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1 Introduction

Quarkonium production in proton-nucleus collisions provides an excellent laboratory for

studying the interaction of colored heavy quark probes with an extended colored medium.

The large mass scale provided by the heavy quarks suggests that their interactions can be

computed systematically in a weak coupling framework. However, the use of heavy quarks

as a probe of colored media has been bedeviled by the complexities encountered in under-

standing the production of heavy quark states in more elementary collisions. The develop-

ment of the Non-Relativistic QCD (NRQCD) framework [2] provided a systematic power
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counting to organize this complexity, and there has been a tremendous amount of work

since in making this a quantitative framework–for recent summaries of the state of the art,

see for example [3–5]. Specifically, we should point to recent next-to-leading order studies

which find that the yield of all quarkonia states in proton-proton collisions can be described

in NRQCD factorization, including the J/ψ [6, 7], ψ′ [8], χcJ [9] and Υ(nS) [10, 11] states.

At the same time, a systematic weak coupling framework, the Color Glass Condensate

(CGC), was developed to describe the high parton density effects of small x QCD evolution

and coherent multiple scattering [12–15]. At high energies, the typical momentum transfer

from partons in the medium to the probe is no longer soft and is characterized by a semi-

hard “saturation” scale Q2
s � Λ2

QCD. This scale [16–19] separates highly occupied gluon

transverse momentum modes from perturbative dynamics at large transverse momentum.

The saturation scale is dynamically generated from the fundamental scale of the theory; it

is proportional to the density of partons in the transverse radius of the nucleus, and grows

with energy. Because the running of the coupling is controlled by this scale, asymptotic

freedom tells us that the coupling of the colored partonic probe should be weak and will

become weaker at higher energies. The hope therefore is that with some effort one can

compute systematically the many-body structure of hadrons and nuclei at high energies.

In particular, the CGC has been widely applied to study a number of final states in

proton-nucleus collisions-for reviews, see [20, 21]. For other approaches to quarkonium pro-

duction in proton-nucleus collisions, see [22–27]. An attractive feature of the CGC effective

theory is that one can quantify what one means by dilute or dense scatterers as a function

of energy and mass number [28]. Typically in proton-nucleus collisions we encounter a

“dilute-dense” system. To be more precise, the “dilute” limit is a systematic expansion of

amplitudes to lowest order in the ratio of the saturation momentum of the proton to the

typical transverse momentum exchanged by the proton in the reaction (Qs,p/k⊥,p � 1).

In turn, the “dense” limit corresponds to keeping in the amplitude all orders in the ratio

of the saturation momentum of the nucleus relative to the momentum exchanged by the

nucleus (Qs,A/k⊥,A ∼ 1). At very high energies, the power counting in proton-nucleus

collisions may be closer to that in proton-proton collisions. Further, at rapidities far from

the proton beam, the power counting in proton-nucleus collisions may be closer to that in

nucleus-nucleus collisions.

Quarkonium pair production was first studied in the CGC framework in the limit of

small x and large transverse momentum [29]. It was shown explicitly that in this limit one

recovers the k⊥-factorization results1 of Collins and Ellis [31] and Catani, Ciafaloni and

Hautmann [32]. However, for k⊥ ≤ Qs, it was shown2 in [33] that k⊥-factorization is broken

explicitly in quark pair production, even at leading order in proton-nucleus collisions.3 The

magnitude of the breaking of k⊥-factorization for single inclusive quark production and

quark pair production was quantified respectively in [37] and [38].

1All these results differ in detail from a similar result obtained at the same time in [30].
2Here, and henceforth, we will use Qs to denote the saturation scale in the nucleus.
3A closely related computation was carried out in [34]. The results of [33] were independently confirmed

in a different approach, which focused on the effect on single spin asymmetries on heavy quark pair

production [35]. A computation that extends the work of [33] to include rapidity evolution between the

heavy quarks can be found in [36].
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The results in these papers were derived for heavy quark pair production but the projec-

tion of these results for specific quarkonium states were not considered. In the same general

framework, J/ψ production from quark pairs in color singlet and color octet configurations

were previously considered in [1, 39–42]. However, these derivations were performed in a

quasi-classical approximation, and the effects of QCD evolution were only included heuris-

tically through energy evolution of the saturation scale. The formalism for heavy quark

pair production developed in [33, 38] was recently combined with the color evaporation

model to compute J/ψ and Υ production in high energy proton-nucleus collisions [43].

In this paper, we project the amplitude for heavy quark pairs computed in [33] on to

color singlet and color octet configurations. Interestingly, the energy/rapidity evolution of

the corresponding short-distance cross-sections, as we shall discuss further, is described by

different combinations of multi-gluon correlators in the CGC framework. These short dis-

tance cross-sections are matched on to long distance vacuum NRQCD matrix elements to

provide detailed expressions for the cross-sections for all common S and P wave quarkonium

states in proton-nucleus collisions.4 In a follow up paper, we will compare our results to

data on quarkonium production in deuteron-nucleus collisions at RHIC and proton-nucleus

collisions at the LHC. The large amount of data now available at different energies, and

for a variety of quarkonium states promises to provide sensitive tests of both the CGC and

and the NRQCD formalisms.

The paper is organized as follows. In section 2, we provide a brief recap of the CGC

framework and key results for heavy quark pair production. In section 3, we discuss the

matching of these results to the NRQCD formalism. We describe simplifications of our

results that occur in the limit of large Nc, the collinear limit, and at high p⊥ of the

quarkonium. A comparison of our results to previous results obtained in the quasi-classical

approximation is presented in section 4. In this section, we also compare our results

to results obtained by combining the CGC framework with the Color Evaporation model

(CEM). We end with a brief summary and outlook on ongoing work. Some essential details

of the computations are presented in two appendices.

2 Quark pair production in the Color Glass Condensate

2.1 General discussion

In the CGC formalism, the proton-nucleus collision is described as a collision of two classical

fields originating from color sources representing the large x degrees of freedom in the

proton and the nucleus. The color source distribution generating the classical field in each

projectile is evolved from initial valence distribution at large x to the rapidity of interest

in the collision. The gauge fields of gluons produced in the collision are determined by

solving the Yang-Mills equations

[Dµ, F
µν ] = Jν . (2.1)

4In very high energy proton-nucleus collisions, at small x, the hadronization of heavy quark pairs into

quarkonium states happens well after the collision. It is therefore reasonable to expect that the vacuum

NRQCD matrix elements accurately represent the hadronization physics in these collisions.
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Here Jν is the color current of the sources, which can be expressed at leading order in the

sources as

Jνa = gδν+δ(x−) ρp,a(x⊥⊥) + gδν−δ(x+)ρA,a(x⊥⊥) , (2.2)

where ρp is the number density of “valence” partons in the proton moving in the +z

direction at the speed of light. Likewise, ρA is the number density of “valence” partons in

the nucleus moving in the opposite light cone direction. To solve these equations, one needs

to impose a gauge fixing condition. Further, covariant current conservation requires that

[Dν , J
ν ] = 0 . (2.3)

The latter equation in general implies that eq. (2.2) for the current receives corrections

that are of higher order in the sources ρp and ρA , because of the radiated field. The

solution of eqs. (2.1), (2.2) and (2.3) has been determined to all orders in both sources

only numerically [44–47]. To lowest order in the proton source (as appropriate for a di-

lute proton source) and to all orders in the nuclear source, analytical results are available

and an explicit expression for the gauge field to this order, in Lorentz gauge, is given5 in

ref. [28]. The amplitude for pair production to this order is obtained by computing the

quark propagator in the background corresponding to this gauge field [33].

The probability for producing a single qq̄ pair for a given distribution of color sources

(ρp in the proton and ρA in the nucleus) is

P1[ρp, ρA ] =

∫
d3q⊥

(2π)32Eq⊥

∫
d3p⊥

(2π)32Ep⊥

|MF (q⊥,p⊥)|2 , (2.4)

whereMF (q⊥,p⊥) is the amputated time-ordered quark propagator in the presence of the

classical field generated by the sources. The expression, as it stands, is not gauge invariant.

To convert this probability into a physical cross-section, we first average over the initial

classical sources ρp and ρA respectively with the weights Wp[xp, ρp] and WA [xA , ρA ]. These

weight functionals are gauge invariant by construction. We subsequently integrate over all

impact parameters b⊥, to obtain the cross section to produce a heavy quark pair:

σ =

∫
d2b⊥

∫
[Dρp][DρA ]Wp[xp, ρp]WA [xA , ρA ]P1[ρp, ρA ] . (2.5)

This formula incorporates both multiple scattering effects and those of the small x quan-

tum evolution. The multiple scattering effects are included in i) the classical field obtained

from solving the Yang-Mills equation in eq. (2.1) with the current in eq. (2.2), ii) in the

propagator of the quark in this classical field, as well as iii) in the small x renormalization

group evolution of the color source distribution of the nucleus.

The leading logarithmic small x evolution is included in the evolution of the weight

functionals, Wp and WA , of the target and projectile with x. The arguments xp and xA
denote the scale in x separating the large-x static sources from the small-x dynamical

fields. In the McLerran-Venugopalan model [18, 19], the functional WA that describes the

5The expression for the gauge field was also obtained in [48] in the light-cone gauge of the proton, and

in [49] in Fock-Schwinger gauge x+A− + x−A+ = 0.
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Figure 1. Feynman diagram representation of heavy quark pair production in pA collisions. The

two diagrams represent respectively the two terms in eq. (2.8), where the black dots denote the

Wilson lines that resum all the multiple scatterings of either the associated gluon or the heavy

quark pair off the color field of the nucleus.

distribution of color sources in the nucleus is a Gaussian in the color charge density6 in ρA .

A Gaussian distribution of sources is equivalent to the QCD Glauber model of independent

multiple scattering [28]. We shall address this point further later in our discussion of the

quasi-classical limit of quarkonium production. In general, however, this Gaussian distri-

bution of color sources is best interpreted as the initial condition for a non-trivial evolution

of WA [xA , ρA ] with xA . The evolution of the W ’s is described by a Wilsonian renormal-

ization group equation, the JIMWLK equation; the corresponding hierarchy of equations

for expectation values of multi-gluon is called the Balitsky-JIMWLK hierarcy [53–55]. We

will discuss the Balitsky-JIMWLK hierarchy further in the following section.

