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1 Introduction

Noncommutative geometry [1–4] generalizes the concepts of ordinary geometry in an alge-

braic setting and enables powerful generalizations beyond the Riemannian paradigm. Its

application to the standard model of fundamental interactions is a fascinating one [5–10]:

the geometrical setting is that of an usual manifold (spacetime) described by the algebra

of complex valued functions defined on it, tensor multiplied by a finite dimensional matrix

algebra. This is usually called an “almost commutative geometry”. The standard model is

described as a particular almost commutative geometry, and the corresponding Lagrangian

is built from the spectrum of a generalized Dirac operator. This approach to the standard
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model has a phenomenological predictive power and is approaching the level of maturity

which enables it to confront with experiments.

Schematically the application of noncommutative geometry to the standard model has

two sides. One is the mathematical request that a topological space is a manifold. This

yields a set of algebraic requirements [11] involving the algebra of functions defined on

the space, represented as bounded operators on a spinorial Hilbert space, and a (gener-

alized) Dirac operator, plus two more operators representing charge conjugation and chi-

rality. These requirements, being algebraic, can easily be generalized to noncommutative

algebra [12]. In the almost commutative case some extra assumptions on the representa-

tion [13] single out the algebra corresponding to the standard model among a restricted

number of cases [9, 14] as the smallest algebra which satisfies the requirements.

The other side has to do with the spectral nature of the action. The spectral action

principle [15] allows to derive from a unique noncommutative spacetime a Lagrangian for

both general relativity (in Euclidean signature) and the standard model. The principle

is purely spectral, based on the regularization of the eigenvalues of the Dirac operator.1

In [9] (see also [14, 21]) this noncommutative model was enhanced to include massive

neutrinos and the seesaw mechanism. The most remarkable result is the possibility to

predict the mass of the Higgs particle from the mass of the other fermions and the value of

the unification scale. Earlier version of the model had a prediction around 170GeV, a value

ruled out by Tevatron in 2008. Recently Connes and Chamseddine showed in [22] that the

experimental value of the mass of Higgs at 126 GeV can be obtained introducing a new

scalar field σ suitably coupled to the Higgs field. Such a field had previously been proposed

from a completely different perspective by particle physicists (see for example [23]), to avoid

an high energy instability [24–26] in the Higgs potential.

The idea of a new scalar field to lower the mass of the Higgs in the Connes approach is

not new, and was already proposed by Stephan in [27]. However, he obtained it adding new

fermions [28, 29], whereas in [22] (as well as in the present paper) the fermionic contents of

the standard model is not touched. In [22] the field σ is obtained by simply turning one of

the elements of the internal Dirac operator into a field. As explained in section 2.4, this is

somehow artificial because the usual NCG procedure to obtain scalar fields (the so called

fluctuations of the metric) does not work for the field σ, because of one of the conditions

on spectral triples (the first order condition). In section 4.3 we show how to overcome this

difficulty by considering a larger algebra.2 This is the main result of the paper.

More precisely, in [13] it is shown that under minimal condition on the representation

of the algebra, the smallest nontrivial almost commutative manifold corresponds to the

standard model. Here we consider a larger algebra, that we term grand algebra. We show

how to obtain the field σ by fluctuating the Majorana mass term of the Dirac operator, in a

way compatible with the first order condition induced by this Majorana mass term. Then

1The spectral action principle, as well as any finite mode regularization [16–18], requires a Euclidean

compact spacetime, but the cutoff on the momentum eigenvalues is even more general and can be used also

for continuum spectrum, see for example [19, 20].
2While we were preparing the second version of this paper, a proposal came out to obtain the σ field

from a fluctuation of the metric, by relaxing the first order condition [30, 31].
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we show how the first order condition imposed by the free Dirac operator reduces the grand

algebra to the one of the standard model. The field σ then appears as the Higgs-like field

corresponding to this reduction. All this is possible because we intertwine in a non trivial

way the Riemann-spin degrees of freedom (the components of spinors) with the internal

degrees of freedom (the particles of the standard model). This puts in a new light also the

phenomenon of fermion doubling [9, 32–34] present in the theory.

