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1 Introduction

For the past several years, there has been much interest in applying the powerful field

theory/gravity dualities developed in the late 90s and early 2000s to field theories without

Lorentz invariance. These non-relativistic forms of AdS/CFT, often collectively referred to

as AdS/CMT due to their relevance for condensed matter systems, have provided a new

tool for examining strongly coupled non-relativistic systems (see, e.g. [1–4] and references

therein).
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Although many aspects of the bulk-boundary dictionary familiar from AdS/CFT carry

forward to these systems without alteration, some aspects differ strongly. The first obvious

difference is the symmetry group; since the goal is to consider spacetime duals to nonrel-

ativistic systems, the asymptotic symmetries of the spacetime should be nonrelativistic.

As a consequence, the spatial and temporal components of the metric near the boundary

must scale differently with the radius. This different scaling in fact means the notion of a

boundary itself is altered; using the Penrose definition of a conformal boundary leads to

a degenerate boundary metric. However, more careful treatments have shown that there

is still a reasonable notion of a boundary as the location where metric components go to

infinity, and holographic calculations can be performed using suitable prescriptions [5–11].

The spacetimes studied as possible nonrelativistic duals fall into two main classes: those

which have Lifshitz scaling symmetry, and those which have the larger Schrödinger sym-

metry. There are also other spacetimes in the literature, including the warped AdS space-

times [12–16], which exhibit temporo-spatial anisometry. In this paper, we will concentrate

on spacetimes which have Lifshitz symmetry at least in some region, but many of our con-

clusions apply to more general spacetimes with scaling differences between space and time.

One of the best studied examples of a boundary-bulk duality system with space/time

anisotropy is the so-called Lifshitz spacetime, given by

ds2
d+2 = −

(
L

r

)2z

dt2 +

(
L

r

)2

(d~x2
d + dr2). (1.1)

It was first proposed in [17] and has been extensively studied since. In order to remove some

of the concerns about degenerate boundary behavior, [18–20] have considered replacing the

near-boundary UV region of the spacetime with an asymptotically AdS spacetime. Other

numerical constructions of these backgrounds are available in [21–24]. Additionally, there

are a set of “hyperscaling-violating” solutions which still have a Lifshitz-like symmetry,

proposed in [25] and studied further in [26–29]. We will consider an ansatz which allows

for analysis of all these cases.

Much recent progress has been made in creating a complete bulk/boundary dictionary

for nonrelativistic systems [5, 6, 8, 10]. In the well studied case of Lorentzian AdS/CFT, an

important part of this dictionary is the correspondence between normalizable modes, which

scale as r∆+ near the boundary, and states in the Hilbert space of the dual field theory. In

particular, a quantized bulk field φ can be mapped to its corresponding boundary operator

O via

φ 7→ O = lim
r→0

r−∆+φ. (1.2)

The remarkable fact here is that both operators can be quantized in terms of the same

creation/annihilation operators, which implies an isomorphism between the Fock space rep-

resentations of bulk and boundary Hilbert spaces [30, 31]. Moreover, the map (1.2) can be

inverted in position space. As a result, local quantum fields in the bulk can be expressed in

terms of boundary operators with the help of a so-called smearing function K [32–34]. Con-

sequently, we can study CFTs to learn something about their gravitational duals [35–37].

If AdS/CMT is to be understood as a ‘true’ equivalence between a field theory and

a gravitational theory, rather then just a set of prescriptions to compute condensed mat-
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Figure 1. Effective potential (1.3) for null geodesics (κ = 0) in AdS (z = 1) and Lifshitz spacetimes

(z = 2, 3, 4). In Lifshitz, light rays sent from the bulk in any nonradial direction have to turn around

at finite r and can never reach the boundary.

ter quantities, one should expect that a similar statement can be made for nonrelativistic

systems. In other words, the field theory should somehow contain all the relevant informa-

tion about the gravitational theory. In this paper, we address this issue by investigating

the extent of reconstructability of bulk information from boundary data in nonrelativistic

spacetimes. Specifically, we examine the equivalent of the map (1.2) for such spacetimes,

and show that it is not invertible in position space.

A simple argument why this reconstruction procedure is not straightforward can be

made by studying geodesics in the corresponding backgrounds. For Lifshitz spacetime, the

effective potential is given by

Veff(r) =

(
L

r

)2z

κ+

(
L

r

)2(z−1)

~p 2. (1.3)

Null geodesics (κ = 0) with nonzero transverse momentum p turn around at finite r and

never reach the boundary (see figures 1 and 3). This is a result of the nonrelativistic nature

of the dual theory, which manifests itself in the fact that the effective speed of light gtt/gxx
diverges as r → 0. Therefore, in the classical (i.e. geometric optics) limit, information about

the transverse direction of the bulk geometry can never reach an observer at the boundary.

Quantum mechanically the picture is different. In general, wavefunctions are allowed

to tunnel through any classically forbidden region to reach the boundary, so there is hope

that bulk reconstruction is possible after all. However, as we will demonstrate, at large

momenta the imprint these tunneling modes leave at the boundary is exponentially small

and as a consequence, a smearing function cannot be constructed. Our arguments closely

follow those of [38, 39], where first steps towards generalizing smearing functions to spaces

other than pure AdS were made. It is important to note that the failure to construct a

smearing function, which would connect local bulk data to local boundary data, does not

necessarily prevent reconstruction of the bulk metric from nonlocal boundary data, such as

– 3 –
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the 2-point boundary correlators considered in [40–46]. In this paper we will nonetheless

concentrate on the failure of the local-to-local map embodied by the smearing function.

Our analysis for the case of pure Lifshitz spacetime can be easily generalized to show

that smearing functions do not exist for any geometry that allows for ‘trapped modes’, that

is, modes that have to tunnel through a momentum-barrier in the potential to reach the

boundary. In [39], the authors show that the smearing function in their spherically sym-

metric spacetimes can indeed become well-defined, at least in some bulk region, once they

change from an AdS-Schwarzschild solution to a nonsingular asymptotically AdS spacetime.

Our case, however, does not allow such a resolution. Importantly, the smearing function

in Lifshitz remains ill-defined everywhere if we resolve the tidal singularity [17, 47, 48] into

an AdS2 × Rd or AdSd+2 region. It also remains ill-defined everywhere if we replace the

near-boundary region with an asymptotic AdSd+2 region, or if we do both replacements at

once [21–23].

The problem we encounter when trying to construct a smearing function is related to

modes with large transverse momentum. Introducing a momentum-cutoff Λ, however, will

force us to give up the ability of reconstructing full bulk locality in the transverse direction.

The outline of this paper is as follows: in section 2, we discuss the idea of bulk re-

construction via classical geodesics in Lifshitz spacetimes. We show that there are null

geodesics that cannot reach the boundary. We generalize this statement to flows involving

Lifshitz regions, as well as more general nonrelativistic spacetimes with planar symmetry,

considering the constraints arising from the null energy condition. In section 3, we turn

to the quantum picture and study solutions of the scalar field equations for the same class

of spacetimes. In particular, we show analytically that for z = 2 Lifshitz, there are modes

that have to tunnel through a momentum-barrier in the potential to reach the boundary

and are thus exponentially suppressed. We generalize this result to arbitrary z using the

WKB approximation. In section 4, we review the construction of smearing functions via

the mode-sum approach and attempt to construct a Lifshitz smearing function. Using

WKB methods, we show that this attempt fails due to the existence of ‘trapped modes’,

which have exponentially small boundary imprint. In section 5, we generalize our findings

to show that smearing functions do not exist for a large class of nonrelativistic spacetimes.

Finally, in section 6 we interpret our results and their implications for bulk locality. We

argue that only a hard momentum cutoff allows bulk reconstruction, at the cost of giving

up locality in the transverse direction.

2 The classical picture: bulk reconstruction via light signals

We now set our notation and discuss the classical paths of geodesics within the spacetimes

we study. Specifically, we consider planar metrics of the form

ds2
d+2 = −e2A(r)dt2 + e2B(r)d~x2

d + e2C(r)dr2. (2.1)

This ansatz is sufficiently general to include AdS, Lifshitz with general z (with or without

hyperscaling violation), AdS2 × Rd and spacetimes which interpolate among them. Note

that one of the three functions A,B and C can always be eliminated by a suitable gauge
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choice. However, it is convenient to keep these functions arbitrary for now, so that we

can more easily accommodate the various gauge choices that have been used for AdS and

Lifshitz metrics in the literature. The metric (2.1) can be trivially rewritten as

ds2
d+2 = e2B(r)[−e2W (r)dt2 + d~x2

d] + e2C(r)dr2. (2.2)

where we defined W ≡ A − B. For W = 0, the (d + 1)-dimensional metric at constant

r is Lorentz invariant. This encompasses the pure AdS case as well as Lorentz invariant

domain wall flows. The W 6= 0 case allows for ‘non-relativistic’ backgrounds such as pure

or asymptotic Lifshitz backgrounds as well as for planar black holes. In this case, we may

interpret e−W as the gravitational redshift factor.1

The global behavior of the metric is constrained by the null energy condition (subse-

quently NEC; for previous work see [49, 50]). The two independent conditions are

−Rtt +Rrr = deW−C∂r
(
−e−W−C∂rB

)
≥ 0, (2.3)

−Rtt +Rx1
x1

= e−W−(d+1)B−C∂r

(
eW+(d+1)B−C∂rW

)
≥ 0. (2.4)

Here x1 is any one of the ~x transverse directions. If we choose a gauge where A = C, or

equivalently W = C −B, these conditions simplify to(
(e−B)′e−2W

)′ ≥ 0, (2.5)(
W ′edB

)′
≥ 0, (2.6)

where ′ denotes derivatives with respect to the radial coordinate ρ in the corresponding

gauge. Since edB ≥ 0, we can use the second condition to deduce the following statements

about W (see figure 2):

If W ′|ρ− ≤ 0 ⇒ W ′|ρ≤ρ− ≤ 0;

If W ′|ρ+ ≥ 0 ⇒ W ′|ρ≥ρ+ ≥ 0. (2.7)

From (2.5) we can deduce similar equations for e−B. If we combine the two constraints (2.5)

and (2.6), we learn about the second derivatives of W and e−B when their first derivatives

have the same sign:

If W ′|ρ− ≤ 0 and (e−B)′|ρ− ≤ 0, ⇒ W ′′|ρ≤ρ− ≥ 0 and (e−B)′′|ρ≤ρ− ≥ 0;

If W ′|ρ+ ≥ 0 and (e−B)′|ρ+ ≥ 0, ⇒ W ′′|ρ≥ρ+ ≥ 0 and (e−B)′′|ρ≥ρ+ ≥ 0. (2.8)

These conditions will constrain the bulk geometry, and in particular the behavior of the

redshift factor e−W .

As mentioned in the introduction, we may gain insight about the bulk spacetime by

considering null geodesics. Such geodesics are easily obtained by noting that the met-

ric (2.1) admits Killing vectors
∂

∂t
,

∂

∂xi
. (2.9)

1Note that this assumes that there is an asymptotic reference region where W = 0, so that (d + 1)-

dimensional Lorentz invariance is restored. This would occur, for example, in an AdS to Lifshitz flow.
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Ρbdy Ρ+

e-B

W

Figure 2. Two sketches of functions W and e−B which obey the null energy conditions (2.5)

and (2.6). The figure on the right approaches Lifshitz asymptotics at ρbdy.