2.2 Heavy quark pair production amplitude

For our purpose here, the relevant quantity is the heavy quark pair production amplitude

computed in [33]. We begin with the kinematic notations for the process7

p(pp) +A(pA)→ Q
(p

2
+ q
)
Q̄
(p

2
− q
)

+X . (2.6)

We will assume that the proton moves in the +z direction with momentum pp =

(p+
p , 0

−, 0⊥) and the nucleus in the −z direction with momentum pA = (0+, p−A, 0⊥). Here p

and q correspond respectively to the total momentum of the heavy quark pair and one half

of the relative momentum of the quark and anti-quark constituting the pair. The on-shell

constraints on the quark and the anti-quark (p/2 + q)2 = m2 and (p/2− q)2 = m2 imply

that

p · q = 0 and p2 = 4(m2 − q2) , (2.7)

with m the heavy quark mass.

Within the CGC formalism, the amplitude to produce a heavy quark pair has two

contributions. One of these, illustrated in figure 1 (a), is where a gluon from the proton

6This is true modulo terms parametrically suppressed in A [50–52]. Note further that in the CGC

framework, the saturation scales enter through this initial condition.
7Note that these differ slightly from [33].
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emits a heavy quark pair before the collision with the target, while the other, illustrated

in figure 1 (b), is where the gluon emits the heavy quark pair after the collision with the

target [33]. We denote k1 = (xpp
+
p , 0,k1⊥) as the momentum of the gluon from the proton,

k2 = p− k1 = (0, xAp
−
A,p⊥− k1⊥) as the total momentum of gluons from the nucleus, and

ρp and ρA as the densities of color sources in the proton and nucleus, respectively. The

heavy quark pair production amplitude then reads [33]

MF
ss̄;īi(p, q) =

g2
s

(2π)4

∫
k1⊥,k⊥

ρp,a(xp,k1⊥)

k2
1⊥

∫
x⊥,y⊥

eik⊥·x⊥ei(p⊥−k⊥−k1⊥)·y⊥

×ūs;i
(p
2

+q
)[
Tqq̄ (p, q,k1⊥,k⊥)VF (x⊥)taV †F (y⊥)+Tg(p,k1⊥)tbV ba

A (x⊥)
]
vs̄;̄i

(p
2
−q
)
, (2.8)

where s and i (s̄ and ī) are spin index and color index of quark (antiquark), respectively,

and
∫
k⊥
≡
∫
d2k⊥,

∫
x⊥
≡
∫
d2x⊥. The functions Tqq̄ (p, q,k1⊥,k⊥) and Tg(p,k1⊥) are

defined to be

Tqq̄ (p, q,k1⊥,k⊥)

≡
γ+
(
/p

2 + /q − /k +m
)
γ−
(
/p

2 + /q − /k − /k1 +m
)
γ+

2
(
p+

2 −q+
) [(p⊥

2 +q⊥−k⊥
)2

+m2
]
+2
(
p+

2 +q+
) [(p⊥

2 +q⊥−k⊥−k1⊥
)2

+m2
] , (2.9a)

Tg(p,k1⊥) ≡
/CL(p,k1⊥)

p2
, (2.9b)

with CµL(p,k1⊥) the well-known Lipatov effective vertex,

C+
L (p,k1⊥) = −

k2
1⊥
p−

+ p+, (2.10a)

C−L (p,k1⊥) =
(p⊥ − k1⊥)2

p+
− p−, (2.10b)

CiL(p,k1⊥) = −2ki1 + pi. (2.10c)

The Wilson lines VF (x⊥) and VA(x⊥) are defined as

VF (x⊥) ≡ P+exp

[
−ig2

s

∫ ∞
−∞

dz+ 1

∇2
⊥
ρA(z+,x⊥) · t

]
, (2.11a)

VA(x⊥) ≡ P+exp

[
−ig2

s

∫ ∞
−∞

dz+ 1

∇2
⊥
ρA(z+,x⊥) · T

]
, (2.11b)

where P+ denotes the “time ordering” along the z+ axis, and ta (T a) are the SU(Nc)

generators of the fundamental (adjoint) representation.

We note that the amplitude in eq. (2.8) agrees exactly with the k⊥-factorized result

derived in [29] when the Wilson line correlators are expanded to first order in ρA/∇2
⊥. In

general, however, k⊥-factorization is explicitly broken for pair production in proton-nucleus

collisions.8

8This is to be contrasted to the result, shown by several authors, that k⊥-factorization holds at leading

order for single inclusive gluon production in proton-nucleus collisions.
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3 Quarkonium production cross section

In this section, we will discuss the matching of the results of the previous section to the

NRQCD formalism. We will derive explicit expressions for the short distance cross-sections,

and the associated small x multi-gluon correlators in the large Nc limit. We shall also

discuss the limit when the transverse momentum of the gluon exchanged by the proton

is small, and demonstrate that collinear factorization is recovered on the proton side to

leading order. Finally, we will discuss the power counting of the color singlet and color

octet channels in the large p⊥ limit of our computation.

3.1 Quarkonium production within the NRQCD factorization formalism

We begin with a brief review of the NRQCD factorization formalism [2]. The inclusive

production of a heavy quarkonium state H in the process p+A→ H +X is expressed in

this framework as

dσH =
∑
κ

dσ̂κ〈OHκ 〉. (3.1)

Here κ = 2S+1L
[C]
J are the quantum numbers of the produced intermediate heavy quark

pair, where S, L and J are the spin, orbital angular momentum and total angular

momentum, respectively. The symbol C here denotes the color state of the pair, which can

be either color singlet (CS) with C = 1 or color octet (CO) with C = 8. In eq. (3.1), dσ̂κ

are the short distance coefficients9 for the production of a heavy quark pair with quantum

numbers κ. These can be calculated perturbatively and can be factorized from the

non-perturbative NRQCD long distance matrix elements (LDME)10 〈OHκ 〉. Specifically,

the LDMEs describe the hadronization of a heavy quark pair with quantum numbers

κ to the quarkonium state H. They are universal and can be determined by fitting

experimental data [3]. The LDMEs are organized by powers of v, the relative velocity of

heavy quark pair in the heavy quarkonium bound state. As v is a small non-relativistic

velocity in the heavy quarkonium system, one needs only a few LDMEs in practice.

For example, there are four independent LDMEs which are important for phenomeno-

9Readers should note that these coefficients for different channels have differing mass dimensions, as do

of course then the long distance matrix elements.
10The S-wave LDMEs have mass dimension of [M ]3 while P -wave LDMEs have mass dimension of [M ]5.

Further, for our convenience we shall use a definition for CS LDMEs [56], which is different from the original

BBL convention [2] by a factor of 1/(2Nc). For example,

〈OJ/ψ(3S
[1]
1 )〉 =

1

2Nc
〈OJ/ψ(3S

[1]
1 )〉BBL =

3

4π
|R(0)|2

[
1 +O(v4)

]
, (3.2)

where R(0) is the J/ψ wavefunction at the origin.

– 7 –
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Quarkonium contributing states

J/ψ, ψ′, Υ(nS) 3S
[1]
1 , 1S

[8]
0 , 3S

[8]
1 , 3P

[8]
J

ηc, ηb
1S

[1]
0

hc, hb
1P

[1]
1 , 1S

[8]
0

χcJ , χbJ
3P

[1]
J , 3S

[8]
1

Table 1. Essential heavy quark pair states for quarkonium production. The contribution of color

singlet states for each quarkonium production is at leading power in v. The color octet contributions

for P -wave quarkonium production, say hc,b and χcJ,bJ , are also at leading power in v. The color

octet contributions to S-wave quarkonium production are power suppressed.

logical study of J/ψ production,11

〈OJ/ψ(3S
[1]
1 )〉, 〈OJ/ψ(1S

[8]
0 )〉, 〈OJ/ψ(3S

[8]
1 )〉, 〈OJ/ψ(3P

[8]
0 )〉 . (3.3)

There are two other P -wave CO LDMEs that contribute to J/ψ production with the same

power counting as the 〈OJ/ψ(3P
[8]
0 )〉. However, one can use heavy quark spin symmetry to

relate P -wave operators with J = 1, 2 to the operator with J = 0 [2],

〈OJ/ψ(3P
[8]
J )〉 = (2J + 1)〈OJ/ψ(3P

[8]
0 )〉

[
1 +O(v2)

]
. (3.4)

For completeness, we list essential heavy quark pair states for common heavy quarkonia

production in table 1.

The CGC enters the quarkonium framework in the derivation of the perturbative

cross-section dσ̂κ. We begin with the heavy quark pair production amplitude in eq. (2.8)

and project it on to a definite quantum configuration κ [58] of the produced intermediate

heavy quark pair,

Mκ,Jz ,(1,8c)(p) =

√
1

m

∑
Lz ,Sz

∑
s,s̄

∑
i,̄i

〈LLz;SSz|JJz〉
〈

1

2
s;

1

2
s̄|SSz

〉
〈3i; 3̄̄i|(1, 8c)〉

×

MF
ss̄;īi

(p, 0), if κ is S-wave,

ε∗β(Lz)M
F,β
ss̄;īi

(p, 0), if κ is P -wave,

(3.5)

where ε∗β(Lz) are polarization vectors discussed further in appendix A, and

MF,β
ss̄;īi

(p, 0) = ∂
∂qβ

MF
ss̄;īi

(p, q)
∣∣∣
q=0

. (1, 8c) gives 1 if κ is CS, and 8c if κ is CO. The

color and spin quantum numbers for the heavy quark pair are projected out by the

11The magnitude of the CS LDME 〈OJ/ψ(3S
[1]
1 )〉 is largest in powers in v, while the three CO LDMEs

listed in eq. (3.3) are relatively power suppressed by v3, v4 and v4, respectively. For J/ψ production with

a large transverse momentum p⊥ at hadron colliders, one finds that the contribution of the CS channel

at leading order in αs is suppressed by m2/p2⊥ compared to the 1S
[8]
0 and 3P

[8]
J channels, and even further

suppressed by m4/p4⊥ compared to the 3S
[8]
1 channel [57]. Therefore, although suppressed by powers of v,

CO contributions are important for J/ψ production, especially at large p⊥. We refer interested readers to

ref. [8] for further discussion.
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sums over the respective SU(3) and SU(2) color and spin Clebsch-Gordan coeffi-

cients 〈3i; 3̄̄i|1〉 = δīi/
√
Nc, 〈3i; 3̄̄i|8c〉 =

√
2tc
īi

and
〈

1
2s;

1
2 s̄|SSz

〉
. The coefficients

〈LLz;SSz|JJz〉 account for the spin-orbit LS coupling. As we normalize the Dirac

spinors as ūu = −v̄v = 2m, and normalize the heavy quark pair composite state as〈
QQ̄(κ)|QQ̄(κ)

〉
= 4m, we have the extra normalization factor

√
1
m =

√
4m√

2m
√

2m
.