The paper is organized as follows. In section 2 we briefly recall the spectral triple cons-

truction (section 2.1) and introduce the Hilbert space (section 2.2) and the Dirac operator

(section 2.3) of the standard model. We recall in section 2.4 how the Higgs mass is obtained

from the spectral action, and point out the difficulty in generating the field σ by fluctuation

of the metric. Section 3 deals with the choice of the algebras and their representation. We

first discuss the algebra of the standard model in section 3.1, then introduce the grand

algebra in section 3.2. The reduction imposed by the grading condition are worked out in

section 3.3. In section 4 we explain how the grand algebra allows to obtain the field σ:

first we work out the most general Dirac operator Dν compatible with the grand algebra

and containing a Majorana mass term for the neutrino (section 4.1), then we calculate

the reduction imposed by the first order condition induced by Dν (section 4.2), finally we

show that σ can be obtained by a fluctuation of Dν respecting this first order condition

(section 4.3). Section 5 deals with the reduction of the grand algebra to the algebra of the

standard model (section 5.1) and the issue of Lorentz invariance and the emergence of the

spin structure (section 5.2). Possible physical interpretations are discussed in section 5.3.

A final section contains conclusions and some speculative comments.

2 The spectral triple of the standard model

2.1 Spectral triples

The basic device in the construction is a spectral triple (A,H, D) consisting of a *-algebra

A of bounded operators in a Hilbert space H - containing the identity operator - and a non-

necessarily bounded self-adjoint operator D. These three elements satisfy a set of properties

allowing to prove Connes reconstruction theorem: given any spectral triple (A,H, D) with

commutative A satisfying the required conditions, then A ' C∞(M) for some Riemannian

spin manifoldM. The required conditions can be found in [11], and their noncommutative

generalization in [12]. In this work we will be interested only in

- the grading condition: there is an operator Γ (called chirality) such that Γ2 = I,
ΓD = −DΓ and

[Γ, a] = 0 ∀ a ∈ A. (2.1)

- the order zero condition: there is an antilinear isometry J (called real structure)

which implements an action of the opposite algebra3 A◦ obtained by identifying

b◦ = Jb∗J−1, and which commutes with the action of A:

[a, JbJ−1] = 0 ∀ a, b ∈ A. (2.2)

3Identical to A as a vector space, but with reversed product: a◦b◦ = (ba)◦.
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The operator J must obey 1) J2 = ±I; 2) JD = ±DJ ; 3) JΓ = ±ΓJ , with choice

of signs dictated by the KO-dimension of the spectral triple.

- the first order condition

[[D, a], JbJ−1] = 0 ∀ a, b ∈ A. (2.3)

2.2 Hilbert space of the standard model

A particular form of noncommutative manifolds, suitable to describe the standard model

of elementary particles [12], are the almost commutative geometries, given by the product

of an ordinary manifoldM (that from now on is assumed to have dimension 4) by a finite

dimensional spectral triple. The algebra is

A = C∞(M)⊗AF (2.4)

where AF is a finite dimensional algebra, whose choice is dictated by the gauge group of

the standard model and is discussed in section 3. For the Hilbert space a suitable choice is

H = sp(L2(M))⊗HF (2.5)

where sp(L2(M)) is the Hilbert space of square summable spinors on M and

HF = HR ⊕HL ⊕HcR ⊕HcL = C96 (2.6)

contains all the 96 particle-degrees of freedom of the standard model: 8 fermions (electron,

neutrino, up and down quarks with three colours each) for N=3 families and 2 chiralities

(HR ' HL ' C24) plus antiparticles (HcR ' HcL ' C24). The chiral and real structure are

Γ = γ5 ⊗ γF , J = J ⊗ JF (2.7)

where J is the charge conjugation operator, γ5 the product of the four γ matrices, and

γF =


I8N
−I8N

−I8N
I8N

 , JF =

(
0 I16N

I16N 0

)
cc (2.8)

with cc the complex conjugation. Notice that right particles and left antiparticles have

chirality +1, whereas left particles and right antiparticles have chirality −1.