This allows us to define the conserved energy and momentum

E ≡ e2Aṫ, ~p ≡ e2B~̇x, (2.10)

where a dot indicates a derivative with respect to the affine parameter λ. Geodesics then

obey

− κ =

(
ds

dλ

)2

= −e−2(W+B)E2 + e−2B~p 2 + e2C ṙ2. (2.11)

If we define

Veff ≡ e2(W+B)κ+ e2W ~p2, (2.12)

with κ = 1 for timelike and κ = 0 for null geodesics, then we find

e2(W+B+C)ṙ2 = E2 − Veff . (2.13)

This is of the form of an energy conservation equation, Etot = Ekin + Veff , where

Ekin = e2(W+B+C)ṙ2. (2.14)

2.1 Lifshitz geodesics

We now study specifically Lifshitz spacetimes. Pure Lifshitz spacetime corresponds to

taking

W = −(z − 1) log(r/L), B = − log(r/L), C = − log(r/L) (2.15)

in the metric ansatz (2.2). Note that the ‘horizon’ is at r = ∞, while the boundary is at

r = 0. The effective potential for geodesics is

Veff(r) =

(
L

r

)2z

κ+

(
L

r

)2(z−1)

~p 2. (2.16)

The behavior of the second term depends on the value of z. For z = 1, this term is a con-

stant, and just shifts the overall potential. For z > 1, the second term still grows as r−2(z−1),
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-0.5

0.0

0.5

x

0.2
0.4

0.6
0.8

1.0

r

-0.3

-0.2

-0.1

0.0

t

(b) A “side” view.

Figure 3. Plot of null curves through the point t = 0, ~x = 0, r = 1/2 in Lifshitz space with z = 3.

but this growth is slower than that of the κ term. In addition, it vanishes at the horizon, r →
∞. For null geodesics (κ = 0), the effective potential is completely determined by this term.

Radial null geodesics (~p = 0) do not feel any effective potential. For z > 1, non-radial

geodesics on the other hand cannot reach the boundary. In figure 3, we have plotted several

such light rays which all converge on one point in space; these rays delineate the causal past

of that point. As we can see in the figure, only the null geodesic which stays at constant

x = 0 can reach the boundary at r = 0; all others turn around at some minimum r.

The result is that a full classical reconstruction of the bulk from the boundary is not

possible. Note that ‘classical’ in this case refers to the geometric optics limit, as opposed to

just the N →∞ limit. We imagine a local boundary observer watching flashlights turn on

in the bulk. The boundary observer will only be able to see flashlights which are pointed

purely radially; that is, this observer at the boundary can never receive any signals from the

bulk which travel with a nonzero momentum in the transverse ~x direction. Consequently,

this observer will not be able to ‘resolve’ transverse length scales in the bulk. Of course,

this picture is somewhat naive and cannot be taken as a proof that bulk reconstruction

from local boundary data is impossible. However, as we will show in the next section,

the picture carries forward to the quantum case, even though tunneling through classically

forbidden regions is possible.

Two comments are in order at this point. First, notice that pure Lifshitz spacetime

has a pathology at r →∞. An infalling extended object experiences infinitely strong tidal

forces. To see this, consider two parallel radial geodesics with energy E travelling in the

background (2.2). The geodesic deviation equation for the transverse separation Xi reads

D2Xi

Dt2
= XiE2e−2(W+B+C)

[
−B′

(
W ′ + C ′

)
+B′′ − κ

E2
e2(W+B)

(
B′
(
B′ − C ′

)
+B′′

)]
.

(2.17)

For Lifshitz spacetime, we have

D2Xi

Dt2
= XiE

2

L2

[
(1− z)

( r
L

)2z
− κ

E2

]
. (2.18)

– 7 –
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For z 6= 1, the relative acceleration diverges near the horizon and the result is an infinitely

strong tidal force. By now, there are several known ways to resolve this issue [21–23, 51].

For solutions which involve a running dilaton, a natural resolution is to avoid the singularity

by deforming the geometry such that it flows to AdS2 × Rd in the deep infrared. More

generally, one can imagine several possible IR deformations that change the behavior of

the metric functions W , B and C at large r. These deformations have to be consistent

with the NECs in (2.5) and (2.6) above. However, it is clear that while these procedures

might cure the problems encountered near the horizon, they do not change the fact that

geodesics sent towards the boundary still cannot overcome the Lifshitz barrier (2.16).

On the other hand, one could imagine that deforming the geometry in the UV might

help null geodesics to reach the boundary. Deformations which replace the UV with an

AdS region have the benefit of clarifying the holographic prescription.2 If we imagine a

geometry that is approximately Lifshitz at some ρ−, then W ′(ρ−) < 0. The NECs thus

dictate that eW has to either continue increasing or asymptote to a constant as ρ→ 0. The

latter case would correspond to an AdS to Lifshitz flow. For fixed transverse momentum p,

geodesics with large enough energy can now escape the potential and reach the boundary.

However, at fixed E, the height of the potential barrier is controlled by p2, so geodesics

with large transverse momentum remain trapped inside the bulk.

We conclude that for any spacetime that is approximately Lifshitz in some region,

part of the information about the bulk will always be hidden from a local classical, in the

sense of geometric optics, boundary observer. The part that is missing describes physics at

large p, or equivalently small transverse length scales. Again, we will see in the subsequent

sections that this statement has an exact equivalent in the quantum case.

3 The quantum picture: bulk reconstruction for scalar fields

While the geometric optics picture of the previous section already captures some important

physical properties of nonrelativistic gauge/gravity dualities, a full analysis of the problem

of bulk reconstruction from the boundary clearly requires a treatment of quantum opera-

tors. To this end, we consider solutions to the scalar field equations and investigate what

kind of imprint they can leave at the boundary. Specifically, we examine the amplitude of

scalar modes near the UV boundary in terms of the size of fluctuations deep in the IR.

We begin by studying the Klein-Gordon equation for a scalar in the fixed back-

ground (2.2)

[e−W−(d+1)B−C∂Me
W+(d+1)B+CgMN∂N −m2]φ = 0. (3.1)

Because of the Killing vectors (2.9) present in our metric ansatz, the wave equation is

separable and we can write

φ(t, ~x, r) = ei(~p·~x−Et)f(r). (3.2)

Then the Klein-Gordon equation (3.1) becomes[
e2(W+B−C)

(
∂2
r +

d(W + (d+ 1)B − C)

dr
∂r

)
+ E2 − e2W ~p 2 − e2(W+B)m2

]
f = 0. (3.3)

2See, however [5–10] for different approaches to holography in Lifshitz spacetimes.
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Let us choose a gauge where A = C, or W = C − B. Equivalently, starting in any given

gauge we can introduce a new radial coordinate ρ such that

eC−B−Wdr = dρ. (3.4)

Note that ρ is a tortoise coordinate for our metric ansatz. This gives

[∂2
ρ + dB′∂ρ + E2 − e2W ~p 2 − e2(W+B)m2]f = 0, (3.5)

where primes denote derivatives with respect to ρ. If we now let

f = e−dB/2ψ, (3.6)

we end up with a Schrödinger-type equation

− ψ′′ + Uψ = E2ψ, (3.7)

where

U = Vm + Vp + Vcos, (3.8)

with

Vm = e2(W+B)m2, Vp = e2W ~p 2, Vcos = (d/2)B′′ + (d/2)2B′2. (3.9)

Here Vm and Vp together form the effective potential (2.12) for geodesics, with κ replaced

by m2. The third term, Vcos, is an additional ‘cosmological’ potential that is absent in the

classical picture.

3.1 Scalars in Lifshitz spacetime

For Lifshitz backgrounds, the Schrödinger potential can be written as

U =

(
L

zρ

)2(
m2 +

d(d+ 2z)

4L2

)
+

(
L

zρ

)2(1−1/z)

~p 2, (3.10)

where we introduced a new radial coordinate according to (3.4). Explicitly, we have

ρ =
L

z

( r
L

)z
. (3.11)

Note that both Vm and the entirety of Vcos contribute to the 1/ρ2 blowup as ρ → 0

(corresponding to the boundary). The fact that these two pieces scale with the same

power of ρ is a feature of Lifshitz spacetime; it will not continue to be true for more

complicated spacetimes such as the AdS-Lifshitz flows studied in section 4.2.

The qualitative behavior of solutions to the Schrödinger equation is roughly as follows:

the wavefunction starts out oscillating deep in the bulk (ρ→∞) and crosses the potential

barrier at the classical turning point ρ0. For ρ < ρ0, the mode must tunnel under the

barrier, and thus the wavefunction will in general be a superposition of exponentially

growing and suppressed modes. We will only be interested in the mass ranges where the

growing solution is non-normalizable. In this range, the normalizable modes relevant for

canonical quantization are exponentially suppressed in the area of this barrier at small ρ.

– 9 –
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For z = 1, Vp is a constant, but for z > 1 it blows up near the boundary, although

less fast than the other terms in the potential. Specifically, Vp/Vm ∝ e−2B. For spacetimes

with Lifshitz asymptotics,

∂ρ
(
e−B

)∣∣∣∣
ρbdy

= ∂ρ

(zρ
L

)1/z
∣∣∣∣
ρbdy

> 0. (3.12)

Consequently, ∂ρe
−B > 0 throughout the spacetime. Near the boundary, the mass term

Vm will always dominate, but Vp will increase in relative importance as we head in towards

the IR region.

Because of the different behavior of the mass/cosmological and momentum-dependent

terms, it is crucial to distinguish between two qualitatively different ‘types’ of tunneling.

If at a given energy, the momentum ~p is sufficiently small, the wavefunction crosses the

barrier at a point where Vp is subdominant compared to the other terms in the potential.

Consequently, the 1/ρ2 part of U will control the suppression near the boundary. We shall

refer to those modes as free modes. This name is justified, because even though they are

tunneling, classically they correspond to null geodesics that can reach the boundary.

If ~p is large, the wavefunction crosses the barrier already at a point where U ≈ Vp,

and the wavefunction will receive an additional suppression by an exponential in ~p, due to

tunneling through this thicker barrier. We shall refer to this class of solutions as trapped

modes. They play a crucial role in our analysis, as they are the quantum equivalent to

nonradial null-geodesics that cannot reach the boundary.

We may study the behavior of these free and trapped modes by solving the Schrödinger

equation (3.7) in a Lifshitz background. It is convenient to scale out the energy E by in-

troducing the dimensionless coordinate

ζ = Eρ. (3.13)

Then (3.7) becomes −ψ′′(ζ) + (U − 1)ψ(ζ) = 0 where

U =
ν2
z − 1/4

ζ2
+
α

ζk
, (3.14)

with

νz =
1

z

√
(mL)2 + (d+ z)2/4, α =

(
EL

z

)k ( ~p
E

)2

, k = 2(1− 1/z). (3.15)

Since the null energy condition demands z ≥ 1, we generally focus on the case 0 < k < 2.

(The k = 0, or pure AdS, case is familiar and can be treated by standard methods.) In this

case, the boundary (ζ → 0) behavior of U is ∼ 1/ζ2, while the horizon (ζ →∞) behavior

is ∼ 1/ζk.

Near the boundary, we have

− ψ′′ + ν2 − 1/4

ζ2
ψ ≈ 0 ⇒ ψ ∼ Aζ1/2−ν +Bζ1/2+ν . (3.16)
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Using (3.11), (3.13) and (3.6), we can express the behavior of the original Klein-Gordon

field in terms of the original coordinate r as

φ ∼ Â
( r
L

)∆−
+ B̂

( r
L

)∆+

, (3.17)

where

Â = A

(
EL

z

)1/2−ν
, B̂ = B

(
EL

z

)1/2+ν

, ∆± =
d+ z

2
±

√
(mL)2 +

(
d+ z

2

)2

.