To simplify our notation, we will suppress the color index in the rest of the paper by

introducing the matrix notation

Cκ =

C[1] = 1√
Nc
, if κ is CS,

C[8] =
√

2tc, if κ is CO ,
(3.6)

where 1 is a unit 3 × 3 matrix. Then distinguishing the color structure from the spinor

structure, we can rewrite eq. (3.5) as

Mκ,Jz(p) =
g2
s

(2π)4

∫
k1⊥,k⊥

ρp,a(xp,k1⊥)

k2
1⊥

∫
x⊥,y⊥

eik⊥·x⊥ei(p⊥−k⊥−k1⊥)·y⊥

×
{
Tr
[
CκVF (x⊥)taV †F (y⊥)

]
Fκ,Jzqq̄ (p,k1⊥,k⊥)+Tr

[
CκtbV ba

A (x⊥)
]
Fκ,Jzg (p,k1⊥)

}
,

(3.7)

where the functions Fκ,Jzqq̄ (p,k1⊥,k⊥) and Fκ,Jzg (p,k1⊥) are defined as

Fκ,Jzqq̄ (p,k1⊥,k⊥)=
∑
Lz ,Sz

〈LLz;SSz|JJz〉

×

Tr
[
ΠSSzTqq̄ (p, q,k1⊥,k⊥)

]∣∣
q=0

, if κ is S-wave,

ε∗β(Lz)
∂
∂qβ

Tr
[
ΠSSzTqq̄ (p, q,k1⊥,k⊥)

]∣∣∣
q=0

, if κ is P -wave,

(3.8a)

Fκ,Jzg (p,k1⊥)=
∑
Lz ,Sz

〈LLz;SSz|JJz〉

×

Tr
[
ΠSSzTg (p,k1⊥)

]∣∣
q=0

, if κ is S-wave,

ε∗β(Lz)
∂
∂qβ

Tr
[
ΠSSzTg (p,k1⊥)

]∣∣∣
q=0

, if κ is P -wave,

(3.8b)

with covariant spin projectors given by [59, 60]

ΠSSz =

√
1

m

∑
s,s̄

〈
1

2
s;

1

2
s̄|SSz

〉
vs̄

(
p

2
− q
)
ūs

(
p

2
+ q

)
, (3.9)

with

Π00 =
1√
8m3

(
/p

2
− /q −m

)
γ5

(
/p

2
+ /q +m

)
, (3.10a)

Π1Sz =
1√
8m3

(
/p

2
− /q −m

)
/ε∗(Sz)

(
/p

2
+ /q +m

)
. (3.10b)

After these color and spin projections, the probability P κ1 (b⊥) to produce a heavy

quark pair at an impact parameter b⊥ can be obtained as follows. One first squares the
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spin and color projected amplitude. Next, averages are performed over all possible color

charge densities in both proton and nucleus. Finally, the degrees of freedom of the heavy

quark pair with quantum number κ are averaged over.12

For the complex conjugate amplitude, we will denote all Lorentz, color and spin

indices, as well as unobserved momenta and coordinates, by a prime in their top right

corner. Thus P κ1 (b⊥) can be written as

P κ1 (b⊥) =

∫
[Dρp] [DρA]Wp(xp, ρp)WA(xA, ρA)

1

Nκ

∑
color

∑
Jz

∣∣Mκ,Jz(p)
∣∣2 d3p

(2π)32E

=
g4
s

(2π)8

∫
d3p

(2π)32E

∫
k1⊥,k⊥,k

′
1⊥,k

′
⊥

〈
ρp,a(xp,k1⊥)ρ†p,a′(xp,k

′
1⊥)
〉
yp

k2
1⊥k

′2
1⊥

×
∫

x⊥,y⊥,x
′
⊥,y
′
⊥

ei[k⊥·x⊥−k
′
⊥·x
′
⊥+(p⊥−k⊥−k1⊥)·y⊥−(p⊥−k′⊥−k

′
1⊥)·y′⊥]

× 1

Nκ

∑
Jz

{〈
Tr
[
CκVF (x⊥)taV †F (y⊥)

]
Tr
[
VF (y′⊥)ta

′
V †F (x′⊥)Ĉκ

]〉
yA

×Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzqq̄

(
p,k′1⊥,k

′
⊥
)

+
〈
Tr
[
CκVF (x⊥)taV †F (y⊥)

]
Tr
[
V †a

′b′

A (x′⊥)tb
′Cκ
]〉

yA
Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzg (p,k′1⊥)

+
〈

Tr
[
CκtbV ba

A (x⊥)
]

Tr
[
VF (y′⊥)ta

′
V †F (x′⊥)Ĉκ

]〉
yA
Fκ,Jzg (p,k1⊥)F†κ,Jzqq̄

(
p,k′1⊥,k

′
⊥
)

+
〈

Tr
[
CκtbV ba

A (x⊥)
]

Tr
[
V †a

′b′

A (x′⊥)tb
′Cκ
]〉

yA
Fκ,Jzg (p,k1⊥)F†κ,Jzg (p,k′1⊥)

}
. (3.11)

Here yp = ln(1/xp) is the rapidity of the gluon that comes from the proton, and

yA = ln(1/xA) is the rapidity at which the Wilson line correlators of the target nucleus

are evaluated. In this expression, 〈· · · 〉yp(A)
denotes the average over color charge densities

〈O[ρp(A)]〉yp(A)
=

∫
[dρp(A)]Wp(A)(xp(A), ρp(A))O[ρp(A)] , (3.12)

where O here generically denotes the average over the projectile charge density ρp or the

target color charge density ρA in eq. (3.11). Further, the summation over color degrees

of freedom after the second equal sign has been taken care of by our default rule: any

12To understand why one averages over the states of the heavy quark pair, let us go back to the NRQCD

factorization formula in eq. (3.1). Assume that there are Nκ possible states for each configuration κ. We

can denote these by λ1, · · · , λNκ . Then the factorization formula is

dσH =
∑
κ

∑
λκ=1,··· ,λNκ

dσ̂κ,λκ〈OHκ,λκ〉.

Heavy quark spin symmetry as well as rotational invariance in color space imply that the matrix

elements 〈OHκ,λκ〉 are independent of λκ. If we then define the LDMEs as the summation of all possible

states, 〈OHκ 〉 =
∑
λκ=1,··· ,λNκ

〈OHκ,λκ〉, the NRQCD factorization formula in eq. (3.1) is defined to be

dσ̂κ = 1
Nκ

∑
λκ=1,··· ,λNκ

dσ̂κ,λκ .
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repeated indices are assumed to be summed over. Nκ = (2J + 1)N color are the number

of states for a given κ, with N color = 1 or N2
c − 1 if κ is color singlet or color octet,

respectively. For convenience, we will use∑
Jz

≡ 1

2J + 1

∑
Jz

, (3.13)

Cκ ≡ Cκ√
N color

, (3.14)

in the rest of the paper.

All transverse coordinates in eq. (3.11) are defined with respect to the center of the

proton. To convert these to the coordinates with respect to the center of nucleus, one simply

has to shift all coordinates by the impact parameter b⊥. (For example, x⊥ → x⊥ − b⊥.)

Translational invariance guarantees13 that the averaged values in 〈· · · 〉yA are unchanged

under such a shift. Therefore such a shift only leads to the extra phase factor ei(k1⊥−k′1⊥)·b⊥ .

When we derive the cross section dσ̂κ for a minimum bias proton-nucleus collision, we

have to integrate P κ1 (b⊥) over the impact parameter b⊥. This generates the factor∫
b⊥

ei(k1⊥−k′1⊥)·b⊥ = (2π)2δ2(k1⊥ − k′1⊥) . (3.15)

Using the delta function to integrate out the k′1⊥, we find that the average over color

density on the proton side to be
〈
ρp,a(xp,k1⊥)ρ†p,a′(xp,k1⊥)

〉
yp

. Following [33], we define

the unintegrated gluon distribution inside the proton to be14

g2
s

〈
ρp,a(xp,k1⊥)ρ†p,a′(xp,k1⊥)

〉
yp

=
δaa′

π(N2
c − 1)

k2
1⊥ϕp,yp(k1⊥). (3.16)

With this substitution, the differential cross section of production of heavy quark pair

with quantum number κ can be written as

dσ̂κ

d2p⊥dy
=

g2
s

(2π)10(N2
c − 1)

∫
k1⊥,k⊥,k

′
⊥

ϕp,yp(k1⊥)

k2
1⊥

×
∫

x⊥,y⊥,x
′
⊥,y
′
⊥

ei[k⊥·x⊥−k
′
⊥·x
′
⊥+(p⊥−k⊥−k1⊥)·y⊥−(p⊥−k′⊥−k1⊥)·y′⊥]

×
∑
Jz

{〈
Tr
[
CκVF (x⊥)taV †F (y⊥)

]
Tr
[
VF (y′⊥)taV †F (x′⊥)Cκ

]〉
yA

13This assumes that the size of nucleus is large enough for translational invariance to apply.
14The unintegrated gluon distribution in eq. (3.16) is normalized such that the leading log gluon distri-

bution in the proton satisfies

xpfp/g(xp, Q
2) =

1

4π3

∫ Q2

0

dl2⊥ϕp(xp, l⊥) .

See eq. (3.36) and ref. [38] for further discussion.