The Hilbert spaceH defined in (2.5) is the tensor product of four dimensional spinors by

the 96-dimensional elements of HF , thus (as a vector bundle overM) it has dimension 384,

or 128 for a single generation. This redundancy of states is known as fermion doubling [32–

34]. The problem is not only the over-counting, but the presence of states which do not

have a definite parity, being left chiral in the inner indices and right chiral in the outer

ones, or viceversa. Since the total chirality Γ is the product of γF (which acts on the inner

indices of HF ) by γ (which acts on the spin indices), the spurious states are the ones for
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which ΓΨ = −Ψ. Taking the functional integral of the fermionic action to be a Pfaffian [9]

allows to project out these extra degrees of freedom. However, one cannot simply project

out the extra states and work with a representation on a smaller Hilbert space, because

in the bosonic spectral action all degrees of freedom are necessary [32] in order to obtain

the proper action of the standard model coupled with gravity. We will see in the following

that the fermion doubling may be in fact an essential feature of the model, by allowing to

represent an algebra bigger than the one of the standard model.

2.3 Dirac operator

The operator D (still called Dirac operator) for the spectral triple of the standard model is

D = /∂ ⊗ I96 + γ5 ⊗DF (2.9)

with4

DF =


08N M MR 08N

M† 08N 08N 08N

M†R 08N 08N M̄
08N 08N MT 08N

 . (2.10)

The matrix M contains the Yukawa couplings of the fermions and the mixing matrices

(CKM for quarks and NPMS for neutrinos). It couples left with right particles. The matrix

MR =MT
R contains Majorana masses and couples right particles with right antiparticles.

The operators γF , JF and DF are such that

J2
F = I, JFDF = DFJF , JγF = −γFJF , (2.11)

meaning that the finite part of the spectral triple has KO-dimension 6 [9, 21]. The manifold

part has KO-dimension 4, and the full spectral triple has KO-dimension 6+4=10 mod 8=2.

2.4 Spectral action, Higgs mass and the σ field

Given an almost commutative geometry (A,H,D), a fluctuation of the metric [12]5 means

the substitution of D by the gauge Dirac operator [36]

DA ≡ D +A+ JAJ−1 (2.12)

where A =
∑

i ai[D, bi], with ai, bi ∈ A, is a generalized gauge potential. It is made of two

parts: a scalar field onM with value in AF , and 1-form field onM with value in the group

of unitaries of AF . In case AF = Asm is the algebra of the standard model (discussed

in section 3), the 1-form fields yield the vector bosons mediating the three fundamental

interactions, and the scalar field is the Higgs field H.

The spectral action [15] is based on a regularization of the spectrum of DA. It reads:

SB = Trχ

(
D2
A

Λ2

)
(2.13)

4Here¯denotes the complex conjugation, † the adjoint, T the transpose.
5The name comes from the fact that the substitution D → DA modifies the metric associated to the

spectral triple. See [35] for a detailed account on this point.
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where χ is a cutoff function, usually the (smoothened) characteristic function on the interval

[0, 1], and Λ is a renormalization scale. It has an expansion in power series of Λ−1,

lim
Λ→∞

SB =
∑
n

fn an(D2
A/Λ

2) (2.14)

where the fn are the momenta of χ and the an are the Seeley-de Witt coefficients [37, 38].

Applied to the operator (2.9) fluctuated as in (2.12) with ai, bi ∈ C∞(M)⊗Asm, the

expansion (2.14) yields the bosonic part of the Lagrangian of the standard model coupled

with gravity [9, section 4.1].6 Furthermore the parameters related to the Higgs come out

to be function of the parameters in DF , i.e. the Yukawa couplings, which are in turn

dominated by the top quark coupling. In this sense the model predicts the Higgs mass as a

function of the other gauge couplings, the Yukawa top mass and the scale Λ which appears

also as the scale in which the three gauge couplings coincide. This last point is known to

be true only in an approximate sense. If one takes the unification scale to be Λ = 1017GeV

then one finds - assuming the big desert hypothesis - a Higgs mass of the order of 170 GeV.