(3.18)

We will consider only the mass range where the first solution (related to A) is non-

normalizable with respect to the Klein-Gordon norm, while the second solution (related to

B) is normalizable. Via the AdS/CFT correspondence, non-normalizable modes represent

classical sources of an operator O at the boundary, which redefine the Hamiltonian of the

field theory [52–54]. Normalizable fluctuations are placed on top of these classical sources

and they correspond to different states in the field theory, or equivalently expectation values

of O [30, 31].3 We will only be interested in the situation where the boundary Hamiltonian

is fixed, so we will consequently treat non-normalizable solutions as non-fluctuating. The

fluctuating modes to be quantized are thus the normalizable modes given by B. As a result,

we will end up setting A = 0 and investigating the consequences of doing so.4

Turning now to the horizon, we see that both terms in (3.14) fall off as ζ →∞. Hence

the horizon behavior is given by5

− ψ′′ − ψ ≈ 0 ⇒ ψ ∼ aeiζ + be−iζ . (3.19)

In terms of the original r coordinate, this becomes

ψ ∼ a exp

(
i
EL

z

( r
L

)z)
+ b exp

(
−iEL

z

( r
L

)z)
, (3.20)

so that

φ ∼ a
( r
L

)d/2
exp

(
i
EL

z

( r
L

)z)
+ b

( r
L

)d/2
exp

(
−iEL

z

( r
L

)z)
. (3.21)

The horizon modes correspond to infalling and outgoing waves, given by a and b, respec-

tively. Since the wave equation is second order and linear, the boundary data (A,B) must

be linearly related to the horizon data (a, b). AdS/CFT correlators are generally com-

puted by taking infalling conditions at the horizon, corresponding to b = 0, while bulk

3Lifshitz spacetimes present some subtleties when considering alternate quantizations. The range of

masses for which both boundary conditions are normalizable is larger than in the AdS case, but modes

which would not be normalizable in AdS (but apparently are in Lifshitz) suffer from a novel instability.

Particularly in these cases it appears more difficult to redefine the Hamiltonian in the usual way [55–57].
4Note that this is in contrast with the computation of AdS/CFT correlators, where B is interpreted as

the response to turning on a source A.
5For simplicity, we have assumed 1 < k < 2. For 0 < k ≤ 1, the horizon falloff ∼ 1/ζk is insufficiently

fast, and the potential becomes long-ranged. This introduces a correction to the horizon behavior of the

wavefunction. However, this is unimportant for our discussion, as we have no need for the asymptotic

phase of ψ in the classically allowed region.
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normalizable modes are given instead by taking A = 0 at the boundary. Of course, the

precise relation between boundary and horizon data can only be obtained by solving the

wave equation. While this cannot be performed in general, the exact solution is known for

z = 2, where the potential U is analytic. We now turn to this case, as it provides a clean

example of the behavior of trapped modes and in particular the exponential suppression

that they receive when tunneling under the barrier in the potential.

3.2 A specific example: z = 2 Lifshitz

For a pure Lifshitz background with z = 2, or k = 1, the potential (3.14) is analytic in ζ

and the Schrödinger equation takes the form

− ψ′′ +
(
ν2 − 1/4

ζ2
+
α

ζ
− 1

)
ψ = 0, (3.22)

where α = ~p 2L/2E. As this is essentially Whittaker’s equation, the solution can be written

in terms of the Whittaker functions M−iα/2,ν(−2iζ) and W−iα/2,ν(−2iζ), or equivalently

in terms of confluent hypergeometric functions [17]. Expanding for ζ → 0 and demanding

that ψ satisfies the boundary asymptotics (3.16) for normalizable and nonnormalizable

modes gives

ψ =

[(
i

2

) 1
2

+ν

B −
(
i

2

) 1
2
−ν Γ(−2ν)Γ(1

2 + ν + iα
2 )

Γ(2ν)Γ(1
2 − ν + iα

2 )
A

]
M−iα/2,ν(−2iζ)

+

[(
i

2

) 1
2
−ν Γ(1

2 + ν + iα
2 )

Γ(2ν)
A

]
W−iα/2,ν(−2iζ). (3.23)

For the horizon, we expand for large ζ and compare with (3.19) to obtain

ψ =

[
e−πα/4

Γ(1
2 + ν + iα

2 )

Γ(1 + 2ν)
2−iα/2b

]
M−iα/2,ν(−2iζ)

+

[
eπα/42iα/2a+ eiπ( 1

2
−ν)eπα/4

Γ(1
2 + ν + iα

2 )

Γ(1
2 + ν − iα

2 )
2−iα/2b

]
W−iα/2,ν(−2iζ). (3.24)

Comparing (3.23) with (3.24) gives the relation between horizon and boundary coefficients

A = (2i)
1
2
−ν Γ(2ν)

Γ(1
2 + ν − iα

2 )
eπα/4

(
2−iα/2b− eiπ( 1

2
+ν) Γ(1

2 + ν − iα
2 )

Γ(1
2 + ν + iα

2 )
2iα/2a

)
,

B = (2i)
1
2

+ν Γ(−2ν)

Γ(1
2 − ν −

iα
2 )
eπα/4

(
2−iα/2b− eiπ( 1

2
−ν) Γ(1

2 − ν −
iα
2 )

Γ(1
2 − ν + iα

2 )
2iα/2a

)
. (3.25)

The usual computation of the retarded Green’s function proceeds by taking infalling

boundary conditions at the horizon, namely b = 0, and then computing B̂/Â. However,

for the local bulk reconstruction that we are interested in, we actually want to consider

– 12 –
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the space of normalizable modes, as they are the ones that span the Hilbert space in the

bulk.6 Normalizable modes correspond to taking A = 0, so that

ψnormalizable ∼M−iα/2,ν(−2iζ). (3.26)

Comparing (3.23) with (3.24) then gives the relation between bulk and boundary coeffi-

cients for normalizable modes

B

b
= 2−iα/2

(
2

i

) 1
2

+ν Γ(1
2 + ν + iα

2 )

Γ (1 + 2ν)
e−πα/4. (3.27)

Note that M−iα/2,ν(−2iζ) is essentially a standing wave solution in the classically allowed

region ζ > ζ0, where ζ0 is the classical turning point. Since this interval is semi-infinite,

the wavefunction must be normalized by fixing the amplitude b of these oscillations. Hence

the ratio B/b is a direct measure of the amplitude of properly normalized wavefunctions

at the boundary.

Recall our previous distinction between the two different types of tunneling solutions:

‘free’ vs. ‘trapped’ modes. Modes with small momenta p at fixed E (α � ν) are ‘free

modes’. For these modes, we have, up to an overall phase

|B|
|b|
≈

2ν+ 1
2 Γ
(

1
2 + ν

)
Γ (1 + 2ν)

. (3.28)

The tunneling process produces the typical scaling behavior ∼ ρ∆+ at the boundary, but

there is no exponential suppression. For large momenta (α� ν) the modes are ‘trapped’,

and we find instead

|B|
|b|
≈
√

4πe−(ν+ 1
2)

Γ (1 + 2ν)
ανe−πα/2. (3.29)

These modes have to tunnel not only through the 1/ρ2 potential near the boundary, but

also through the wider momentum barrier Vp ∼ p2/ρ at larger ρ. This causes the solution

to be exponentially suppressed when it reaches the boundary. We conclude that the z = 2

Lifshitz metric allows for ‘trapped modes’, which have arbitrarily small boundary imprint

for large p.

Clearly, we could have obtained the exponential suppression factor e−πα/2 in (3.29) by

simply setting Vm = Vcos = 0 in the Schrödinger potential. More generally, since the size

of Vp is controlled by p2, in any interval [ρ1,ρ2] away from the boundary, i.e. in any region

where the potential U is bounded, at large enough p the difference in amplitudes between

the points ρ1 and ρ2 will always be governed by an exponential relation like (3.29). For the

purpose of determining whether or not trapped modes exist in a given spacetime, it will

therefore be enough to study the equivalent tunneling problem in the potential U ≡ Vp.

We will come back to this issue later.

6From the Hamiltonian picture, the natural norm is the Klein-Gordon norm, which is in fact compatible

with the norm for the Schrödinger equation (3.7).
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3.3 WKB approximation

In order to study the existence of trapped modes in spacetimes beyond exact z = 2 Lifshitz,

it will be useful to have a formalism that provides a qualitative description of the behavior

of tunneling modes even for cases where an analytic solution might not exist. This will

allow us to study Lifshitz with z 6= 2, as well as more general backgrounds (2.2) with

nontrivial W , B and C. The WKB method provides us with just such a formalism. We

make the standard ansatz

ψ ∼ 1√
P (ρ)

e
∫
dρ′P (ρ′). (3.30)

For slowly-varying potentials, we can plug this back into (3.7) and solve perturbatively for

P . The details of this calculation can be found in appendix A. To lowest order, P 2 ≈ U−E2

and the solution interpolates between an oscillating region in the bulk and a tunneling re-

gion near the boundary. More explicitly, we have

ψ (ζ) =


(
U − E2

)− 1
4
[
CeS(ρ) +De−S(ρ)

]
, ρ < ρ0;(

E2 − U
)− 1

4
[
aeiΦ(ρ) + be−iΦ(ρ)

]
, ρ > ρ0,

(3.31)

where ρ0 is the classical turning point and we defined the action S (ρ) =
∫ ρ0

ρ dρ′
√
U − E2

and a phase Φ (ρ) =
∫ ρ
ρ0
dρ′
√
E2 − U . For potentials that behave as U ∼ 1/ρ2 near the

boundary (which includes both asymptotically AdS and Lifshitz spacetimes), one has to

include an additional correction term U → U + 1/(2ρ)2 (See appendix A for more details).

Using the WKB matching procedure between the two asymptotic regions, we find

C =
(
e−i

π
4 a+ ei

π
4 b
)
,

D =
i

2

(
e−i

π
4 a− ei

π
4 b
)
. (3.32)

The exponential growth/decay of the solution in the classically forbidden region is manifest

in the dependence on S in (3.31), which roughly corresponds to the area of the tunneling

barrier. The wider/higher the barrier, the larger the corresponding factor eS is. We are

only interested in the normalizable, or decaying solution near the boundary, so we will have

to set C = 0. Up to a finite error, the WKB approximation then accurately captures the

boundary behavior of this solution, and in particular the exponential suppression between

bulk and boundary amplitudes.7

We can compare this WKB approximation with the exact solution for z = 2 from

section 3.2. Figure 4 shows a plot of the WKB solution for z = 2 Lifshitz, compared to the

exact solution. As we can see, the WKB approximation accurately captures the exponential

momentum-suppression at large α. (See also appendix A for further ‘benchmark tests’.)

In the next section, we will use the WKB formalism to investigate for which spacetimes

smearing functions exist.

7Notice however that calculating the ratio B/A, which is needed to calculate the standard field theory

Green’s function, would not be possible. This is due to the fact that for a general solution, the normalizable

solution ∼ e−S can ‘hide’ under the non-normalizable part ∼ eS , which grows much faster as ρ → 0. We

discuss this issue further in the appendix following (A.39).
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Figure 4. Plot of the WKB (dashed) and exact (solid) boundary normalization factor |B|/|b| as

a function of α. Here we have taken z = 2 and ν = 1. The large α behavior is exponentially

suppressed, |B|/|b| ∼ ανe−πα/2.

4 Smearing functions in Lifshitz spacetimes

In this section, we review the use of smearing functions as a way to reconstruct bulk physics

from boundary dynamics [30–36]. Using the WKB formalism developed in appendix A, we

will show that for Lifshitz spacetimes, and more generally for any flow involving Lifshitz,

such reconstruction is not possible.