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
0
5
6

×Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzqq̄

(
p,k1⊥,k

′
⊥
)

+
〈

Tr
[
CκVF (x⊥)taV †F (y⊥)

]
Tr
[
V †ab

′

A (x′⊥)tb
′Cκ
]〉

yA
Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzg (p,k1⊥)

+
〈

Tr
[
CκtbV ba

A (x⊥)
]

Tr
[
VF (y′⊥)taV †F (x′⊥)Cκ

]〉
yA
Fκ,Jzg (p,k1⊥)F†κ,Jzqq̄

(
p,k1⊥,k

′
⊥
)

+
〈

Tr
[
CκtbV ba

A (x⊥)
]

Tr
[
V †ab

′

A (x′⊥)tb
′Cκ
]〉

yA
Fκ,Jzg (p,k1⊥)F†κ,Jzg (p,k1⊥)

}
. (3.17)

This expression is the main result of our paper. With the NRQCD color projectors in

eq. (3.6), we can work out all the Wilson lines expectation values in the above equation.

The expression for Fκ,Jzqq̄ ,Fκ,Jzg in eq. (3.8) along with the NRQCD spin projectors in

eq. (3.10), allow us to derive all the partonic hard-part functions. In the rest of the paper,

we will work out the explicit simplifications of this general result for the color singlet

and color octet channels in the large Nc limit. The phenomenological applications of this

result will be left for future publications.

3.2 Complete results for quarkonium cross-sections in the large Nc limit

3.2.1 Color singlet contributions

If κ is a color singlet intermediate state, only the first term ∝ Fκ,Jzqq̄ F
†κ,Jz
qq̄ in eq. (3.17)

survives; all other terms vanish. This is because all other terms involve Fκ,Jzg (or F†κ,Jzg ),

in which a gluon naturally transforms into a color octet heavy quark pair state. Taking

Cκ = C[1]
= 1√

Nc
, we find〈

Tr
[
C[1]

VF (x⊥)taV †F (y⊥)
]

Tr
[
VF (y′⊥)taV †F (x′⊥)C[1]

]〉
yA

=
1

2

{
QyA

x⊥x
′
⊥y
′
⊥y⊥
− 1

N2
c

〈
Tr
[
VF (x⊥)V †F (y⊥)

]
Tr
[
VF (y′⊥)V †F (x′⊥)

]〉
yA

}
,

(3.18)

where we have used the identity

∑
a

taijt
a
kl =

1

2

(
δilδkj −

1

Nc
δijδkl

)
. (3.19)

In eq. (3.18), Qx⊥,x
′
⊥,y
′
⊥,y⊥

is the quadrupole correlator

QyA
x⊥,x

′
⊥,y
′
⊥,y⊥

≡ 1

Nc

〈
Tr
[
VF (x⊥)V †F (x′⊥)VF (y′⊥)V †F (y⊥)

]〉
yA
. (3.20)

Further, in the large Nc limit and for large nuclei (α2
sA

1/3 � 1), the expectation value for

the second term in eq. (3.18) can be factored as the product of the expectation values of

the traces within as〈
Tr
[
VF (x⊥)V †F (y⊥)

]
Tr
[
VF (y′⊥)V †F (x′⊥)

]〉
yA

→
〈

Tr
[
VF (x⊥)V †F (y⊥)

]〉
yA

〈
Tr
[
VF (y′⊥)V †F (x′⊥)

]〉
yA
.

(3.21)
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Using translation invariance for large nuclei, one can express the well known dipole

correlator as

DyA
x⊥−x′⊥

= Dx′⊥−x⊥ ≡
1

Nc

〈
Tr
[
VF (x⊥)V †F (x′⊥)

]〉
yA
. (3.22)

Thus in the large Nc and large A limit, the expectation value over color charge densities

in the nucleus in eq. (3.18) can be expressed as〈
Tr
[
C[1]

VF (x⊥)taV †F (y⊥)
]

Tr
[
VF (y′⊥)taV †F (x′⊥)C[1]

]〉
yA

=
1

2

(
QyA

x⊥,x
′
⊥,y
′
⊥,y⊥

−DyA
x⊥−y⊥D

yA
y′⊥−x

′
⊥

)
.

(3.23)

Henceforth, for simplicity of notation, we will not write out explicitly the rapidity index

on the quadrupole and dipole correlators.

It is convenient to express our result in terms of the variables r0⊥, ∆⊥, r⊥, and r′⊥
which are expressed in terms of the co-ordinates x⊥, x′⊥, y′⊥, and y⊥ as

x⊥ = r0⊥ +
r⊥
2
, y⊥ = r0⊥ −

r⊥
2
,

x′⊥ = ∆⊥ + r0⊥ +
r′⊥
2
, y′⊥ = ∆⊥ + r0⊥ −

r′⊥
2
.

(3.24)

Translation invariance implies that eq. (3.23) is independent of r0⊥. The r0⊥ integration

can therefore be performed trivially, giving as a result πR2
A, the transverse area of the

nucleus.

With these coordinate transformations, we obtain the cross-section for the production

of color singlet heavy quark pairs to be

dσ̂κ

d2p⊥dy

CS
=

αsπR
2
A

(2π)7(N2
c − 1)

∫
k1⊥

ϕp,yp(k1⊥)

k2
1⊥

∫
∆⊥,r⊥,r

′
⊥

e−i(p⊥−k1⊥)·∆⊥

×
(
Q r⊥

2
,∆⊥+

r′⊥
2
,∆⊥−

r′⊥
2
,− r⊥

2

−Dr⊥Dr′⊥

)
Γκ1 ,

(3.25)

where Γκ1 are defined as

Γκ1≡
1

(2π)2

∫
k⊥,k

′
⊥

ei(k⊥−
p⊥−k1⊥

2
)·r⊥e−i(k

′
⊥−

p⊥−k1⊥
2

)·r′⊥
∑
Jz

Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzqq̄

(
p,k1⊥,k

′
⊥
)
,

(3.26)

which are listed in appendix B.1. Note that, if Γκ1 ∝ δ(r⊥) or δ(r′⊥), the quadrupole

correlator in eq. (3.25) collapses to a single dipole correlator and cancels the second term

exactly. Thus the terms in Γκ1 that are proportional to δ(r⊥) or δ(r′⊥) do not contribute

to the heavy quarkonium cross section and shall be neglected.

In the limit of Nc → ∞ and α2
sA

1/3 → ∞, the dipole correlator in eq. (3.25) satisfies

the Balitsky-Kovchegov (BK) equation [53, 61],

d

dyA
D(x⊥ − y⊥) =

Nc αs
2π2

∫
d2z⊥

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

× [D(x⊥ − z⊥)D(z⊥ − y⊥)−D(x⊥ − y⊥)] .

(3.27)
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In the low density limit |x⊥ − y⊥|Qs � 1, this equation reduces to the well known BFKL

equation [62, 63], which describes the leading logarithmic behavior of perturbative QCD

at small x. The BK equation is the simplest equation of high energy QCD describing both

small x QCD evolution and coherent multiple scattering and is used widely in phenomeno-

logical applications in both deeply inelastic scattering and hadron-hadron scattering.

The quadrupole correlator in eq. (3.25) is less well known but is an equally funda-

mental object in high energy QCD. Evolution equations in the JIMWLK framework for

the quadrupole have been derived [64]. Their evolution can be computed numerically [65]

and analytic results obtained in different limits [66]. It has been argued that in the large

Nc limit, dipole and quadrupole operators are the only universal multi-gluon correlators

that appear in the “dilute-dense” final states [67]. This theorem certainly appears to hold

for quarkonium production in the color singlet channel and, as we shall shortly discuss, in

the color octet channel.

3.2.2 Color octet contributions

For the color octet state κ, Cκ = C[8]
=

√
2tc√
N2
c−1

, the first term in eq. (3.17) gives〈
Tr
[
C[8]

VF (x⊥)taV †F (y⊥)
]

Tr
[
VF (y′⊥)taV †F (x′⊥)C[8]

]〉
yA

=
1

2(N2
c − 1)

〈
Tr
[
VF (x⊥)V †F (x′⊥)

]
Tr
[
VF (y′⊥)V †F (y⊥)

]
− 1

Nc
Tr
[
VF (x⊥)V †F (y⊥)VF (y′⊥)V †F (x′⊥)

]
− 1

Nc
Tr
[
VF (x⊥)V †F (x′⊥)VF (y′⊥)V †F (y⊥)

]
+

1

N2
c

Tr
[
VF (x⊥)V †F (y⊥)

]
Tr
[
VF (y′⊥)V †F (x′⊥)

]〉
yA

.

(3.28)

Here we have used the identity in eq. (3.19) repeatedly. The expression in eq. (3.28) can

be significantly simplified if we take the large Nc limit. In this limit, the first term in

eq. (3.28) dominates since it scales as O(N2
c ) while all the other terms scale as O(1) in

color space. We thus obtain〈
Tr
[
C[8]

VF (x⊥)taV †F (y⊥)
]

Tr
[
VF (y′⊥)taV †F (x′⊥)C[8]

]〉
yA
→ 1

2
Dx⊥−x′⊥Dy⊥−y′⊥ . (3.29)

Defining the dipole unintegrated gluon distribution in momentum space as

N (k⊥) = N (−k⊥) ≡
∫
r⊥

eik⊥·r⊥Dr⊥ . (3.30)

one can integrate out all the coordinate variables in eq. (3.17) straightforwardly, and obtain∫
x⊥,y⊥,x

′
⊥,y
′
⊥

ei[k⊥·x⊥−k
′
⊥·x
′
⊥+(p⊥−k⊥−k1⊥)·y⊥−(p⊥−k′⊥−k1⊥)·y′⊥]Dx⊥−x′⊥Dy⊥−y′⊥

= (2π)2δ2(k⊥ − k′⊥)πR2
A N (k⊥) N (p⊥ − k1⊥ − k⊥).

(3.31)
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As a result, the first term in the braces in eq. (3.17) gives

g2
s(πR

2
A)

2(2π)8(N2
c − 1)

∫
k1⊥,k⊥

ϕp,yp(k1⊥)

k2
1⊥

N (k⊥) N (p⊥ − k1⊥ − k⊥)

×
∑
Jz

Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzqq̄ (p,k1⊥,k⊥) .