This value is not in agreement with the recent LHC experiments [46, 47].

One can think of extending the model to solve this. There have been several proposals

in this sense, and some of them are reviewed in [8]. In particular C. Stephan has proposed

in [27] that the presence of an extra scalar field, corresponding to the breaking of a extra

U(1) symmetry, can bring down the mass of the Higgs to 126 GeV. This model however

contains extra fermions. Earlier examples of extensions are in [28, 29, 48–52].

Recently, in [22] the noncommutative geometry model was enhanced to also overcome

the high energies instability of a Higgs boson with mass around 126 GeV, in addition to

predicting the correct mass. This is done ruling out the hypothesis of the “big desert”

and considering an additional scalar field σ that lives at high energies and gives mass

to the Majorana neutrinos. Explicitly σ is obtained in [22] by turning (inside the finite

dimensional part DF of the Dirac operator) the constant-entry kR of the Majorana matrix

MR into a field:

kR → kRσ (2.15)

However, the origin of the field σ is quite different from the Higgs. The latter, like

the other bosons, are components of the gauge potential A. They are obtained from the

commutator of DF with the algebra: DF has constant components, that is without space

dependence, but when these numbers are commuted with elements of the algebra they

give rise to the desired bosonic fields. One could hope to obtain σ in a similar way, by

considering kR as a Yukawa coupling. As explained in appendix B, the problem is that

in taking the commutator with elements of the algebra Asm, the coefficient kR does not

contribute to the potential because of the first order condition. This forced the authors

of [22] to “promote to a field” only the entry kR, in a somewhat arbitrary way. Indeed

the components of DF cannot all be fields to start with, otherwise the model would loose

6The bosonic action can also be obtained via considerations related to spectral regularization and the

role of anomalies [39–41]. Supersymmetric extension have been investigated in [42]. For some cosmological

predictions based on the spectral action, see e.g. [43–45].
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its predictive power, in that all Yukawa couplings would be fields, and the masses of all

fermions would run independently, thus making any prediction impossible. In the following

(sections 3 and 4) we show that there is a way to obtain the field σ from kR by a fluctuation

of the metric, provided one starts with an algebra larger than the one of the standard model.

3 Algebras and representations

Under assumptions on the representation (irreducibility, existence of a separating vector),

the most general finite algebra in (2.4) that satisfies all conditions for the noncommutative

space to be a manifold is

AF = Ma(H)⊕M2a(C) a ∈ N∗. (3.1)

This algebra acts on an Hilbert space of dimension 2(2a)2 [13, 53].

3.1 The algebra of the standard model

To have a non trivial grading on Ma(H) the integer a must be at least 2, meaning the

simplest possibility is

AF = M2(H)⊕M4(C). (3.2)

Hence an Hilbert space of dimension 2(2 · 2)2 = 32, that is the dimension of HF for one

generation. The grading condition [a,Γ] = 0 reduces the algebra to the left-right algebra:

ALR = HL ⊕HR ⊕M4(C). (3.3)

This is basically a Pati-Salam model [54], one of the not many models allowed by the

spectral action [55]. The order one condition reduces further the algebra to [9] (for a

review see also [10])

Asm = C⊕H⊕M3(C), (3.4)

where H are the quaternions, which we represent as 2 × 2 matrices, and M3(C) are 3 × 3

complex valued matrices. Asm is the algebra of the standard model, that is the one

whose unimodular group is U(1)×SU(2)×U(3). The details of these reductions are given

in appendix A.