First, recall that the normalizable solutions of the Klein Gordon equation can be used

to construct the Hilbert space of the bulk theory in the following way: we decompose the

scalar as

φ (t, ~x, r) =

∫
dEddp

1

NE,p

(
φE,p (t, ~x, r) aE,p + φ∗E,p (t, ~x, r) a†E,p

)
, (4.1)

where aE,p are operators, NE,p ≡ 〈φE,p, φE,p〉
1
2 and 〈·, ·〉 is the Klein-Gordon inner product,

defined by

〈f, g〉 ≡ i
∫

Σ
ddxdr

√
−gg00 (f∗∂tg − (∂tf

∗) g) . (4.2)

Here, the integral is to be taken over a spacelike slice Σ.8 If we choose
〈
φE,p, φ

∗
E,p

〉
= 0,

i.e. pick definite frequency solutions, the a and a† are the usual creation/annihilation op-

erators for particles with wavefunction φE,p. We can create all possible states in the Fock

space by repeatedly acting with a† on the vacuum |0〉AdS. In Lorentzian AdS/CFT, the

bulk-boundary dictionary states that there exists a boundary operator defined by

O (t, ~x) ≡ lim
r→0

r−∆+φ (t, ~x, r) , (4.3)

8This norm accords with the norm preserved by the effective Schrödinger equation in (3.7).
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which is sourced by the classical, non-normalizable solution φcl behaving as r∆− at the

boundary. Taking the above limit in (4.1), we arrive at

O (t, ~x) =

∫
dEddp

1

NE,p

(
ϕE,p (t, ~x) aE,p + ϕ∗E,p (t, ~x) a†E,p

)
. (4.4)

Here ϕE,p ≡ limr→0 r
−∆+φE,p. The remarkable fact is that the boundary operator can be

expanded in terms of the same a,a† as the bulk field [31]. Thus, to create an arbitrary state

in the bulk we can use either bulk operators or boundary operators that are ‘smeared’ over

~x and t in an appropriate way. For example, for a single-particle state we have

aE,p =

∫
dt′ddx′NE,pϕ

∗
E,p

(
t′, ~x′

)
O
(
t′, ~x′

)
, (4.5)

so the state |E, p〉AdS can be built entirely out of local boundary operators, and so on.

Here we need to assume that the ϕ are normalized such that∫
dEddpϕ∗E,p (t, ~x)ϕE,p

(
t′, x′

)
= δ

(
t− t′

)
δ
(
~x− ~x′

)
. (4.6)

Notice that (4.6), and not (4.2), is the relevant inner product here. This is because the ϕE,p
are not solutions to any equation of motion at the boundary; rather, they are a set of com-

plete functions.9 The condition (4.6) is not in tension with the Klein-Gordon normalization

condition in the bulk, since we have explicitly factored out NE,p in (4.1).

Equation (4.5) induces an isomorphism between the Fock-space representations of the

bulk and boundary Hilbert spaces. The question we would like to answer is whether we

can express any operator in the bulk entirely in terms of local boundary operators. In

particular, we would like to reconstruct φ from its corresponding boundary operator O.

We make the ansatz

φ (t, ~x, r) =

∫
dt′ddx′K

(
t, ~x, r|t′, ~x′

)
O
(
t′, ~x′

)
, (4.7)

where K is called a smearing function. We can plug (4.5) back into (4.1) to obtain:

K
(
t, ~x, r|t′, ~x′

)
=

∫
dEddpφE,p (t, ~x, r)ϕ∗E,p

(
t′, ~x′

)
. (4.8)

Note that this K differs from the usual bulk-to-boundary propagator in that it is a re-

lationship among normalizable modes. In order to interchange the order of integration

above, we need to assume that K has a well-defined Fourier transform. As we discuss

in more mathematical detail in section 6, the Fourier transform needed to compute K is

not well-defined; this is the sense in which we claim ‘K does not exist’. For now, we will

proceed by attempting to compute K as if it did have a well-defined transform.

In Lifshitz spacetime, the normalizable solutions are given by

φE,p = e−i(Et−~p·~x)fE,p = e−i(Et−~p·~x)e−
d
2
BψE,p. (4.9)

9In other words: O is an off-shell operator.
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Near the boundary,

ψ ≈ BE,pζ
1
2

+ν ≡ B̂E,prz(
1
2

+ν), (4.10)

so that

ϕE,p = lim
r→0

r−∆+φ = e−i(Et−~p·~x)B̂E,p. (4.11)

The normalization condition (4.6) then requires |B̂E,p| = (2π)−(d+1)/2. Let us now use

the WKB approximation. For normalizable solutions, we have C = 0, or a = −ib, so the

normalization of the wavefunction is fixed by

|b| = ν
1
2 z

1
2

+ν (2π)−
d+1

2 lim
y→0

yνeS(y). (4.12)

The properly normalized WKB solution is then given by

ψE,p (ρ) =

(2π)−
d+1
2 ν

1
2 z

1
2

+ν
(
U + ∆U − E2

)− 1
4 limy→0 y

νeS(y)−S(ρ), ρ < ρ0;

ei
π
4 (2π)−

d+1
2 ν

1
2 z

1
2

+ν
(
E2 − U −∆U

)− 1
4 limy→0 y

νeS(y)
[
e−iΦ(ρ) − ieiΦ(ρ)

]
, ρ > ρ0,

(4.13)

where S (ρ) =
∫ ρ0

ρ dρ′
√
U + ∆U − E2, Φ (ρ) =

∫ ρ
ρ0
dρ′
√
E2 − U −∆U and ∆U ≡ 1/ (2ρ′)2

(see appendix A).

Using this result, we can write our candidate smearing function as

K = e−
d
2
B

∫
dE

(2π)
1
2

ddp

(2π)
d
2

ei(E(t′−t)−~p·(~x′−~x))ψE,p. (4.14)

We recognize this integral as the inverse Fourier transform of ψE,p. We will now show that

this object does not exist10 because ψ grows exponentially with momentum p.

First, let E and ρ be fixed. We then choose p large enough so ρ < ρ0, i.e. so the ρ we are

considering is in the tunneling region. This choice is possible for any ρ. For concreteness,

we can choose

p2 > E2ρk. (4.15)

Then ∣∣∣∣ limy→0
yνeS(y)−S(ρ)

∣∣∣∣ = lim
y→0

yν exp

(∫ ρ

y
dρ′

√
ν2

(ρ′)2 +
p2

(ρ′)k
− E2

)
, (4.16)

and the integral is real-valued. Now let 0 < λ < 1 such that y < λρ < ρ and split the

integral accordingly: ∫ ρ

y
=

∫ λρ

y
+

∫ ρ

λρ
. (4.17)

Roughly speaking, the first integral provides the boundary data with the correct asymp-

totic y-dependence, while the second integral is responsible for the exponential behavior in

p. In the first integral, using (4.15), we find∫ λρ

y
dρ′

√
ν2

(ρ′)2 +
p2

(ρ′)k
− E2 > ν log

(
λρ

y

)
. (4.18)

10For a precise definition of what we mean by nonexistence, see section 6.
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In the second integral, for p large enough11 we can find a constant 0 < c < 1 such that∫ ρ

λρ
dρ′

√
ν2

(ρ′)2 +
p2

(ρ′)k
− E2 >

∫ ρ

λρ
dρ′

cp

(ρ′)
k
2

= czρ
1
z

(
1− λ

1
z

)
p. (4.19)

Putting everything together, we conclude that for E and ρ fixed, there exist c, λ ∈ (0, 1)

and p0 such that ∣∣∣∣ limy→0
yνeS(y)−S(ρ)

∣∣∣∣ > (λρ)ν exp
[
czρ

1
z (1− λ

1
z )p
]
, (4.20)

for all p > p0. Hence the function ψE,p grows exponentially with p and the smearing

function defined in (4.8) does not exist.12

The inability to construct a smearing function is due to the existence of trapped modes,

which have to tunnel through Vp to reach the boundary. The boundary imprint of these

modes is suppressed by a factor of e−cp, where c is some positive constant depending on the

geometry. However, the normalization condition (4.6) turns this suppression into an expo-

nential amplification: for any given mode the smearing function takes the corresponding

boundary data and amplifies it by an appropriate factor to reconstruct bulk information.

Consequently, trapped modes receive a contribution e+cp in the smearing function integral.

As p → ∞, the boundary imprint of trapped modes becomes arbitrarily small, and as a

result the smearing function integral diverges.

The splitting of the domain of integration into a near-boundary region [0, λρ] and a

bulk region [λρ, ρ] is crucial for our proof: in the near-boundary region, we use the fact

that no matter how large p is, we can make ρ′ small enough such that the cosmological-

and mass-terms in the potential dominate over Vp and we can approximate U ≈ ν2/(ρ′)2.

Modes that tunnel through this part do not contribute an exponential factor ∼ ep, but

rather produce the correct boundary scaling y−ν . This scaling is consequently stripped off

by the yν factor in (4.16). In the bulk region near ρ, however, there is a minimum value

that ρ′ can take, so as we drive p to infinity, eventually U ≈ p2/(ρ′)k becomes a very good

approximation. This is what produces the exponential factor in (4.20).

We see that there are two qualitatively different limits of the potential: ρ→ 0 and p→
∞. Both of them are important for understanding the behavior of (4.16), which is why we

need to pick 0 < λ < 1 to get a lower bound that reflects this behavior. Simply setting λ = 0

corresponds to approximating U ≈ p2/(ρ′)k everywhere. However, in doing so we would be

neglecting the boundary scaling y−ν , and consequently the lower bound (4.20) would be

zero. Similarly, λ = 1 corresponds to approximating U ≈ ν2/(ρ′)2 everywhere. While this

is certainly true for small ρ′, we would be missing the fact that the momentum part Vp of

the potential can still dominate in any interval away from the boundary (i.e. close to ρ)

and lead to exponential growth. The bound (4.20) would just be a constant independent

of p and we would not be able to make the same conclusion about the smearing function.

11For concreteness, choose e.g. p2 > E2ρk/(1− c2).
12This exponential behavior in p is distinct from the behavior of |B|/|b| in α (see e.g. (3.29)), since here

we are interested in the amplitude of the wavefunction at a fixed radial location ρ, and not its overall

normalization.
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Figure 5. Sketch of free (F) and trapped (T) modes for general case. Deforming the geometry in

the IR may introduce a cutoff (dotted line), but this line will always remain below the solid line,

and some trapped modes survive.

4.1 Momentum-space analysis

It is instructive to analyze the behavior of the integral (4.14) at large momenta in the

(E,|p|)-plane. We already saw that for fixed energy E, the smearing function diverges ex-

ponentially with |p|, as the tunneling barrier becomes arbitrarily large at high momenta.

However, this is not necessarily the only direction along which the integral diverges. Let

us introduce polar coordinates

|p| = q cos θ

E = q sin θ. (4.21)

Figure 5 shows a sketch of the spectrum in the (E,|p|)-plane: the solid line divides trapped

modes, which have to tunnel through Vp from ‘free’ modes, which only tunnel through

U ∼ 1/ρ2. If we imagine cutting off Lifshitz at some small value λρ with λ < 1, all modes

with E < (λρ)−
1
2 |p| (yellow region) are trapped modes.13 Let us study the integral which

defines the smearing direction. If we perform this integral along any direction θ over these

modes (i.e. tan θ < (λρ)−
1
2 ), the exponential term in the integrand behaves as

Re (S (y)− S (ρ)) =

∫ ρ

y
dρ′

√
ν2
z

(ρ′)2
+

(
1

(ρ′)k
− tan2 θ

)
q2 cos2 θ. (4.22)

For q large enough, this term grows linearly and the smearing function is exponentially

divergent. We see that the variable that controls the suppression (or amplification) due to

tunneling is in fact q =
√
E2 + p2, as opposed to just |p|.

13Notice that the choice of λ is arbitrary. In particular, along any line E = tan θ|p|, there is a choice of

λ such that all modes are below the momentum-barrier for large enough |p|. Nevertheless, because of the

subtleties discussed at the end of the previous section, we should not simply take λ→ 0 but instead work

with a small but finite value.
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4.2 No smearing function ⇔ singularities?

The divergence of the smearing function is due to trapped modes, which correspond to

classical geodesics that cannot reach the boundary. However, those are precisely the tra-

jectories that start and end at the tidal singularity at ρ → ∞, so their fate is not well-

understood even on the classical level. Therefore, one might wonder if the inability to

construct smearing functions is simply due to the presence of singularities. This question

has been raised before in the case of black hole solutions in AdS14 [38, 39]. Fortunately,

in our case there are known ways to resolve the singularity, so we can directly test the

conjecture that non-existence of smearing functions is related to singularities.