(3.32)

Likewise, we can work out the color algebra for the remaining three terms in eq. (3.17)

making use of the identity

V ab
A (r⊥) = 2Tr

[
V †F (r⊥)taVF (r⊥)tb

]
. (3.33)

Adding up all these terms together, we find

dσ̂κ

d2p⊥dy

CO
=

αs(πR
2
A)

(2π)7(N2
c − 1)

∫
k1⊥,k⊥

ϕp,yp(k1⊥)

k2
1⊥

N (k⊥)N (p⊥ − k1⊥ − k⊥)Γκ8 , (3.34)

with

Γκ8 ≡
∑
Jz

∣∣∣Fκ,Jzqq̄ (p,k1⊥,k⊥) + Fκ,Jzg (p,k1⊥)
∣∣∣2 . (3.35)

With the spin projectors in eq. (3.10), the calculations of Γκ8 are straightforward, and we

list the results in appendix B.2. Note that unlike the case in the color singlet channel, only

dipole correlators appear in the color octet channels.

Eqs. (3.25) and (3.34) represent our complete expressions for heavy quarkonium pro-

duction under the large Nc limit. The corresponding functions for the hard matrix elements

Γκ1 and Γκ8 are given in appendix B.1 and B.2 for various heavy quark pair states 2S+1L
[C]
J .

Once these results are multiplied by the corresponding NRQCD LDMEs 〈OHκ 〉, one obtains

the differential cross-section for the production of heavy quarkonium states in high energy

proton-nucleus collisions. The results collected in the appendix provide a complete set for

phenomenological studies of all the common heavy quarkonium states.

3.3 The proton collinear limit

When the gluon momentum fraction xp in the proton is not very small, the typical

transverse momentum of the gluons in the proton is much smaller than the mass

and the transverse momentum of heavy quarkonium, Qs,p(xp) � k1⊥ � m and

Qs,p(xp) � k1⊥ � p⊥. We can then take the limit k1⊥ → 0 in both the hard part and

in the Wilson lines. Then one can integrate out k1⊥ and arrive at a collinear gluon

distribution function in the proton, thereby restoring collinear factorization from the

proton side. Using d2k1⊥ = 1
2dθ1dk

2
1⊥ and defining

1

4π3

∫ Q2

ϕp,yp(k1⊥)dk2
1⊥ ≡ xpfp/g(xp, Q2) , (3.36)
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we find for the color singlet channel,

dσ̂κ

d2p⊥dy

CS
=

αs(πR
2
A)

4(2π)3(N2
c − 1)

xpfp/g(xp, Q
2)

∫
∆⊥,r⊥,r

′
⊥

e−ip⊥·∆⊥

×

(
Q

( r⊥
2 )

(
∆⊥+

r′⊥
2

)(
∆⊥−

r′⊥
2

)
(− r⊥

2 )
−Dr⊥Dr′⊥

)
Γ̃κ1 ,

(3.37)

where

Γ̃κ1 ≡ lim.
k1⊥→0

1

2π

∫ 2π

0
dθ1

Γκ1
k2

1⊥
, (3.38)

which are listed in appendix B.1. Similarly, for the color octet channel, we obtain

dσ̂κ

d2p⊥dy

CO
=

αs(πR
2
A)

4(2π)3(N2
c − 1)

xpfp/g(xp, Q
2)

∫
k⊥

N (k⊥) N (p⊥ − k⊥) Γ̃κ8 , (3.39)

with

Γ̃κ8 ≡ lim.
k1⊥→0

1

2π

∫ 2π

0
dθ1

Γκ8
k2

1⊥
. (3.40)

Detailed expressions can be found in appendix B.2. It is important to realize that both

Γκ1 and Γκ8 are quadratic in k1⊥ when k1⊥ → 0. Thus Γ̃κ1 and Γ̃κ8 as defined in eqs. (3.38)

and (3.40) are both finite.

3.4 Small p⊥ limit

For simplicity, we will discuss the small p⊥ behavior only in the proton collinear limit.

Small p⊥ behavior for general case can be obtained similarly. The kinematic regime we are

considering here is p⊥ � m. Then eqs. (3.37) and (3.39) imply that the leading contribution

region should be k⊥ ∼ k′⊥ ∼ p⊥ � m. We will derive the power law of p⊥/m for each

channel. Variables X̃l⊥ and X̃l′⊥
have the behavior

X̃l⊥ = m2 +O(p2
⊥), X̃l′⊥

= m2 +O(p2
⊥). (3.41)

For color singlet channels, we begin with eq. (B.11). It is easy to find

W̃
3P

[1]
0 ∼ W̃ 3P

[1]
1 ∼ W̃ 3P

[1]
2 ∼ W̃ 1S

[1]
0 ∼ O

(
p2
⊥
m2

)
. (3.42)

Naively, it seems like W̃
3S

[1]
1 ∼ O(1) if we expand both X̃l⊥ and X̃l′⊥

to leading power.

However, if X̃l⊥ is kept only to leading power, there is no k⊥ dependence in W̃
3S

[1]
1 , which

results in that Γ̃
3S

[1]
1

1 ∝ δ2(r⊥). Substituting Γ̃
3S

[1]
1

1 ∝ δ2(r⊥) into eq. (3.37), we find the

expression vanishes. Therefore, to obtain a nonzero contribution, X̃l⊥ must be expanded to
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next-to-leading power. Similarly, X̃l′⊥
also needs to be expanded to next-to-leading power.

Power law for W̃
1P

[1]
1 can be derived in the same way. We thus get

W̃
3S

[1]
1 ∼ W̃ 1P

[1]
1 ∼ O

(
p4
⊥
m4

)
. (3.43)

For color octet channels, starting with eq. (B.19), and realizing

1− m2

X̃l⊥

∼ O
(
p2
⊥
m2

)
, (3.44)

we can easily get

Γ̃
3P

[8]
0

8 ∼ Γ̃
3P

[8]
2

8 ∼ Γ̃
3P

[8]
J

8 ∼ Γ̃
1S

[8]
0

8 ∼ Γ̃
1P

[8]
1

8 ∼ O
(
p2
⊥
m2

)
, (3.45)

Γ̃
3S

[8]
1

8 ∼ Γ̃
3P

[8]
1

8 ∼ O
(
p4
⊥
m4

)
. (3.46)

The power law of differential cross sections is complicated by different correlators

between color singlet channel and color octet channel. If we assume the correlators do

not contribute any power behaviors, then eqs. (3.42), (3.43), (3.45) and (3.46) are also the

power law of differential cross section of each channel. We thus can discuss the relative

importance of each channel. Taking J/ψ production as an example, if we normalize the

contribution of 3S
[1]
1 channel to be O(1), then contribution of 3S

[8]
1 channel is O(v4), and

contributions of 1S
[8]
0 channel and 3P

[8]
J channel are O(m2v4/p2

⊥), where v is the typical

relative momentum between charm quark pair inside of J/ψ. Therefore, the color singlet

channel 3S
[1]
1 is dominant for J/ψ production as long as m � p⊥ � mv2. Conversely,

for p⊥ < mv2, the color octet contribution will dominate. The latter regime was studied

recently in ref. [68] –our results are in agreement with those presented there.

3.5 Large p⊥ limit

In the kinematic region p⊥ � Qs, additional contributions come from a higher order in

αs process where a recoiling particle with large transverse momentum in the final state is

needed to balance the quarkonium’s p⊥ [69, 70]. Nevertheless, we can still study the limit

p⊥ ∼ Qs � m, because Qs can be larger than m. To expand the hard matrix element in

powers of m in this limit, we need to know the relative size of typical values of k1⊥.

Let us first consider the case where p⊥ ∼ Qs � m� k1⊥. In this case, all the results

obtained in the previous subsection (where we took the collinear limit for the proton

side) are still valid. Normalizing the 3S
[8]
1 channel as O(1), from eqs. (B.11) and (B.19)

we find that the 3S
[1]
1 channel behaves as m4/p4

⊥. All the other channels behave as

m2/p2
⊥ if we restrict ourselves to the regime where p⊥ ∼ l⊥ ∼ l′⊥. The inclusion of other

kinematic regions gives logarithm enhancements for some channels; however, the power

laws governing the p⊥ dependence are not changed.

Thus we find that at the perturbative order in our work color octet channels will

dominate large p⊥ quarkonium production. This is similar to the LO calculation for
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quarkonium production in proton-proton collision using collinear factorization [57]. In

particular, for JPC = 1−− quarkonia such as J/ψ, contributions from the color singlet

channel are suppressed by m4/p4
⊥, implying that color octet contributions may be large

even if p⊥ is not too large.

From eqs. (B.2) and (B.18), we find that the above power counting is unchanged

if the typical value of k1⊥ is a little larger, p⊥ ∼ Qs � m ∼ k1⊥. However, in the

regime p⊥ ∼ Qs ∼ k1⊥ � m, although the p⊥ power counting of of all other channels is

unchanged, that for the 3S
[1]
1 channel changes from m4/p4

⊥ to m2/p2
⊥. The reason is that the

contribution of the 3S
[1]
1 channel is proportional to k2

1⊥+4m2. This can be seen in eq. (B.2a).

4 Comparison with other approaches

In this section, we discuss the relation between our complete NRQCD results and those from

related theoretical works in the literature. In particular, we compare our results for the color

singlet channel with those based on a quasi-classical saturation approach [1, 39–42] and to

results matching the CGC computations of [33] to the color evaporation model [38, 43].

4.1 Quasi-classical saturation model

Within the framework of a quasi-classical approximation to the QCD dipole model [71–73],

Dominguez et al. investigated cold nuclear matter effects of J/ψ production in pA

collisions in a series of papers [1, 39–42]. Within the NRQCD factorization formalism, we

naturally have both color singlet and color octet contributions. We will compare here our

color singlet contribution with recent results in [1, 42].

Since the works of [1, 42] are performed in the limit of collinear factorization on the pro-

ton side, we will compare their results to our results for the color singlet channel in collinear

limit of eq. (3.37). In the quasi-classical approximation, the color sources in the nucleus

are assumed to be the Gaussian distributed sources of the McLerran-Venugopalan model.

As noted previously, this is a Glauber-like multiple scattering approximation [28]. In this

quasi-classical approximation, the quadrupole correlator in the large Nc limit reads [33, 74]

Qx⊥x
′
⊥y
′
⊥y⊥
≈Dx⊥−y⊥Dx′⊥−y

′
⊥
−

ln(Dx⊥−y′⊥Dx′⊥−y⊥)− ln(Dx⊥−x′⊥Dy⊥−y′⊥)

ln(Dx⊥−y⊥Dx′⊥−y
′
⊥

)− ln(Dx⊥−x′⊥Dy⊥−y′⊥)

×
(
Dx⊥−y⊥Dx′⊥−y

′
⊥
−Dx⊥−x′⊥Dy⊥−y′⊥

)
.