These algebras - tensorized by C∞(M) - are represented on the Hilbert space (2.5),

whose elements are 384 components vectors. The number 384 comes from degrees of

freedom which have different physical meaning. Some of them refer to “internal” degrees

of freedom, like colour, some refer to the Riemannian-spin structure, and have a spacetime

meaning. We denote a generic fermion, i.e. an element of H by

ΨCIm
sṡα (x) ∈ H = L2(M)⊗ HF = sp(L2(M))⊗HF . (3.5)

The position of the indices, whose meaning is described below, is a matter of convention, Ψ

is a C384-vector valued function on M, we write some of them as upper indices and some

as lower to avoid having six indices in a row. Note the difference between HF and HF : the

latter is a 96 dimensional space and its vectors are to be multiplied by spinors, while the

– 7 –
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former is the larger 384 dimensional space which exhibits explicitly the fermion doubling

over-counting. So far in the literature the Hilbert space has been considered always in its

factorized form involving HF . One of the novelties of this work is to use the factorized

form involving HF . This allows us in section 3.2 to consider algebras which do not act

separately on spinors and the internal part. This means that in addition of the internal

degrees of freedom used in [14], our tensorial notation also includes spin indices s, ṡ.

The meaning and range of the various indices of ΨCIm
sṡα (x) is the following:

s = r , l

ṡ = 0̇ , 1̇
are the spinor indices. They are not internal indices in the sense that the algebra AF

acts diagonally on it. They take two values each, and together they make the four

indices on an ordinary Dirac spinor. The index s = r , l indicates chirality and runs

over the right, left part of the spinor, while ṡ differentiates particles from antiparticles.

In the chiral basis one thus has7

γµ =

(
02 σµṫṡ
σµṫṡ 02

)
st

, γ5 =

(
I2 02

02 −I2

)
st

, (3.6)

where for µ = 0, 1, 2, 3 one defines

σµ = {I2,−iσi} , σ̄µ = {I2, iσi} (3.7)

with σi, i = 1, 2, 3 the Pauli matrices, namely σ0 = I2,

σ1 = −iσ1 =

(
0 −i
−i 0

)
ṡṫ

σ2 = −iσ2 =

(
0 −1

1 0

)
ṡṫ

σ3 = −iσ3 =

(
−i 0

0 i

)
ṡṫ

.

I = 0, . . . 3 indicates a “lepto-colour” index. The zeroth “colour” actually identifies leptons while

I = 1, 2, 3 are the usual three colours of QCD.

α = 1 . . . 4 is the flavour index. It runs over the set uR, dR, uL, dL when I = 1, 2, 3, and

νR, eR, νL, eL when I = 0. It repeats in the obvious way for the other generations.

C = 0, 1 indicates whether we are considering “particles” (C = 0) or “antiparticles” (C = 1).

m = 1, 2, 3 is the generation index. The representation of the algebra of the standard model

is diagonal in these indices, the Dirac operator is not, due to Cabibbo-Kobayashi-

Maskawa mixing parameters.

For the remainder of this paper the generation index m does not play any role. We will

therefore suppress it and work with one generation, thus effectively considering HF and

HF having dimension 32 and 128 respectively.

7The multi-index st after the closing parenthesis is to recall that the entries of the γ’s matrices are

labelled by indices s, t taking values in the set {l, r}. For instance the l-row, l-column block of γ5 is I2.

Similarly the entries of the σ’s matrices are labelled by ṡ, ṫ indices taking value in the set
{

0̇, 1̇
}

: for instance

σ20̇
0̇ = σ21̇

1̇ = 0.
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A generic element A = {Q,M} in C∞(M) ⊗ AF (with Q ∈ C∞(M) ⊗M2(H) and

M ∈ C∞(M)⊗M4(C)) acts as a matrix on vectors of HF with index structure (3.5), it is

therefore a matrix with twice as many indices:8

A tṫCIβ
sṡDJα = δtsδ

ṫ
ṡ

(
δC0 δ

I
JQ

β
α + δC1M

I
Jδ
β
α

)
. (3.8)

Here Qβα evaluated at x ∈M denotes the entries Qβα(x) ∈ C of the matrix Q(x) ∈M2(H),

viewed as a 4 × 4 complex matrix with components labelled by the α, β flavour indices.

Similarily M I
J evaluated at x stands for the components of the matrix M(x) ∈ M4(C),

whose entries are labelled by the I, J lepto-colour indices.