In the context of Einstein-Maxwell-dilaton systems [24], the Lifshitz singularity can

be resolved by including corrections to the dilaton effective potential. For magnetically

charged branes, the dilaton runs towards strong coupling in the IR. Using a toy-model of

the quantum corrected action, the authors of [21] showed that the Lifshitz geometry can

be resolved into an AdS2 × R2 region in the deep IR. For electrically charged solutions,

the dilaton runs towards weak coupling near the horizon, and higher derivative corrections

become important. In [23], two of the current authors showed that by coupling the dilaton

to higher curvature terms in an appropriate way, the singularity can be resolved in a similar

fashion. In particular, numerical solutions were constructed that interpolate between AdS4

in the UV to Lifshitz in some intermediate regime, and finally to AdS2 × R2 in the deep

IR. We would like to use these numerical flows to test whether resolving the singularity

can make the smearing function well-defined.

As a warm-up, consider the following analytical toy-model describing such a flow:

e2A =
1

ρ2
,

e2B =


1
ρ2 , 0 < ρ < R1;

1
Rk1ρ

2−k , R1 < ρ < R2;

1
Rk1R

2−k
2

, R2 < ρ,

C = A. (4.23)

The last condition is a gauge choice, which fixes our radial coordinate to be ρ, as defined

in (3.4). The potential is given by

U (ρ) =


ν2
1−

1
4

ρ2 + p2, 0 < ρ < R1;

ν2
z− 1

4
ρ2 + p2

(
R1
ρ

)k
, R1 < ρ < R2;

ν2
∞− 1

4
ρ2 + p2

(
R1
R2

)k (
R2
ρ

)2
, R2 < ρ,

(4.24)

where νz was defined in (3.15), and 0 < k < 2. All modes with p > E, or equivalently

tan θ < 1 are trapped. It is interesting to note that since the potential goes to zero as

14However, we should point out that the two types of singularities encountered here are qualitatively

different. In the Lifshitz case, the singularity is ‘mild’, in the sense that all curvature invariants remain

finite. It is, however, felt by strings that fall towards the horizon [48].
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ρ → ∞, there are now modes that are below the barrier in the AdSd+2 region. For pure

AdS, this is not possible, as the wavefunction cannot be below the barrier everywhere.

Let us see if a smearing function exists for any point ρ in the bulk. For 0 < ρ < R1,

we need to compute

∣∣∣∣ limy→0
yνeS(y)−S(ρ)

∣∣∣∣ = lim
y→0

yν exp

Re

∫ ρ

y
dρ′

√
ν2

1

ρ′2
+ (1− tan2 θ) q2 cos2 θ

 . (4.25)

Naively, one might expect that since we are integrating all the way up to the boundary at

ρ = 0, the 1/ρ2-term will eventually dominate and there is no q-divergence. However, we

have seen before that it is necessary to split the integral into a near-boundary region and a

bulk region, according to (4.17). The near boundary integral will then produce the typical

boundary scaling y−ν , while the bulk integral will grow linearly for trapped modes. In com-

plete analogy with (4.20) we find that there exist constants q0, c > 0 and λ ∈ (0, 1) such that∣∣∣∣ limy→0
yν1eS(y)−S(ρ)

∣∣∣∣ > (λr)ν1 ecq,

for all q > q0. Again, even though the 1/ρ2 part of the potential dominates near the

boundary, there is still an exponential divergence due to trapped modes, and the smearing

function does not exist in the AdS region.

For points within the Lifshitz region (R1 < ρ < R2), the relevant integral contains an

integral over the AdSd+2 region, which is divergent by itself, plus an additional term

∫ ρ

R1

dρ′

√√√√ ν2
z

ρ′2
+

((
R1

ρ′

)k
− tan2 θ

)
q2 cos2 θ. (4.26)

This integral gives a real contribution for tan θ < (R1/ρ)k/2, which grows linearly with

large q. Hence the smearing function still grows like ec
′q, but now c′ > c and it diverges

even faster than in the AdSd+2 part.

The same logic can be applied to a point within the AdS2×Rd region in the IR (ρ > R2).

In this case there is a contribution from both AdSd+2 and Lifshitz, plus a contribution

∫ ρ

R2

dρ′

√√√√ν2
∞
ρ′2

+

((
R1

R2

)k (R2

ρ′

)2

− tan2 θ

)
q2 cos2 θ. (4.27)

Modes with tan θ < (R1/R2)k/2R2/ρ begin to tunnel already in the AdS2×Rd part of the

potential, and so the smearing function will diverge even faster at large q. The final result

is that there is no smearing function for any point ρ in the bulk. The trapped modes lead

to an exponential divergence which becomes worse the deeper we try to reach into the bulk.

Let us now check that the result obtained for the toy-model (4.23) is indeed correct also

for the exact numerical solution found in [23] (here d = 2). The effective potential is plotted

in figure 6. As p increases, the potential becomes better and better approximated by Vp
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Figure 6. Effective potential U for the numerical flow found in [23], for m = 1. The momentum

increases from bottom to top, with p = 0 (black), 102 (blue), 104 (red), 105 (green). At large

momenta, the potential is well approximated by Vp = e2W p2.

Figure 7. The factor e2W for the same numerical solution. The solution flows from AdS4 (e2W ≈
const.), to Lifshitz (e2W ∼ ρ1.45, corresponding to z ≈ 3.68) to AdS2 × R2 (e2W ∼ ρ−2).

(shown in figure 7). The metric coefficients and potential are of the form given in (4.23)

and (4.24), except that now there is a smooth transition between the three regions.

Figures 8–10 show the real part of S (y)− S (ρ) in the (E,|p|)-plane. Instead of taking

y to zero we choose y ≈ 10−15, which we may think of as disregarding the near-boundary

region of the ρ′-integral and starting at y = λρ. The thick line divides free (blue) modes

from trapped (yellow) modes. The contours represent lines along which Re (S(y)− S(ρ)) is

constant. If we keep E fixed and increase p, we cross the contours at approximately equal

distances, so the integral grows linearly in p. This is not only true for lines of constant E,

but for any line within the trapped region (i.e. any line that stays below the black solid

line). Hence the integral indeed diverges linearly with q =
√
E2 + p2, as was anticipated

in section 4.1.

Figure 11 shows Re (S (y)− S (ρ)) for three points representing AdS4, Lifshitz and

AdS2 × R2. The energy is held fixed at E = 1016 , such that at small p, the wavefunction
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Figure 8. Plot of Re (S(y)− S(ρ)) for a point within the AdS4 region (ρ ≈ 1.3 · 10−15). The

black solid line represents Vp = E2 and divides free (blue) from trapped modes (yellow). Contours

indicate lines of constant Re (S(y)− S(ρ)), with a linear increase between different contours.

Figure 9. Plot of Re (S(y)− S(ρ)) for a point within the Lifshitz region (ρ ≈ 9 · 10−8).

is oscillating everywhere. As we increase p, the mode eventually becomes trapped and the

real part of the integral grows linearly. Note that in the log-log plot used here, the three

curves lie nicely on top of each other. This fact confirms our prediction that the smearing

function diverges faster the deeper we try to reach into the bulk.

We conclude that resolving the tidal singularity is not enough to make the smearing

function well defined. The AdS2 × R2 region in the IR can be thought of as the z → ∞
limit of Lifshitz spacetime. As a consequence, Vp ∼ ρ−2, and there are still trapped modes

with arbitrarily small boundary imprint.

It is also worth commenting on the addition of an AdS region in the UV, as in (4.23),

which may seem desirable to make the holographic renormalization procedure better-

defined. We have seen explicitly that the integral over (4.25) is still divergent at large

momenta and a smearing function does not exist, even for points close to the boundary.

This is the quantum equivalent of the observation made at the end of section 2.1, that null

geodesics with large enough p still see a ‘Lifshitz barrier’ and remain trapped inside the

bulk, regardless of the near-boundary geometry.
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Figure 10. Plot of Re (S(y)− S(ρ)) for a point within the AdS2 × R2 region (ρ ≈ 1).

Figure 11. Plot of the real part of S(y)− S(ρ) vs. p at three different positions within the AdS4

(ρ ≈ 1.3 · 10−15), Lifshitz (ρ ≈ 9 · 10−8) and AdS2 ×R2 (ρ ≈ 1) regions (from bottom to top). The

energy is fixed at E = 1016 and we chose m = 1. For large momenta, the solution begins to tunnel

and contributes an exponential factor in K.

4.3 Other flows involving Lifshitz

The AdS2 × Rd geometry considered in the previous section is not the only possible IR

endpoint of the RG-flow for Lifshitz solutions. Ref. [18–20] have considered flows from

Lifshitz in the IR to an AdSd+2 fixed point in the UV. These flows are of particular interest

to us, since Vp does not go to zero as ρ→∞, but reaches a constant value corresponding to

the AdS geometry at the horizon. Consequently, some of the problematic trapped modes

never oscillate, and are thus removed from the spectrum. To see how this works, consider

the following toy-model of such a Lifshitz to AdSd+2 flow:

e2A =
1

ρ2
,
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e2B =

 1
ρ2−k , 0 < ρ ≤ R1;
Rk1
ρ2 , ρ > R1,

C ≡ A. (4.28)

The potential is given by

U (ρ) =


ν2
z− 1

4
ρ2 + p2

ρk
, 0 < ρ ≤ R1;

ν2
1−

1
4

ρ2 + p2

Rk1
, ρ > R1.

(4.29)

To compute the smearing function at some fixed ρ ≤ R1 we again split the interval [0,ρ]

into a near-boundary region [0, λρ] and a bulk region [λρ, ρ], where λ < 1. In the bulk

region, the potential can be approximated by Vp = p2/ρk for p large enough. Then, modes

with p > (λρ)k/2E are trapped by Vp. For ρ > R1, the potential takes a constant value. In

pure Lifshitz, modes with p < R
k/2
1 E would have been oscillating in this region. However,

these modes are now completely under the barrier and therefore have to be excluded from

the spectrum. The AdSd+2 region in the IR thus introduces a natural (energy-dependent)

momentum cutoff.

Nevertheless, there is still a finite wedge of trapped modes with R
−k/2
1 < tan θ <

(λρ)−k/2 (cf. figure 5) and integrating up to q =∞ will produce the same divergent behavior

as before. In section 5.1, we will give a general argument as to why this has to be the case,

and show that no smooth IR-deformation can remove all trapped modes from the spectrum.

5 Generalization

We have seen that the construction of smearing functions can fail if there are modes that

have to tunnel through a momentum barrier in the potential. The integral (4.8) diverges

if such modes exist at arbitrarily large q =
√
E2 + p2. In this section, we will generalize

our previous findings to prove that smearing functions do not exist for any geometries that

allow trapped modes.

Consider a background that satisfies

∂ρe
W < 0 for ρ ∈ [ρ1, ρ2]. (5.1)

We would like to compute the smearing function at a bulk point ρ > ρ1. All modes with

Vp (ρ1) > E2 have to tunnel through some part of Vp and are therefore trapped modes.

Let us write the integral defining the smearing function in (4.8) as
∫
dEd|p|

∫
dΩd−1 and

focus on the integral in the (E,|p|)-plane. The domain of integration is shown in figure 5,

where free and trapped modes are separated by the solid line E2 = Vp (ρ1). Choosing polar

coordinates (4.21), we find that the exponential part of the integrand satisfies

Re (S (y)− S (ρ)) > Re

∫ ρ2

ρ1

dρ′
√
Vm(ρ′) + Vcos(ρ′) +

(
e2W (ρ′) − tan2 θ

)
cos2 θq2

Since the integration domain does not include the boundary, the first two terms under the

square root are bounded. Thus, for tan θ < eW (ρ1), the integral grows linearly with large
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q and the smearing function diverges exponentially. The divergence appears not only at

fixed E, but under any angle in the yellow region of figure 5.

Consequently, if a geometry has trapped modes that are below the barrier at some ρ1,

a smearing function does not exist for any ρ > ρ1. From the null energy condition (2.6)

and the discussion thereafter, we know that once ∂ρe
W is negative for some ρ1, it cannot

be positive for any ρ < ρ1. Thus, once the wavefunction is below the Vp barrier, it will

stay below it as we go towards the boundary. Using the terminology introduced in sec-

tion 2, trapped modes cannot become free near the boundary. Therefore, when computing

the smearing function K (t, x, ρ|t′, x′), there is an exponential contribution from trapped

modes regardless of which bulk point ρ we consider.

