b, ũb|m, e〉〈m, e|m̃t, m̃t〉 = δ(m̃b − m̃t)
δ(ũb − ũt)
∆(m̃t, ũt)

.

using the explicit expression in (D.13). While we do not have an exact proof, we have

confirmed it by series expansion in q. More precisely, we checked that∑
m̃∈Z/2

∮
dũt

2πiũt
∆(m̃t, m̃t)

( ∑
(m,e)

〈m̃b, ũb|m, e〉〈m, e|m̃t, m̃t〉
)
f(m̃t, ũt) = f(m̃b, ũb) ,

by expansion in q for various Weyl-reflection invariant trial function f(m,u), i.e.,

f(m,u) = f(−m,u−1).
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