The two Kronecker δ at the beginning of the expression for A show that the algebra

acts in a trivial way (i.e. as the identity operator) on the spin indices. In other words

the finite dimensional algebra AF acts only on the internal indices. The two terms in the

bracket act only on particles and antiparticles respectively, as signified by δC0 and δC1 . They

are such that the order zero condition hold. Note in fact that for particles the action is

trivial on the I, J indices, and for antiparticles is trivial on the α, β indices. Since the real

structure J exchanges particles with antiparticles the two A and JBJ−1 will commute.

There is no room for the representation of a larger algebra satisfying the order 0 condition,

unless more fermions are added, or one renounces to the trivial action on the spin indices.

The second possibility is the one we will use for the grand algebra in the following sections.

3.2 The grand algebra

The case a = 3 in (3.1) would require a 72-dimensional Hilbert space, and there is no

obvious way to build it from the particle content of the standard model. The next case,

a = 4, requires the Hilbert space to have dimension 128, which is the dimension of HF .

Said in an other way, considering together the spin and internal degrees of freedom as part

of the “grand Hilbert space” HF gives precisely the number of dimension to represent the

grand algebra

AG = M4(H)⊕M8(C). (3.9)

This means that C∞(M)⊗AG can be represented on the same Hilbert spaceH as C∞(M)⊗
AF . The only difference is that one needs to factorize H in (3.5) as L2(M)⊗ HF instead

of sp(L2(M))⊗HF . It is a remarkable “coincidence” that the passage from the standard

model to the grand algebra, namely from a = 2 to a′ = 4 = 2a, requires to multiply the

dimension of the internal Hilbert space by 4 (for 2(2a′)2 = 2(4a)2 = 4(2(2a)2)) which is

precisely the dimension of spinors in a spacetime of dimension 4. Once more we stress

that no new particles are introduced: AF acts on HF = C32, AG acts on HF = C128 but

C∞(M)⊗AG and C∞(M)⊗AF acts on the same Hilbert space H.

The representation of the grand algebra AG on HF is more involved than the one of

AF on HF in the previous section. In analogy with what was done earlier we consider

an element of AG as two 8 × 8 matrices, and see both of them having a block structure

of four 4 × 4 matrices. Thus the component Q ∈ M4(H) of the grand algebra gets two

8D, J, β, have the same range as C, I, α and serve as contracting indices.
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new extra indices with respect to the quaternionic component of AF , and the same is

true for M ∈ M8(C). For the quaternions we choose to identify these two new indices

with the spinor (anti)-particles indices 0̇, 1̇; and for the complex matrices with the spinor

left-right indices r, l introduced in section 3. This choice is not unique, and we leave a full

investigation of the possible alternatives for future work. Having both sectors diagonal on

different indices ensures that the order zero condition is satisfied, as explained below.

We therefore have

Q =

(
Q0̇β

0̇α
Q1̇β

0̇α

Q0̇β

1̇α
Q1̇β

1̇α

)
ṡṫ

∈M4(H), M =

(
M rI
rJ M

lI
rJ

M rI
lJ M lI

lJ

)
st

∈M8(C) (3.10)

where, for any ṡ, ṫ ∈
{

0̇, 1̇
}

and s, t ∈ {l, r}, the matrices

Qṫβṡα ∈M2(H), M tI
sJ ∈M4(C) (3.11)

have the index structure defined below (3.8). This means that the representation of the

element A = (Q,M) ∈ AG is:9

AC t Iṫβ
DsJṡα =

(
δC0 δ

t
sδ

I
JQ

ṫβ
ṡα + δC1M

tI
sJδ

ṫ
ṡδ
β
α

)
. (3.12)

This representation is to be compared with (3.8). As before the quaternionic part acts

on the particle sector of the internal indices (δC0 ) and the complex part on the antiparticle

sector (δC1 ). The difference is that the grand algebra acts in a nondiagonal way not only on

the flavour and lepto-colour indices α, I, but also on the s and ṡ indices. The novelty is in

this mixing of internal and spacetime indices: at the grand algebra level, the spin structure

is somehow hidden. Specifically, the representation (3.12) is not invariant under the action

of the Lorentz group (or rather of Spin(4) since we are dealing with spin representation, in

Euclidean signature). This point is adressed in section 5.2.