The condition (5.1) makes it is easy to identify geometries without smearing functions.

Clearly, Lifshitz has ∂ρe
W < 0 everywhere, and as we saw earlier, K does not exist. If

we instead consider flows that involve only a finite region with broken Lorentz invariance,

such that (5.1) is satisfied in some region, we still have trapped modes, and the smearing

function will not exist. This analysis includes flows involving a Lifshitz region, as well as

hyperscaling geometries with Lifshitz scaling. Our analysis above shows that none of these

geometries admit smearing functions, provided the spacetime satisfies the NEC.

5.1 Removing trapped modes via deformations

In our discussion above, we always assumed that the momentum-space integral (4.8) does in

fact include trapped modes with arbitrarily large q on some set of nonzero measure. This is

clearly the case in the examples mentioned above. On the other hand, the smearing function

for AdS converges because modes with p2 > E2 are simply not part of the spectrum, as

the corresponding wavefunction would have to be below the potential globally.

One might wonder if it is possible to ‘fix’ a geometry which a priori does not admit a

smearing function, by removing all trapped modes from the spectrum in a physical way.

The AdS example gives us a hint on how one might accomplish this task: if the geometry

is deformed in the deep IR such that would-be trapped modes never actually oscillate, they

would simply not be allowed.

Following our discussion of the null energy condition in section 2, it follows that there

are only three relevant IR asymptotics that we need to consider:

1. eW decreases monotonically to a constant value µ > 0.

2. eW attains a minimum value µ > 0, but then goes to constant M > µ.

3. eW attains a minimum value µ > 0, but then goes to infinity.

Trapped states are equivalent to tunneling states in the potential Vp = p2e2W . For p

large enough, these states always exist [58]. This can be seen heuristically by bounding

the potential from above with an appropriate square-well potential Ũ (ρ) (see figure 12).

Therefore, no smooth deformation can ever remove all trapped modes from the spectrum.

As an example, consider case 1, which captures the case of the Lifshitz to AdSd+2 flow

discussed in section 4.3. The AdS region introduces an energy-dependent momentum cutoff
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Figure 12. Sketch of Vp for a potential satisfying (5.1). This includes deformations of AdS and

flows involving Lifshitz. Using the min-max principle, the energy levels are bounded from above

by those of a square-well potential. In the large p limit, there are always trapped modes. The

near-horizon behavior of the potential is irrelevant for our discussion.

p < E/µ. However, since µ is by definition a global minimum and (5.1) holds, we clearly

have µ < eW (ρ1). Although the cutoff may remove some trapped modes from the spectrum,

there will always remain a wedge of trapped modes that gives a divergent contribution when

integrated over (see figure 5). We conclude that spaces without a smearing function cannot

be deformed smoothly to make the smearing function well-defined.

5.2 Adding trapped modes via deformations

Another interesting question is what happens if we take a geometry with a smearing func-

tion, such as AdS [32–34], and add a small (planar) perturbation in the IR. It can be seen

from (2.6) that eW must start with non-positive slope at the boundary for any background

that is asymptotically AdS.15 Since the potential scales with p, such a perturbation will

always introduce new trapped modes. In particular, the momentum-potential Vp = p2e2W

can always be bounded from above by a semi-infinite square-well potential of width l and

height h = p2h0, where h0 is some constant (see figure 12). For large enough p, the

square-well always admits bound states with p2 (1− h0) < E2 < p2 and, via the min-max

principle, so will Vp. As a result, the smearing function would be destroyed anytime the

metric is deformed by such a perturbation.

This result is interesting, as it opens up the possibility that ‘small’ perturbations

of AdS can make the smearing function ill-defined by introducing new trapped states.

However, we should keep in mind that our ansatz only allows for planar perturbations;

we cannot consider localized disturbances. It would be interesting to study the effect of

15If we do not insist on AdS asymptotics, then we could choose eW to immediately have a positive slope.

If eW has positive slope at some ρ+, the NEC dictates that eW cannot begin to decrease at some larger ρ.

Thus, in this scenario no trapped modes are introduced, and the smearing function will continue to exist

everywhere. In particular, we cannot have a situation akin to figure 5 in [39], where the potential has a dip

allowing trapped modes to become oscillating again close to the boundary.
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such perturbations in a more general setup. Again, notice that the ultimate IR fate of the

geometry with AdS behavior in the UV is not important for this discussion. In particular,

whether or not there is a singularity at r →∞ does not change the qualitative result.

5.3 Relativistic domain wall flows

Given the above considerations, one may get the impression that the smearing function no

longer exists for any geometry other than pure AdS. However, it is important to realize

that such a conclusion is in fact unwarranted. What we have seen is that the non-existence

of the smearing function is intimately tied to the presence of trapped modes with expo-

nentially small imprint on the boundary. Since such modes arise from the large p limit of

Vp = e2W ~p 2, they are naturally absent when W = 0, corresponding to flows preserving

(d+ 1)-dimensional Lorentz symmetry

ds2
d+2 = e2B(r)[−dt2 + d~x2

d] + e2C(r)dr2. (5.2)

In this case, the Schrödinger equation (3.7) is more naturally written as

− ψ′′ + (Vm + Vcos)ψ = (E2 − ~p 2)ψ. (5.3)

In particular, the effective potential Û = Vm + Vcos no longer scales with p.

In general, Û may admit bound states and/or modes trapped at the horizon. Although

bound states fall off exponentially outside the classically allowed region, since such states

occur only at fixed values of Q2 ≡ E2−~p 2, they will always have a non-vanishing (although

small) amplitude at the boundary. Hence the presence of such states do not present an

obstruction to the existence of a smearing function. Trapped modes at the horizon, on the

other hand, are potentially more troubling, as they may form a continuum spectrum with

a limit of vanishing amplitude on the boundary. However, it turns out that this possibility

does not prevent the construction of a well-defined smearing function K(t, x, r|t′, x) for

any fixed value of r. The point here is that since Û is independent of Q, the maximum

suppression factor to tunnel from the boundary to r is bounded by setting Q = 0 in (5.3).

As a result, it is impossible to make the suppression arbitrarily small. Hence we conclude

that the smearing function exists for finite r in the case of relativistic domain wall flows, al-

though the r →∞ limit of K may not exist if there are trapped modes that live arbitrarily

far from the boundary.

We see that it is generally possible to define a smearing function only for relativistic

flows, where W = 0 along the entire flow. Furthermore, for the case of AdSd+2 → AdSd+2

flows, the effective potential Û falls off as 1/ρ2 both in the UV and the IR. Since this

potential is too steep to admit trapped modes in the deep IR, there are no modes completely

removed from the boundary, and hence the r → ∞ limit of the smearing function is well-

defined. Thus in this case the entire bulk may be reconstructed.

6 Modifying the bulk-boundary dictionary

We have seen that for transverse Lorentz-breaking spacetimes with locally decreasing trans-

verse speed of light, the smearing function is not well defined, even after resolving potential
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singularities. Thus, we are left with the option of loosening some of our initial assump-

tions about this function and its corresponding entry in the bulk-boundary dictionary. In

particular, we need to reexamine our implicit assumption that K can reconstruct the bulk

up to arbitrarily small transverse length scales.

Let us be a bit more precise about what kind of mathematical object the smearing

function really is, and what we mean by saying that K does or does not exist. The

most general possible definition is to let the smearing function be any map from boundary

operators to bulk fields. However, a reasonable condition is that K defines a continuous,

linear functional on the space of boundary operators. Continuity means that for any

convergent sequence of boundary operators On we have

lim
n→∞

K [On] = K
[

lim
n→∞

On

]
. (6.1)

The difficulty in constructing such a K is due to the fact that the two limits are defined

with respect to very different norms. The bulk norm relevant for the left hand side is

the Klein-Gordon norm (4.2), while the boundary norm for O is given by (4.6). We have

seen that in spacetimes with ∂ρe
W < 0 locally, there exist nonzero bulk solutions that

have exponentially small boundary imprint, which provide an obstruction for constructing

continuous smearing functions.

Our strategy in this paper was to calculate a candidate smearing function K̂ in mo-

mentum space, and ask whether it defines a well-behaved object in position space. The

problematic case is when the function defined in this way grows exponentially, i.e. K̂ ≈ ecp.
Its action on a boundary field can be written in momentum space as

K [O] ∼
∫
dp K̂ (p) Ô (p) . (6.2)

Whether or not this integral is well-defined clearly depends on what we allow Ô to be: if Ô

is a square-integrable function, the smearing function has to be square-integrable as well,

which is clearly not the case here.

What if we impose a stricter fall-off condition at p→∞? One rather strict condition

would be that Ô falls off faster than any inverse power of p at infinity.16 A classic example

of such a function is a Gaussian ∼ e−p
2
. However, ecp is not a well-defined functional

on this space either. This can be seen by explicitly constructing a sequence of functions

with ‘arbitrarily small’ boundary imprint, i.e. a sequence that goes to zero in the boundary

norm. For example, consider

Ôn (p) ≡ e−cnΨ (p− n) , (6.3)

where Ψ is some bump-function. Attempting to reconstruct the corresponding bulk solu-

tion yields K[On] ∼
∫
dpΨ (p), which is independent of n, and in particular never equal to

zero. Using (6.1), this means that the smearing function is not continuous.

The only way to make sense of the smearing function is to completely avoid configu-

rations with arbitrarily small boundary imprint. This can only be achieved by introducing

16In other words: O is a Schwartz-function and K is a tempered distribution.
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a hard momentum cutoff Λ. In other words, we attempt to invert the bulk-boundary map

φ 7→ O only for configurations with Ô(p > Λ) = 0. Acting on these functions, the expo-

nential ecp is indeed a well-defined continuous functional, and the integral (6.2) converges.

There is, however, a price to pay: as is well-known, the Fourier transform of such compactly

supported functions does not have compact support. The position space wavefunction nec-

essarily has to ‘leak out’ to infinity, and thus full localization in the transverse direction

can never be achieved.17

7 Conclusion

Motivated by some of the difficulties that have been observed in trying to understand the

global structure of Lifshitz spacetimes, we have studied the possibility of bulk reconstruc-

tion from local boundary information. At the classical level, the presence of non-radial

null geodesics that do not reach the Lifshitz boundary provides a first hint that much of

the bulk data is inaccessible from the boundary. We have confirmed this heuristic picture

by studying smearing functions for a bulk scalar field and demonstrating that they do not

exist for Lifshitz spacetimes with z > 1. The reason for this is that there will always be

trapped modes in the bulk that have exponentially vanishing imprint on the boundary. It

is these modes and the information that they contain which cannot be reconstructed from

any local boundary data.

Of course, it is well known that a pure Lifshitz background has a tidal singularity

at the horizon. Since the trapped modes begin and end in the tidal singularity, we had

initially conjectured that resolving the Lifshitz singularity would remove such modes and

lead to a well-defined smearing function. However, this is not the case, as we have seen;

even with a regular horizon such as AdS2 × Rd or AdSd+2, there will be trapped modes

with vanishing imprint on the boundary as the transverse momentum is taken to infinity.

Thus the existence or non-existence of a smearing function is independent of the nature of

the horizon, and in particular whether it is singular or not.

More generally, we have seen that the constructibility of the smearing function depends

crucially on whether there exists a family of trapped modes with arbitrarily small suppres-

sion on the boundary. The only way this can arise is if the momentum dependent part of

the effective Schrödinger potential Vp = e2W ~p 2 has a local minimum or a barrier that grows

as p → ∞. Thus the question of whether the smearing function exists is closely related

to the behavior of the gravitational redshift factor e−W . In general, all non-relativistic

backgrounds such as Lifshitz and ones with hyperscaling violation (including flows with

such regions) do not admit smearing functions. The same is true for geometries such as

Schwarzschild-AdS, where e2W starts out as unity on the boundary, but vanishes at the

horizon [39]. On the other hand, smearing functions are expected to exist for backgrounds

withW = 0, i.e. ones preserving (d+1)-dimensional Lorentz invariance along the entire flow.