(4.1)

Using the expression for Γ̃
3S

[1]
1

1 in appendix B.1 and the expression for the matrix element

in eq. (3.2), J/ψ production in the color singlet model gives

dσJ/ψ

d2p⊥dy

CSM
=

3|R(0)|2

4π

dσ̂
3S

[1]
1

d2p⊥dy

=
αsπR

2
Am|R(0)|2

4(2π)4N2
c

xpfp/g(xp, Q
2)

∫
∆⊥,r⊥,r

′
⊥

e−ip⊥·∆⊥K0(r⊥m)K0(r′⊥m)
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×
ln
[
D 1

2
(r⊥+r′⊥)−∆⊥

D 1
2

(r⊥+r′⊥)+∆⊥

]
− ln

[
D 1

2
(r⊥−r′⊥)−∆⊥

D 1
2

(r⊥−r′⊥)+∆⊥

]
ln(Dr⊥Dr′⊥

)− ln
[
D 1

2
(r⊥−r′⊥)−∆⊥

D 1
2

(r⊥−r′⊥)+∆⊥

]
×
[
D 1

2
(r⊥−r′⊥)−∆⊥

D 1
2

(r⊥−r′⊥)+∆⊥
−Dr⊥Dr′⊥

]
. (4.2)

If we further change the integration variable ∆⊥ → −∆⊥ and choose a Gaussian distribu-

tion for the dipole correlator

Dr⊥ = e−
1
8
Q2
sr

2
⊥ , (4.3)

we arrive at a much simpler expression

dσJ/ψ

d2p⊥dy

CSM
= (πR2

A)xpfp/g(xp, Q
2)

∫
∆⊥,r⊥,r

′
⊥

eip⊥·∆⊥

4(2π)4
Φ(r⊥)Φ(r′⊥)

×
4r⊥ · r′⊥

(r⊥ + r′⊥)2 − 4∆2
⊥

{
e−

Q2
s

16
[(r⊥−r′⊥)2+4∆2

⊥] − e−
Q2
s
8

(r2⊥+r′⊥
2)

}
,

(4.4)

where the wave-function Φ(r⊥) is given by

Φ(r⊥) ≡ gs

π
√

2Nc

[
m2K0(r⊥m)

|R(0)|
√
π√

m3
√

2Nc

]
. (4.5)

Remarkably, the above differential cross section is equivalent15 to the result of eq. (27)

of Kharzeev et. al. in [42] once we define the function φT (r, z) in that paper to be

φT (r, z) = |R(0)|
√
π√

m3
√

2Nc
. When we integrate our results over p⊥, we recover the result in

ref. [1] for the total J/ψ cross-section.

We conclude therefore that results for J/ψ differential cross section in high energy

proton-nucleus collisions derived by Dominguez et al. in refs. [1, 42] correspond to our

color singlet results when we work in the quasi-classical approximation of the McLerran-

Venugopalan model for the dipole/quadrupole correlators.16

We note however, that our expressions [for instance eq. (3.37)] allow for a full JIMWLK

treatment of quarkonium production, including small x evolution and coherent multiple

scattering in a consistent way. Another advantage of our formalism is that we also have

color octet contributions which as we have discussed are important when p⊥ ≥ Qs.

4.2 Comparison to the Color Evaporation model

The Color Evaporation model (CEM) is often employed in the literature to study heavy

quarkonium production in high energy proton-nucleus collisions. For recent work relating

15A careful reader will observe that the term 4r⊥ ·r′⊥ in eq. (4.4) is a little different from the corresponding

term in [42]. The reason is that the calculation in [42] effectively used Dr⊥ = e
− 1

8
Q2
sr

2
⊥ ln 1

µr⊥ instead of

eq. (4.3) to calculate dipole gluon distributions. The expression used in [42] is the correct expression in the

framework of the McLerran-Venugopalan model. We used the Gaussian form of eq. (4.3) for convenience

to efficiently check how our results reduce to those of [42].
16Note that the model for J/ψ wave function in [1, 42] is different from ours. However, using the power

counting in NRQCD, one finds that the difference is suppressed by v2. Thus the equivalence holds to

leading order in v accuracy.
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the CGC framework to the CEM, see [38, 43]. In this model, heavy quarkonium production

is factorized into two steps: the perturbative (weak coupling) production of a heavy quark

pair with invariant mass M followed by a non-perturbative hadronization process. The

latter is assumed to have a universal transition probability for the pair to become a bound

quarkonium state. It is assumed that the transition probability is the same for all heavy

quark pairs whose invariant mass is less than the mass threshold of producing two open

flavor heavy mesons.

Taking J/ψ production as an example, the cross section can be written as

dσJ/ψ

d2p⊥dy
= FJ/ψ

∫ 4m2
D

4m2
c

dM2 dσcc̄
dM2d2p⊥dy

, (4.6)

where FJ/ψ is a constant non-perturbative transition probability and is independent of the

color and spin of the heavy quark pair, mc (MD) is the charm quark (D-meson) mass, and

M is the invariant mass of the charm quark pair.

If we decompose the expression in eq. (4.6) into color singlet and color octet contribu-

tions, the latter will be larger than the former by an factor ofN2
c−1. This corresponds to the

ratio of the color states for both contributions. As a result, in the large Nc limit, only color

octet contributions remain in the CEM. This simple analysis agrees with the explicit calcu-

lations in [38, 43]. In these papers, the CEM expressions for J/ψ production involve only the

dipole gluon distribution. This can be contrasted with our NRQCD framework. In our case,

while the the color octet channel in eq. (3.34) involves only the dipole gluon distribution,

the color singlet channel in eq. (3.25) involves the quadrupole gluon distribution as well.

The power counting in NRQCD gives color octet contributions that are suppressed by

v4 relative to the color singlet contributions to J/ψ production. As v4 < 1
N2
c

for both char-

monium and bottomonium states, the color octet contributions are generally less important

than color singlet contribution in this case. Exceptions exist for special kinematic region (

such as at large p⊥), where the color octet mechanism may be dominant. Even so, though

the color octet channels may dominate, the predictions of NRQCD factorization and the

CEM can be different. This is because NRQCD factorization assigns a different parameter

for each color octet channel, while the CEM assumes all these parameters to be the same.

5 Summary and outlook

The Color Glass Condensate (CGC) is a powerful formalism to systematically compute

the final states in deeply inelastic scattering and hadron-hadron scattering experiments at

high energies. In proton-nucleus collisions, it allows one to compute both the small x QCD

evolution of the projectile and target wavefunctions, as well as multiple scattering effects

due to the large number of color charges in the nuclear target. The CGC formalism was

used previously to derive the cross-sections for the production of heavy quark pairs in [33].

However, only the Color Evaporation Model (CEM) was used previously to compute the

production of quarkonium bound states [38, 43].

The production of quarkonium bound states can be quantified within the Non-

relativistic QCD (NRQCD) framework. The magnitude of long distance color singlet
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and color octet bound state matrix elements in different spin and angular momentum

configurations can be categorized in powers of the relative velocity between the heavy

quark-antiquark pair. Further, these universal matrix elements can be determined

independently by experimental measurements. The short distance hard partonic cross

sections however have to be computed in perturbative QCD.

In this work, we combined for the first time the CGC and NRQCD formalisms

for quarkonium production. The former is used to compute the short distance matrix

elements in weak coupling and the latter to describe the hadronization of the produced

intermediate color singlet and color octet heavy quark pairs. Interestingly, we find that

the intermediate color states are sensitive to different universal multi-gluon correlators in

high energy QCD. The color singlet channel is sensitive to the QCD evolution of dipole

and quadrupole Wilson line correlators while the color octet channel is sensitive to those

of the dipole correlators alone. The fact that we were able to reproduce non-trivial results

for color singlet J/ψ production in a quasi-classical approximation gives us confidence in

the power and validity of our results.

Because the dipole and quadrupole correlators are universal, they can be measured in

other final states (such as inclusive photon-hadron and di-hadron correlations) in proton-

nucleus collisions, and used to predict the production cross-sections of a number of quarko-

nium states. Conversely, the extraction of these correlators from combinations of pro-

duction cross-sections of quarkonium states compared to data, can be used to predict

cross-sections for other final states in high energy proton-nucleus collisions.

One thus has the possibility to further systematically test and extend the NRQCD

framework, as well as the CGC effective theory describing the behavior of multi-gluon cor-

relators in hadron wavefunctions. Understanding these “cold” nuclear matter cross-sections

then provide a benchmark for the interpretation of the same in nucleus-nucleus collisions.

The recently demonstrated ability of LHC and RHIC experiments to compare final states in

vastly different systems with the same bulk properties (such as events with the same number

of charged hadrons) make such studies especially compelling in order to study the transition

from cold matter to hot matter effects in the production of different quarkonium states.

We have not attempted in this work to perform the numerical computations necessary

to compare our results to those from collider experiments. This work is numerically chal-

lenging (particularly for the color singlet channel) but feasible. Work in this direction is

in progress and will be reported in the near future.
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A NRQCD projectors

In this appendix, we list NRQCD projectors for all S-wave channels and P -wave channels,

which are used to calculate hard part in appendix B. For 3S1 channels, total angular

momentum equals to its spin angular momentum, we thus need∑
Sz

ε∗α(Sz)ε
α′(Sz) = Pαα

′
, (A.1)

where Pαα′ ≡ −gαα′ + pαpα
′

p2
. For 1P1 channels, total angular momentum equals to its

orbital angular momentum, we thus need∑
Lz

ε∗β(Lz)ε
β′(Lz) = Pββ

′
. (A.2)

For 3PJ channels, using the following notation,

ε∗αβ(J, Jz) ≡
∑
Lz ,Sz

〈1Lz; 1Sz|JJz〉 ε∗β(Lz)ε
∗α(Sz), (A.3)

we find ∑
Jz

ε∗αβ(0, Jz)ε
α′β′(0, Jz) =

1

3
PαβPα

′β′ , (A.4a)

∑
Jz

ε∗αβ(1, Jz)ε
α′β′(1, Jz) =

1

2

(
Pαα

′
Pββ

′ − Pαβ
′
Pα
′β
)
, (A.4b)

∑
Jz

ε∗αβ(2, Jz)ε
α′β′(2, Jz) =

1

2

(
Pαα

′
Pββ

′
+ Pαβ

′
Pα
′β
)
− 1

3
PαβPα

′β′ . (A.4c)

For 3P
[8]
J channels, because of CO LDMEs are related, we sometimes only need the expres-

sion by summing over J , which gives∑
J,Jz

ε∗αβ(J, Jz)ε
α′β′(J, Jz) =Pαα

′
Pββ

′
. (A.5)

B Calculation of the hard part

In this appendix, we give results of hard part for all S-wave channels and P -wave chan-

nels. These results are sufficient for phenomenological study of common heavy quarkonia

production in pA collision using NRQCD factorization.