The representation of C∞(M)⊗AG is given by (3.12) where the entries of Q and M

are now functions onM. Since the total Hilbert space H is unchanged, there is not reason

to change the real structure and the grading. In particular one easily checks that the order

zero condition holds true for the grand algebra[
A, JBJ−1

]
= 0 ∀A,B ∈ AG. (3.13)

This is because the real structure J in (2.7) acts as the charge conjugation operator

J = iγ0γ2cc = i

(
σ2 ṫ

ṡ 02

02 σ2 ṫ
ṡ

)
st

cc (3.14)

on the spinor indices, and as JF in HF (where it exchanges the two blocks corresponding

to particles and antiparticles). In tensorial notations one has

(JΨ)CI
sṡα = −iηts τ ṫṡ ξCD δI

J δ
β
α Ψ̄DJ

tṫβ
(3.15)

9To take into account the non-diagonal action of Q and M , it is convenient to change the order of the

indices with respect to (3.8). We now adopt the order: C, s, I, ṡ, α.
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where we use Einstein summation and define

ξ =

(
0 1

1 0

)
CD

, η =

(
1 0

0 −1

)
st

, τ =

(
0 −1

1 0

)
ṡṫ

. (3.16)

Hence J preserves the indices structure in (3.12), apart from the exchange δC0 ↔ δC1 : since

Q and M act on different indices, the commutation (3.13) is assured. Notice that without

the enlargement of the action of the finite dimensional algebra to the spinorial indices, it

would have been impossible to find a representation of AG which satisfies the order zero

condition, unless one adds more fermions. In this respect the grand algebra is not anymore

an internal algebra.

3.3 Reduction due to grading

In a way similar to the reduction AF → ALR explained in appendix A, the grading condi-

tion imposes a reduction AG → A′G where

A′G = (M2(H)L ⊕M2(H)R)⊕ (M4(C)l ⊕M4(C)r) . (3.17)

To see it, recall that the chirality Γ in (2.7) acts as γ5 = ηtsδ
ṫ
ṡ on the spin indices, and as

γF on the internal indices:

(ΓΨ)CI
sṡα = ηtsδ

ṫ
ṡ η

C
D δ

I
J η

β
α ΨDJ

tṫβ
(3.18)

where ηCD and ηβα are defined as in (3.16). Changing the order of the indices so that to

match (3.12), one has

Γ = ηCD η
t
s δ

I
J δ

ṫ
ṡ η

β
α. (3.19)

Since the representation of AG is diagonal in the C index, the grading condition is satisfied

if and only if it is satisfied by both sectors - quaternionic and complex - independently.

For quaternions, one asks [ηtsδ
I
Jδ
ṫ
ṡη
β
α, δtsδ

I
JQ

ṫβ
ṡα] = 0, that is [δṫṡη

β
α, Q

ṫβ
ṡα] = 0. This imposes

Q =

(
Q0̇β

0̇α
Q1̇β

0̇α

Q0̇β

1̇α
Q1̇β

1̇α

)
ṡṫ

(3.20)

where for any ṡ, ṫ ∈
{

0̇, 1̇
}

one has

Qṡβ
ṫα

=

(
qR

ṡ
ṫ

02

02 qL
ṡ
ṫ

)
αβ

with qR
ṡ
ṫ
, qL

ṡ
ṫ
∈ H. (3.21)

Elements of the kind (3.20) generates M2(H)R ⊕M2(H)L. Hence the reduction

M4(H)→M2(H)R ⊕M2(H)L. (3.22)

For matrices, one asks [ηtsδ
I
Jδ
ṫ
ṡη
β
α,M tI

sJδ
ṫ
ṡ δ

β
α] = 0, that is [ηtsδ

I
J,M

tI
sJ] = 0. This forces

M =

(
M rI
rJ 04

04 M lI
lJ

)
st

, (3.23)
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meaning the reduction

M8(C)→M4(C)r ⊕M4(C)l. (3.24)

Hence the reduction of the grand algebra to A′G. Notice that the grading causes a reduction

not only in the quaternionic sector, as in the case of AF , but also in the complex matrix

part. This is because AG is not anymore acting only on internal indices.