17Here we have taken the necessity of smearing φ in position space as an indication of nonlocality.

However, from a quantum point of view, a more proper indication of nonlocality would be the nonvanishing

of the commutator outside of the lightcone.
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The scaling of Vp with ~p 2 has the important consequence that any trapped mode will

always be suppressed on the boundary with a factor ∼ e−cq as q →∞, where q2 = E2 + ~p 2

and c is a geometry and radial location dependent positive constant. This gives rise to

the perhaps somewhat unexpected feature that, with the existence of trapped modes, the

smearing function K(t, x, r|t′, x) cannot exist even in an asymptotic AdSd+2 region near the

boundary, so long as r is at a fixed location. One may wonder why the presence of trapped

modes living in the IR would destroy the possibility of reconstruction of the UV region near

the boundary. The reason for this is that, while a trapped mode in the IR indeed has to

tunnel to reach the boundary, its amplitude does not immediately vanish in the interior of

the bulk geometry. Moreover, these modes can live at a finite distance from the boundary.

Hence they can have an imprint at any fixed r in the bulk, and yet vanish on the boundary.

It thus follows that the bulk information corresponding to such modes cannot be obtained

from the boundary, and thus the smearing function would not exist for any fixed value of r.

Since the existence of trapped modes with arbitrarily large values of q provides an

obstruction to the construction of a smearing function, one way around this difficulty is

to remove such modes by considering a hard momentum cutoff Λ. Another way to think

about this is that it may indeed be possible to reconstruct the bulk data from the boundary

information, but only up to a fixed momentum Λ. As Λ is taken larger, the reconstruction

becomes more difficult, as there would be larger amplification in going from the boundary

to the bulk due to the presence of trapped modes with larger values of q. With such a

cutoff, one would have good control of the near boundary region in the bulk. However, one

would lose complete localization in the transverse directions.

Finally, let us try to give at least a partial answer to the question raised in the title

of this paper. If we limit ourselves to a minimum spatial resolution, local operators in the

non-relativistic CFT do indeed contain all the relevant information about fields in the bulk

of Lifshitz and other ‘non-relativistic’ space-times. However, full locality in the transverse

direction cannot be achieved using smearing functions only, due to the presence of modes

with vanishing boundary imprint. If and how the missing local bulk information can be

extracted from the field theory remains an interesting open question. One possibility that

comes to mind is to make use of non-local operators in the field theory, such as Wilson-

loops [59]. Even more simply, as in [40, 42, 46], we could consider boundary-boundary 2-

point functions, which are also in some sense non-local boundary objects. At the very least,

our analysis demonstrates that some parts of the holographic dictionary for nonrelativistic

gauge/gravity dualities are more intricate than in the well-understood AdS/CFT case.
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A WKB approximation

Our proof that smearing functions do not exist in Lifshitz and various other nonrelativistic

spacetimes relies heavily on the use of WKB methods. While this approach in general only

leads to approximate solutions, it is nevertheless able to capture the important qualitative

behavior of the wavefunction that is needed in our analysis, up to a finite error. It is

therefore crucial to discuss this method, as well as its limitations, in some detail.

We would like to find approximate solutions to equations of the form

ψ′′ + Ω2(ζ)ψ = 0, (A.1)

with Ω2 > 0 as ζ →∞ and Ω2 ∼ −ζ−2 as ζ → 0. Furthermore, we shall assume that for a

given energy, there exists only one classical turning point with Ω2 (ζ0) = 0. To capture all

of these properties explicitly, we may write

Ω2 = K2 − 1

ζ2

(
ν2 − 1

4
+ µ (ζ)

)
, (A.2)

with limζ→0 µ (ζ) = 0 and ν > 1/2. Notice that for ν ≤ 1/2 the qualitative picture would

change considerably: the wavefunction becomes oscillating again close to the boundary,

which requires a different treatment. For Lifshitz spacetime, we have K = 1 and µ = αζ2−k,

where ζ ≡ Ex (see (3.14)). We now make the standard WKB-ansatz

ψ ∼ 1√
P (ζ)

ei
∫
dζ′P (ζ′). (A.3)

Plugging into (A.1), we arrive at a differential equation for P (ζ):

P 2 − Ω2 +
1

2

P ′′

P
− 3

4

(
P ′

P

)2

= 0. (A.4)

This equation can be solved perturbatively, assuming that the frequency Ω2 is slowly-

varying:

P 2 = Q0 + εQ1 + ε2Q2 + · · · , (A.5)

where

Q0 ≡ Ω2,

Q1 ≡
3

4

(
Ω′

Ω

)2

− 1

2

Ω′′

Ω
, (A.6)

. . . ,

and we introduced an explicit parameter ε that counts the number of derivatives and needs

to be set to 1 at the end. To lowest order, P 2 ≈ Ω2 and the error can be estimated by

comparing the size of the first order to the zeroth order term. Away from the classical

turning point ζ0, the full solution can be written as:

ψ (ζ) =


(
−Ω2

)− 1
4

[
Ce
−
∫ ζ
ζ0
dζ′
√
−Ω2

+De
∫ ζ
ζ0
dζ′
√
−Ω2

]
, ζ < ζ0;(

Ω2
)− 1

4

[
ae
i
∫ ζ
ζ0
dζ′
√

Ω2

+ be
−i
∫ ζ
ζ0
dζ′
√

Ω2
]
, ζ > ζ0.

(A.7)
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As is obvious from (A.6), the WKB approximation always breaks down near the turning

point. As usual, this can be dealt with by approximating the potential in the region close

to ζ0 by a linear function

Ω2 ≈ β (ζ − ζ0) , β ≡ dΩ2

dζ
(ζ0) > 0. (A.8)

In this region, the solution is then given in terms of the Airy functions:

ψ0 ≈ E1Ai
(
β

1
3 (ζ0 − ζ)

)
+ E2Bi

(
β

1
3 (ζ0 − ζ)

)
. (A.9)

It has the following asymptotics:

ψ0≈


(ζ0−ζ)−

1
4

2β
1
12
√
π

[
E1e

− 2
3

√
β(ζ0−ζ)

3
2 + 2E2e

2
3

√
β(ζ0−ζ)

3
2

]
, ζ � ζ0;

(ζ−ζ0)−
1
4

2β
1
12
√
π

[
(E2 − iE1) e

i
(
π
4

+ 2
3

√
β(ζ−ζ0)

3
2

)
+ (E2 + iE1) e

−i
(
π
4

+ 2
3

√
β(ζ−ζ0)

3
2

)]
, ζ � ζ0.

(A.10)

On the other hand, for ζ close to, but not too close to ζ0, the exponent in (A.7) can be

written as ∫ ζ

ζ0

dζ ′
√
|Ω2| ≈

{
−2

3

√
β (ζ0 − ζ)

3
2 , ζ < ζ0;

2
3

√
β (ζ − ζ0)

3
2 , ζ > ζ0.

(A.11)

Matching (A.10) and (A.7), we find

C =
(
e−i

π
4 a+ ei

π
4 b
)
,

D =
i

2

(
e−i

π
4 a− ei

π
4 b
)
. (A.12)

Near the boundary (ζ � 1), we then have

ψ(ζ) =
ζ

1
2(

ν2 − 1
4

) 1
4

(
CeS0(ζ) +De−S0(ζ)

)
, (A.13)

where

S0(ζ) ≡
∫ ζ0

ζ
dζ ′
√
−Ω2. (A.14)

Hence the solution near the boundary is determined entirely in terms of S0, which is given

as an integral over the effective potential.

As a check of the validity of the WKB approximation, let us determine whether Q1

in (A.5) remains small compared to Q0 for all ζ. Consider the slightly more general case

where Ω2 ∼ −ζ−s as ζ → 0. We find

Q1 = −s (s− 4)

16ζ2
. (A.15)

For s 6= 0, 4, this term blows up near the boundary. For s < 2, it blows up faster than

Q0 = Ω2 itself, thus rendering the WKB approximation invalid. For s > 2, it blows up
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slower than Ω2, so the relative error approaches zero and we should expect WKB to yield

accurate results. In the borderline case s = 2, which is the one that is interesting for us,

the first order correction is in general comparable to the zero-th order term. Hence the

lowest order approximation will a priori not give very accurate results.

Stated differently, for s = 2 the perturbative expansion (A.5) of P is not consistent,

since in general the order n and order n + 1 terms will mix. To avoid this mixing, we

need to find a way to explicitly move the −1/(4ζ2) to one lower order in the expansion.

Obviously, we could just declare

P 2 = Ω2 − 1

4ζ2
+O (ε) . (A.16)

This is equivalent to making the somewhat ad-hoc substitution ν2 → ν2 + 1/4 in (A.5). A

more rigorous way is to perform the following change of variables:

ζ ≡ ew,
ψ ≡ e

w
2 u. (A.17)

Then the Schrödinger equation reads

u′′ + ω2u = 0, (A.18)

where

ω2 ≡ e2w − ν2 − µ(w). (A.19)

It is easy to see that in these coordinates, the effective frequency is indeed slowly varying

both in the deep UV and the deep IR. In fact, one can check that the first order term Q1

becomes much smaller than Ω2 in both limits. We see that in the new variables (A.17), the

expansion (A.5) is consistent and the WKB solution is a good approximation everywhere,

except in the vicinity of the turning point.

Repeating the steps (A.7) to (A.13) for (A.18) and changing back to our previous

variables we arrive at

ψ =

(
ζ

ν

) 1
2 (
CeS(ζ) +De−S(ζ)

)
, (A.20)

with

S (ζ) ≡
∫ ζ0

ζ
dζ ′
√
−Ω2 +

1

4ζ ′2
. (A.21)

Not surprisingly, the effect of the coordinate transformation (A.17) is indeed to add an

effective potential ∆U = 1/(4ζ2) to (A.2). Therefore, all we need to do in practice is to

replace ν2 → ν2 + 1/4. Let us emphasize that (A.18) is in fact equivalent to (A.1), so this

substitution is now on a rigorous footing.

A.1 Example: AdS (z = 1)

For AdS, z = 1 and we have

Ω2 = 1−
ν2 − 1

4

ζ2
, (A.22)
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where

ζ =
√
E2 − p2ρ. (A.23)

Computing the integral (A.21), we find

S (ζ) = −
√
ν2 − ζ2 − ν

2
log

(
ν −

√
ν2 − ζ2

ν +
√
ν2 − ζ2

)
. (A.24)

Near the boundary (ζ � ν),

eS ≈
( e

2ν

)−ν
ζν . (A.25)

Plugging this result into (A.20) and rescaling back to the original field φ we arrive at the

familiar-looking result

φ (x) = Aρd−∆ +Bρ∆, (A.26)

where ∆ ≡ (d+ 1)/2 + ν, and

A = Ce−ν2ννν−
1
2
(
E2 − p2

) 1
4
− ν

2 ,

B = iDeν2−ν−1ν−ν−
1
2
(
E2 − p2

) 1
4

+ ν
2 . (A.27)

Notice that the inclusion of the correction term ∆U was crucial to obtain the correct

boundary behavior.