B.1 Hard part for color singlet channels

B.1.1 Complete results

To calculate Γκ1 defined in eq. (3.26), we first calculate the following quantities

W κ ≡
∑
Jz

Fκ,Jzqq̄ (p,k1⊥,k⊥)F†κ,Jzqq̄

(
p,k1⊥,k

′
⊥
)
. (B.1)
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We find

W
3S

[1]
1 =

k2
1⊥
(
k2

1⊥ + 4m2
)

6mXl⊥Xl′⊥

+ · · · , (B.2a)

W
3P

[1]
0 =

2k1⊥ · l⊥k1⊥ · l′⊥
3m3Xl⊥Xl′⊥

+
k1⊥ · l′⊥

[
k2

1⊥(p⊥ − k1⊥) · l⊥ + 4m2k1⊥ · l⊥
]

3m3X2
l⊥
Xl′⊥

+
k1⊥ · l⊥

[
k2

1⊥(p⊥ − k1⊥) · l′⊥ + 4m2k1⊥ · l′⊥
]

3m3Xl⊥X
2
l′⊥

+

[
k2

1⊥(p⊥−k1⊥) · l⊥+4m2k1⊥ · l⊥
][
k2

1⊥(p⊥−k1⊥) · l′⊥+4m2k1⊥ · l′⊥
]

6m3X2
l⊥
X2
l′⊥

, (B.2b)

W
3P

[1]
1 =

4
(
k2

1⊥l⊥ · l′⊥ − k1⊥ · l⊥k1⊥ · l′⊥
)

3m3

(
1

Xl⊥Xl′⊥

− m2

X2
l⊥
Xl′⊥

− m2

Xl⊥X
2
l′⊥

)

+
1

3mX2
l⊥
X2
l′⊥

[
k4

1⊥l⊥ · l′⊥ + k2
1⊥
(
3k1⊥ · l⊥k1⊥ · l′⊥ − 2k1⊥ · l⊥p⊥ · l′⊥

−2k1⊥ · l′⊥p⊥ · l⊥+4m2l⊥ · l′⊥+p⊥ · l⊥p⊥ · l′⊥
)
−4m2k1⊥ · l⊥k1⊥ · l′⊥

]
, (B.2c)

W
3P

[1]
2 =

4k1⊥ · l⊥k1⊥ · l′⊥
15m3Xl⊥Xl′⊥

+
2k1⊥ · l′⊥

[
k2

1⊥(p⊥ − k1⊥) · l⊥ − 2m2k1⊥ · l⊥
]

15m3X2
l⊥
Xl′⊥

+
2k1⊥ · l⊥

[
k2

1⊥(p⊥ − k1⊥) · l′⊥ − 2m2k1⊥ · l′⊥
]

15m3Xl⊥X
2
l′⊥

+
1

15m3X2
l⊥
X2
l′⊥

×
{
k4

1⊥
[
(p⊥ − k1⊥) · l⊥(p⊥ − k1⊥) · l′⊥ + 3m2l⊥ · l′⊥

]
+ k2

1⊥m
2
(
k1⊥ · l⊥k1⊥ · l′⊥ − 2k1⊥ · l⊥p⊥ · l′⊥ − 2k1⊥ · l′⊥p⊥ · l⊥

+12m2l⊥ · l′⊥ + 3p⊥ · l⊥p⊥ · l′⊥
)

+ 4m4k1⊥ · l⊥k1⊥ · l′⊥
}
, (B.2d)

W
1S

[1]
0 =

2
(
k2

1⊥l⊥ · l′⊥ − k1⊥ · l⊥k1⊥ · l′⊥
)

mXl⊥Xl′⊥

, (B.2e)

W
1P

[1]
1 =

(k1⊥ · p⊥)2 − k2
1⊥p

2
⊥

6m3Xl⊥Xl′⊥

+
(p⊥ − k1⊥) · l⊥

(
k2

1⊥p⊥ · l⊥ − k1⊥ · l⊥k1⊥ · p⊥
)

3m3X2
l⊥
Xl′⊥

+
(p⊥ − k1⊥) · l′⊥

(
k2

1⊥p⊥ · l′⊥ − k1⊥ · l′⊥k1⊥ · p⊥
)

3m3Xl⊥X
2
l′⊥

− 2

3m3X2
l⊥
X2
l′⊥

×
(
k2

1⊥l⊥ ·l′⊥−k1⊥ ·l⊥k1⊥ ·l′⊥
)[

(p⊥−k1⊥)·l⊥(p⊥−k1⊥)·l′⊥+4m2l⊥ ·l′⊥
]
, (B.2f)

where

l⊥ = k⊥ −
p⊥ − k1⊥

2
, l′⊥ = k′⊥ −

p⊥ − k1⊥
2

, (B.3)

and

Xl⊥ = l2⊥ +
k2

1⊥
4

+m2, Xl′⊥
= l′

2
⊥ +

k2
1⊥
4

+m2. (B.4)

The “· · · ” in W
3S

[1]
1 represents terms that are independent of either l⊥ or l′⊥, which will

eventually contribute to Γ
3S

[1]
1

1 in terms of δ(r⊥) or δ(r′⊥). Let us denote the following
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abbreviations

Z0 ≡
1

2π

∫
k⊥

eil⊥·r⊥

Xl⊥

= K0

r⊥
√
k2

1⊥
4

+m2

 , (B.5a)

Z1 ≡
1

2π

∫
k⊥

eil⊥·r⊥

X2
l⊥

=
r⊥

2

√
k21⊥

4 +m2

K1

r⊥
√
k2

1⊥
4

+m2

 , (B.5b)

Z ′0 ≡
1

2π

∫
k′⊥

e−il
′
⊥·r
′
⊥

Xl′⊥

= K0

r′⊥
√
k2

1⊥
4

+m2

 , (B.5c)

Z ′1 ≡
1

2π

∫
k′⊥

e−il
′
⊥·r
′
⊥

X2
l′⊥

=
r′⊥

2

√
k21⊥

4 +m2

K1

r′⊥
√
k2

1⊥
4

+m2

 , (B.5d)

where K0,1 are the modified Bessel functions. Then, Γκ1 can be obtained by

Γκ1 =
1

(2π)2

∫
k⊥,k

′
⊥

eil⊥·r⊥e−il
′
⊥·r
′
⊥W κ. (B.6)

For κ = 3S
[1]
1 , we obtain Γκ1 from W κ by doing the replacement

X−1
l⊥
→ Z0, X−1

l′⊥
→ Z ′0. (B.7)

For κ = 3P
[1]
0 , 3P

[1]
1 , 3P

[1]
2 , 1S

[1]
0 , we obtain Γκ1 from W κ by doing the replacement

X−2
l⊥
→ 2

∂Z1

∂r2
⊥
, X−1

l⊥
→ 2

∂Z0

∂r2
⊥
,

X−2
l′⊥
→ 2

∂Z ′1
∂r′2⊥

, X−1
l′⊥
→ 2

∂Z ′0
∂r′2⊥

,

l⊥ → r⊥, l′⊥ → r′⊥.

(B.8)

For κ = 1P
[1]
1 , we obtain

Γ
1P

[1]
1

1 = −
(
Z0 + 4

∂Z1

∂r2
⊥

)(
Z ′0 + 4

∂Z ′1
∂r′2⊥

)
k2

1⊥p
2
⊥ − (k1⊥ · p⊥)2

6m3

− 4
∂2Z1

∂2r2
⊥

(
Z ′0 + 4

∂Z ′1
∂r′2⊥

)
(p⊥ − k1⊥) · r⊥

(
k2

1⊥p⊥ · r⊥ − k1⊥ · r⊥k1⊥ · p⊥
)

3m3

− 4
∂2Z ′1
∂2r′2⊥

(
Z0 + 4

∂Z1

∂r2
⊥

)
(p⊥ − k1⊥) · r′⊥

(
k2

1⊥p⊥ · r′⊥ − k1⊥ · r′⊥k1⊥ · p⊥
)

3m3

− 16
∂Z1

∂r2
⊥

∂Z ′1
∂r′2⊥

2k2
1⊥

3m
− 16

∂2Z1

∂2r2
⊥

∂Z ′1
∂r′2⊥

4

3m

[
k2

1⊥r
2
⊥ − (k1⊥ · r⊥)2

]
− 16

∂2Z ′1
∂2r′2⊥

∂Z1

∂r2
⊥

4

3m

[
k2

1⊥r
′2
⊥ −

(
k1⊥ · r′⊥

)2]− 16
∂2Z1

∂2r2
⊥

∂2Z ′1
∂2r′2⊥

2

3m3

×
(
k2

1⊥r⊥ ·r′⊥−k1⊥ ·r⊥k1⊥ ·r′⊥
)[

(p⊥−k1⊥)·r⊥(p⊥−k1⊥)·r′⊥+4m2r⊥ ·r′⊥
]
.

(B.9)
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B.1.2 Collinear limit

Define

W̃ κ ≡ lim.
k1⊥→0

1

2π

∫ 2π

0
dθ1

W κ

k2
1⊥
, (B.10)

we find

W̃
3S

[1]
1 =

2m

3X̃l⊥X̃l′⊥

+ · · · , (B.11a)

W̃
3P

[1]
0 =

l⊥ · l′⊥
3m3

 1

X̃l⊥X̃l′⊥

+
2m2

X̃2
l⊥
X̃l′⊥

+
2m2

X̃l⊥X̃
2
l′⊥

+
4m4

X̃2
l⊥
X̃2
l′⊥

 , (B.11b)

W̃
3P

[1]
1 =

2l⊥ · l′⊥
3m3

 1

X̃l⊥X̃l′⊥

− m2

X̃2
l⊥
X̃l′⊥

− m2

X̃l⊥X̃
2
l′⊥

+
m4 + m2

2
p⊥·l⊥p⊥·l′⊥

l⊥·l′⊥
X̃2
l⊥
X̃2
l′⊥

 , (B.11c)

W̃
3P

[1]
2 =

2l⊥ · l′⊥
15m3

 1

X̃l⊥X̃l′⊥

− m2

X̃2
l⊥
X̃l′⊥

− m2

X̃l⊥X̃
2
l′⊥

+
7m4 + 3m2

2
p⊥·l⊥p⊥·l′⊥

l⊥·l′⊥
X̃2
l⊥
X̃2
l′⊥

 , (B.11d)

W̃
1S

[1]
0 =

l⊥ · l′⊥
mX̃l⊥X̃l′⊥

, (B.11e)

W̃
1P

[1]
1 =

1

12m3

− p2
⊥

X̃l⊥X̃l′⊥

+
2 (p⊥ ·l⊥)2

X̃2
l⊥
X̃l′⊥

+
2 (p⊥ ·l′⊥)2

X̃l⊥X̃
2
l′⊥

−
4(l⊥ ·l′⊥)2

(
4m2+

p⊥·l⊥p⊥·l′⊥
l⊥·l′⊥

)
X̃2
l⊥
X̃2
l′⊥

 ,
(B.11f)

where

X̃l⊥ = l2⊥ +m2, X̃l′⊥
= l′

2
⊥ +m2. (B.12)

Similarly, the “· · · ” in W̃
3S

[1]
1 represents terms that are independent of either l⊥ or l′⊥,

which has no contribution for cross section. Let us denote the following abbreviations

Z̃0 ≡ K0 (r⊥m) , Z̃1 ≡
r⊥
2m

K1 (r⊥m) , Z̃ ′0 ≡ K0

(
r′⊥m

)
, Z̃ ′1 ≡

r′⊥
2m

K1

(
r′⊥m

)
. (B.13)

Then Γ̃κ1 defined in eq. (3.38) can be obtained by

Γ̃κ1 =
1

(2π)2

∫
k⊥,k

′
⊥

eil⊥·r⊥e−il
′
⊥·r
′
⊥W̃ κ. (B.14)

For κ = 3S
[1]
1 , we obtain Γ̃κ1 from W̃ κ by doing the replacement

X̃−1
l⊥
→ Z̃0, X̃−1

l′⊥
→ Z̃ ′0. (B.15)
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For κ = 3P
[1]
0 , 3P

[1]
1 , 3P

[1]
2 , 1S

[1]
0 , we obtain Γ̃κ1 from W̃ κ by doing the replacement

X̃−2
l⊥
→ 2

∂Z̃1

∂r2
⊥
, X̃−1

l⊥
→ 2

∂Z̃0

∂r2
⊥
,

X̃−2
l′⊥
→ 2

∂Z̃ ′1
∂r′2⊥

, X̃−1
l′⊥
→ 2

∂Z̃ ′0
∂r′2⊥

,

l⊥ → r⊥, l′⊥ → r′⊥.

(B.16)

For κ = 1P
[1]
1 , we obtain

Γ̃
1P

[1]
1

1 = −
p2
⊥

12m3

[(
Z̃0 + 4

∂Z̃1

∂r2
⊥

)(
Z̃ ′0 + 4

∂Z̃ ′1
∂r′2⊥

)

+ 4
∂2Z̃1

∂2r2
⊥

(
Z̃ ′0 + 4

∂Z̃ ′1
∂r′2⊥

)
2(p⊥ · r⊥)2

p2
⊥

+ 4
∂2Z̃ ′1
∂2r′2⊥

(
Z̃0 + 4

∂Z̃1

∂r2
⊥

)
2(p⊥ · r′⊥)2

p2
⊥

+ 16

(
∂Z̃1

∂r2
⊥

∂Z̃ ′1
∂r′2⊥

+ r2
⊥
∂2Z̃1

∂2r2
⊥

∂Z̃ ′1
∂r′2⊥

+ r′
2
⊥
∂2Z̃ ′1
∂2r′2⊥

∂Z̃1

∂r2
⊥

)
8m2

p2
⊥

+16
∂2Z̃1

∂2r2
⊥

∂2Z̃ ′1
∂2r′2⊥

4 (r⊥ · r′⊥)2

p2
⊥

(
4m2 +

p⊥ · r⊥p⊥ · r′⊥
r⊥ · r′⊥

)]
.

(B.17)

B.2 Hard part for color octet channels

B.2.1 Complete results

From the definition for Γκ8 in eq. (3.35), we get

Γ
3S

[8]
1

8 =
2k2

1⊥

[
(p⊥ − k1⊥)2 + 4m2

]
3m3(p2

⊥ + 4m2)
−

4k2
1⊥

[
(p⊥ − k1⊥)2 + k1⊥ · p⊥ + 4m2

]
3mXl⊥(p2

⊥ + 4m2)

+
k2

1⊥
(
k2

1⊥ + 4m2
)

6mX2
l⊥

,

(B.18a)

Γ
3P

[8]
0

8 =
2(k1⊥ · l⊥)2

3m3X2
l⊥

+
2k1⊥ · l⊥

[
k2

1⊥(p⊥ − k1⊥) · l⊥ + 4m2k1⊥ · l⊥
]

3m3X3
l⊥

+

[
k2

1⊥(p⊥ − k1⊥) · l⊥ + 4m2k1⊥ · l⊥
]2

6m3X4
l⊥

,

(B.18b)

Γ
3P

[8]
1

8 =
4
[
k2

1⊥l
2
⊥ − (k1⊥ · l⊥)2

]
3m3

(
1

X2
l⊥

− 2m2

X3
l⊥

)
+

1

3mX4
l⊥

{
k4

1⊥l
2
⊥

+k2
1⊥
[
(p⊥ − k1⊥) · l⊥(p⊥ − 3k1⊥) · l⊥ + 4m2l2⊥

]
− 4m2(k1⊥ · l⊥)2

}
,

(B.18c)

Γ
3P

[8]
2

8 =
4(k1⊥ · l⊥)2

15m3X2
l⊥

+
4k1⊥ · l⊥

[
k2

1⊥(p⊥ − k1⊥) · l⊥ − 2m2k1⊥ · l⊥
]

15m3X3
l⊥

+
1

15m3X4
l⊥

{
k4

1⊥

[
((p⊥ − k1⊥) · l⊥)2 + 3m2l2⊥

]
+k2

1⊥m
2
[
(p⊥−k1⊥) · l⊥(3p⊥−k1⊥) · l⊥+12m2l2⊥

]
+4m4(k1⊥ · l⊥)2

}
,

(B.18d)
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Γ
3P

[8]
J

8 =
4k2

1⊥l
2
⊥−2(k1⊥ ·l⊥)2

9m3X2
l⊥

+
2k2

1⊥k1⊥ ·l⊥(p⊥−k1⊥)·l⊥−8m2
[
k2

1⊥l
2
⊥−(k1⊥ ·l⊥)2

]
9m3X3

l⊥

+
k2

1⊥(k2
1⊥ + 4m2)

{
[(p⊥ − k1⊥) · l⊥]2 + 4m2l2⊥

}
18m3X4

l⊥

,

(B.18e)

Γ
1S

[8]
0

8 =
2
[
k2

1⊥l
2
⊥ − (k1⊥ · l⊥)2

]
mX2

l⊥

, (B.18f)

Γ
1P

[8]
1

8 =
(k1⊥ · p⊥)2 − k2

1⊥p
2
⊥

6m3X2
l⊥

+
2 (p⊥ − k1⊥) · l⊥

(
k2

1⊥p⊥ · l⊥ − k1⊥ · l⊥k1⊥ · p⊥
)

3m3X3
l⊥

−
2
[
k2

1⊥l
2
⊥ − (k1⊥ · l⊥)2

] {
[(p⊥ − k1⊥) · l⊥]2 + 4m2l2⊥

}
3m3X4

l⊥

,

(B.18g)

where Γ
3P

[8]
J

8 is obtained using the projector in eq. (A.5). It is easy to find that Γ
3P

[8]
0

8 +

3Γ
3P

[8]
1

8 + 5Γ
3P

[8]
2

8 = 9Γ
3P

[8]
J

8 .

B.2.2 Collinear limit

In the collinear limit of proton side, we get the results for Γ̃κ8 defined in eq. (3.40),

Γ̃
3S

[8]
1

8 =
2

3m3

(
1− m2

X̃l⊥

)2

, (B.19a)

Γ̃
3P

[8]
0

8 =
l2⊥

3m3X̃2
l⊥

(
1 +

2m2

X̃l⊥

)2

, (B.19b)

Γ̃
3P

[8]
1

8 =
2l2⊥

3m3X̃2
l⊥

(1− m2

X̃l⊥

)2

+
m2(p⊥ · l⊥)2

2l2⊥X̃
2
l⊥

 , (B.19c)

Γ̃
3P

[8]
2

8 =
2l2⊥

15m3X̃2
l⊥

1− 2m2

X̃l⊥

+
m2

2

14m2 + 3 (p⊥·l⊥)2

l2⊥

X̃2
l⊥

 , (B.19d)

Γ̃
3P

[8]
J

8 =
l2⊥

3m3X̃2
l⊥

1− 4m2

3X̃l⊥

+
2m2

3

4m2 + (p⊥·l⊥)2

l2⊥

X̃2
l⊥

 , (B.19e)

Γ̃
1S

[8]
0

8 =
l2⊥

mX̃2
l⊥

, (B.19f)

Γ̃
1P

[8]
1

8 = − 1

12m3X̃2
l⊥

p2
⊥ −

4(p⊥ · l⊥)2

X̃l⊥

+
4l4⊥

[
4m2 + (p⊥·l⊥)2

l2⊥

]
X̃2
l⊥

 . (B.19g)

Again, we have Γ̃
3P

[8]
0

8 + 3Γ̃
3P

[8]
1

8 + 5Γ̃
3P

[8]
2

8 = 9Γ̃
3P

[8]
J

8 .
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