A.2 Example: z = 2 Lifshitz

For Lifshitz with z = 2, we have

Ω2 = 1−
ν2 − 1

4

ζ2
− α

ζ
. (A.28)

The classical turning point is at

ζ0 =
α

2

1 +

√
1 +

(
2ν

α

)2
 . (A.29)

In this case, the WKB integral (A.21) can be evaluated to give

S =−
√
ν2 + αζ − ζ2 − ν log

 ζ
(
2ν2 + αζ0

)
ζ0

(
2ν2 + αζ + 2ν

√
ν2 + αζ − ζ2

)


+
πα

4
+
α

2
arcsin

(
α− 2ζ√
4ν2 + α2

)
. (A.30)

In the near-boundary limit ζ/ν → 0, with α/ν held fixed, we find

eS ≈

(√
α2 + (2ν)2

(2ν)2

)−ν
exp

[
−ν +

α

2

(
π − arctan

(
2ν

α

))]
· ζ−ν . (A.31)
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Figure 13. Comparison of the WKB amplitude factor with the exact result for z = 2 and ν = 1,

3 and 10. The fractional WKB error is given by (ηWKB − ηexact)/ηexact, where η = |B|/|b|.

For α/ν � 1 this can be approximated as

eS ≈
( e

2ν

)−ν
ζ−ν , (A.32)

which is exactly what we found in the AdS case.

Hence high energy/low momentum modes do not “feel” the Lifshitz background, but

instead behave like they would in the AdS case. Those are precisely the “free modes”,

defined in section 3.1, which only have to tunnel through the ρ−2-part of the potential.

Notice that for finite momenta, the definitions of ζ in AdS (A.23) and Lifshitz (3.13) differ

slightly. They do however agree in the α→ 0 limit.

We are interested in the normalizable mode, which may be obtained by setting C = 0;

this furthermore implies D = e−i
π
4 b. Using (A.20), we see that

|B|
|b|

∣∣∣∣
WKB

=
eν√

ν(2ν)2ν
(α2 + 4ν2)ν/2 exp

[
−α

2

(
π − arctan

(
2ν

α

))]
. (A.33)

This may be compared with the exact z = 2 solution (3.27)

|B|
|b|

= 2
1
2

+ν |Γ(1
2 + ν + iα2 )|
Γ(1 + 2ν)

e−πα/4. (A.34)

As an example, we show the behavior of the WKB and exact solution as a function of α

for ν = 1 in figure 4.

It is straightforward to examine the behavior of the WKB and exact solutions in the

small and large α limits. The α/ν � 1 limit was already considered above. In the opposite

limit α/ν � 1, we find instead

eS ≈
( e

2ν

)−2ν
α−νe

απ
2 ζ−ν . (A.35)

Thus we obtain

|B|
|b|

∣∣∣∣
WKB

≈


(
e
2

)ν
ν−(ν+ 1

2), for αν � 1;
e2ν√
ν(2ν)2ν α

νe−
πα
2 , for αν � 1.

(A.36)
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This may be compared with the exact solution in the same limits

|B|
|b|
≈


2ν+ 1

2 Γ( 1
2

+ν)
Γ(1+2ν) , for αν � 1;
√

4π
Γ(1+2ν)α

νe−
πα
2 , for αν � 1.

(A.37)

This demonstrates that the WKB solution gives the correct α behavior for both small and

large α. Note that the ν dependent prefactors are different for finite ν, although they

coincide in the large ν limit. This can be seen in figure 13, where we plot the fractional

difference between the WKB result and the exact solution for several values of ν. In par-

ticular, while the asymptotic behavior |B|/|b| ∼ ανe−πα/2 is reproduced as α/ν →∞, the

fractional error approaches a constant for fixed ν

δ(|B|/|b|)
|B|/|b|

→ Γ(1 + 2ν)e2ν

√
4πν(2ν)2ν

− 1 =
1

24ν
+

1

1152ν2
+ · · · . (A.38)

One should keep in mind, however, that this will not affect our results on the absence of

smearing functions for the Lifshitz background, as what is important is the exponential

suppression near the boundary, and not the exact form of the prefactor.

Additionally, we did not need to know the exact relationship between the coefficient

C in (A.20) and the non-normalizable mode A; we only needed to know that setting

C = 0 forces A = 0. In fact, the WKB approximation cannot pick out more about the

relationship between A and C; it cannot see if there is any of the normalizable mode B

present in C as well. If we wanted to find the Green’s function, we would have trouble.

The Green’s function is the response of the normalizable boundary mode to sourcing by

the non-normalizable boundary mode, under infalling boundary conditions at the horizon;

that is, G = B/A|b=0. For the exact z = 2 solution, we find

B

A

∣∣∣∣
b=0

= (2i)2νe2πiν Γ(−2ν)

Γ(2ν)

Γ(1
2 + ν + iα

2 )

Γ(1
2 − ν + iα

2 )
. (A.39)

If we assume that the WKB term with coefficient C contributes only to the non-

normalizable mode with coefficient A, then from WKB we would find, in the large α

limit,
|B|
|A|

∣∣∣∣
WKB

=
( e

2ν

)4ν α2ν

2
e−απ. (A.40)

These two expressions do not match, even when we are in a limit where the WKB error

(see section (A.4)) is small. This mismatch, however, will not affect our analysis, because

we only care about the case when the non-normalizable mode is completely turned off.

A.3 General Lifshitz

For the general Lifshitz case, we consider the effective potential

Ω2 = 1− ν2

ζ2
− α

ζk
, (A.41)
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where we recall that k is related to the critical exponent by k = 2(1−1/z). We restrict to the

case z > 1, corresponding to 0 < k < 2. While the exact WKB integral may be performed

numerically, it is in fact possible to extract the asymptotic behavior in the large α limit.

More precisely, we note that Ω2 introduces several scales for ζ, depending on the

relative importance of the three terms. In the UV, as ζ → 0, the ν2/ζ2 term will dominate,

while in the IR, as ζ → ∞, the constant term will dominate. If α < νk, then the α/ζk

term is not important. In this case, the 1/ζ2 piece of the potential leads to power law

behavior in the UV, but no exponential suppression in the wavefunction. On the other

hand, for α > νk, an intermediate region (ν2/α)1/(2−k) < ζ < α1/k opens up, where the

α/ζk term leads to tunneling behavior.

For α � νk, the UV and IR regions are well separated, and we may approximate the

WKB integral according to

S =

∫ ζ0

ζ
dζ ′

√
ν2

ζ ′2
+

α

ζ ′k
− 1 ≈

∫ ζ∗

ζ
dζ ′

√
ν2

ζ ′2
+

α

ζ ′k
+

∫ ζ0

ζ∗

dζ ′
√

α

ζ ′k
− 1 = S1 + S2, (A.42)

where (ν2/α)1/(2−k) � ζ∗ � α1/k. The first integral may be performed by making the

change of variables u = (α/ν2)ζ2−k. The result is

S1 =
ν

2− k

[
2
√

1 + u+ log

√
1 + u− 1√
1 + u+ 1

]∣∣∣∣∣
(α/ν2)ζ2−k

∗

(α/ν2)ζ2−k

. (A.43)

Expanding for the lower limit near zero and the upper limit near infinity gives

S1 =
ν

2− k
log

(
4ν2

αe2

)
− ν log ζ +

2
√
α

2− k
ζ

1−k/2
∗

(
1− ν2

2αζ2−k
∗

+ · · ·
)
. (A.44)

This gives the correct near-boundary behavior

ψWKB ∼ ζ1/2e−S ∼ ζν+1/2. (A.45)

For the second integral, we let u = α/ζk, so that

S2 =
α1/k

k

∫ α/ζk∗

1
u−1−1/k

√
u− 1du. (A.46)

Although this integral can be expressed in terms of the incomplete Beta function, we only

need the expansion for large α/ζk∗ . The result is

S2 =

√
πΓ(1/k − 1/2)

2Γ(1/k)
α1/k − 2

√
α

2− k
ζ

1−k/2
∗

(
1− 2− k

2(2 + k)

ζk∗
α
− · · ·

)
. (A.47)

When S1 and S2 are added together, the leading terms in ζ∗ cancel, while the rest vanish

in the asymptotic limit. We thus obtain

ψWKB ∼
√
ζ

ν
e−S ∼ ζν+1/2 1√

ν

(
αe2

4ν2

)ν/(2−k)

exp

(
−
√
πΓ(1/k − 1/2)

2Γ(1/k)
α1/k

)
. (A.48)
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Figure 14. Comparison of the asymptotic WKB amplitude factor with the exact (numerical) result

for ν = 1, and z = 1.5, 2, 3 and 4. The fractional WKB error is given by (ηWKB − ηexact)/ηexact,
where η = |B|/|b|. Note that the asymptotic WKB result (A.48) is only valid in the large α limit.

The fractional error approaches a constant (dependent on ν) as α→∞.

This agrees with (A.35) for k = 1, corresponding to z = 2. We have confirmed numerically

that this WKB result for α � νk reproduces the correct asymptotic behavior in α. As

an example, we show the fractional error for several values of z at fixed ν = 1 in figure 14.

As in the z = 2 case discussed above, for fixed ν, the exact prefactor is not reproduced by

WKB. However, the exponential suppression is confirmed.

A.4 Error analysis

In addition to the explicit numerical analysis of the previous section, we would like to

investigate the domain of validity of the WKB approximation analytically. In particular,

this allows us to identify potentially problematic regions that yield a large error when

integrated over, and identify when and where the WKB approximation breaks down.

In the coordinates (A.17), the effective frequency is given by

ω2 = e2w − αe(2−k)w − ν2. (A.49)

The relative error can be estimated by

Q1

Q0
=

1

ω6

[
1

4
e4w + ν2e2w +

1

16
α2 (2− k)2 e2(2−k)w

+
1

4
α
(
k2 + k − 2

)
e(4−k)w − 1

4
ν2α (2− k)2 e(2−k)w

]
. (A.50)

Clearly, Q1/Q0 → 0 as w → −∞, so the WKB approximation is always valid in the

deep UV. The matching procedure near the turning point is only valid if there is some

finite overlap between the matching region, where ω2 is approximately linear, and the

semiclassical region, where |Q1|/|Q0| � 1. Let us consider two separate cases:

1. α � ν: we can write ω2 ≈ e2w − ν2. The condition for the potential to be approxi-

mately linear is (
ω2
)′′

(w0)

(ω2)′ (w0)
(w − w0)� 1. (A.51)
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Since the left hand side is of order |w − w0|, the matching region is approximately

given by ew ∈
[
νe−1, νe

]
. To check if there is some overlap of this interval with the

semiclassical region, let us plug the upper and lower bound into our error estimate:

|Q1|
|Q0|

≈

{
0.08
ν2 , ew = νe−1;

0.21
ν2 , ew = νe.

(A.52)

We see that for small ν (more precisely, for ν . 1/2), the error becomes of order one

and there is no overlap between the matching region and the semiclassical region. In

this case, the matching procedure fails.

2. α� ν: we can write ω2 ≈ e2w−αe(2−k)w for w near the turning point at ew0 ≈ α1/k.

The condition (A.51) now gives ew ∈
[
α1/ke−1, α1/ke

]
and the error at the boundary

points is Q1/Q0 ∼ α−2/k · const. Hence for α large enough the matching always

yields good results.

Even though for large α the matching procedure works for all ν, one needs to be more

careful: as we have seen previously, there are three different regimes of ζ, corresponding to

each of the three terms in (A.49) dominating. In the region where αe(2−k)w dominates, the

relative error grows as w decreases (see (A.15)). If ν = 0, the error continues to grow to

infinity as we approach the boundary. However, for ν 6= 0, the ν2/ρ2 part of the potential

takes over at αe(2−k)w ∼ ν2, and the relative error decreases again. Hence there is a local

maximum of order
|Q1|
|Q0|

≈ 3

32ν2
. (A.53)

For small ν, the WKB approximation breaks down in this region. We speculate that

since αe(2−k)w ∼ ν2 is precisely where the potential changes from p2/ρ to ν2/ρ2 behavior,

there is some nontrivial mixing between growing and decaying modes that the WKB

approximation cannot account for. This mixing is stronger for small ν, as the difference

between the relevant exponents, ∆+ − ∆− = 2zν, becomes small. Nevertheless, we

can conclude that our WKB approximation can be trusted as long as ν & 1/2. Most

importantly, the approximation becomes more and more accurate at large α/ν, which is

precisely the regime we are interested in.
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