4 The Majorana coupling and the σ field

In this section we see how the grand algebra makes possible to have a Majorana mass

giving rise to the field σ. Although the calculations are quite involved, the principle is

quite simple. Since we have a larger algebra, the Majorana Dirac operator needs not

be diagonal in the spin indices. This added degree of freedom enables the possibility to

satisfy the order one condition in a non trivial way, namely to still have a one form which

commutes with the opposite algebra, but that at the same time gives rise to a field. In the

following we will show this analytically, all calculations have also been performed with a

symbolic manipulation programme, leading to the same results.

We first work out in section 4.1 the most general Dirac operator Dν with Majorana

coupling compatible with the grading condition and the KO dimension of the spectral

triple of the standard model. Then we study the first order condition induced by Dν and

the subsequent reduction AG → A′′G of the grand algebra (4.2). Finally we show in 4.3

that Dν can be fluctuated by A′′G so that to generate the field σ as required by (2.15).

4.1 Dirac operator with Majorana mass term

We will consider a Majorana-like mass only for the right handed neutrinos. This choice is

dictated by physics, and elsewhere we will investigate the more general case. The natural

mass scale of this matrix is very high, so that it provides a natural see-saw mechanism

(although in realistic scheme the right handed neutrino mass is somewhat lower than the

Planck scale). The standard model can be considered as a low energy limit of the theory

we present in this section. We will assume therefore that all the quantities involved in the

internal Dirac operator DF but the Majorana coupling are small compared to the scale of

the breaking described here. Moreover we work with one generation only, meaning that

DF = DR is given by (B.1). We take advantage of the flexibility introduced by the grand

algebra and we do not assume a priori that the Majorana coupling is diagonal on the spin

indices. This means that instead of γ5 ⊗ DF as in (2.9) we consider a finite dimensional

matrix Dν containing a Majorana mass term with non trivial action on the spin indices.

Right handed neutrinos have indices I = 0 and α = 1, so that the most general Majorana

coupling matrix is

Dν = R⊗DR =

(
064 Dν
D†ν 064

)
CD

with Dν = Rtṫsṡ ΞI
J Ξβα (4.1)
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where R is - at this stage - an arbitrary 4× 4 complex matrix while Ξ is the projector on

the first component

Ξ =

(
1 0

0 03

)
. (4.2)

The constraints on the matrix R come from the grading condition and the real struc-

ture. Remembering (3.19), one has that ΞI
J and Ξβα commute with δI

J and ηβα, while the

r.h.s. of (4.1) as a matrix in CD anticommutes with ηCD. So Dν anticommutes with Γ if and

only if R commutes with γ5, meaning that R is block diagonal

R =

(
Rrṫrṡ 02

02 Rlṫlṡ

)
st

=:

(
rṫṡ 02

02 lṫṡ

)
st

. (4.3)

The requirement to have KO-dimension 2 mod 8 means that JDν = DνJ . Remember-

ing (3.15), this is equivalent to[
−i

(
04 ηtsτ

ṫ
ṡ

ηtsτ
ṫ
ṡ 04

)
CD

cc ,

(
04 Rtṫsṡ
R†tṫsṡ 04

)
CD

]
= 0, (4.4)

that is

(τ ⊗ η)RT −R(τ ⊗ η) = 0, (τ ⊗ η)R̄ − R†(τ ⊗ η) = 0. (4.5)

By (4.3), the first equation above yields (omitting the st and ṡṫ indices)(
τ 02

02 −τ

)(
rT 02

02 lT

)
−

(
r 02

02 l

)(
τ 02

02 −τ

)
= 0 (4.6)

i.e. rτ = τ rT and lτ = τ lT , whose solution is

rl̇ṡ = krδ
l̇
ṡ , l

l̇
ṡ = klδ

l̇
ṡ kr, kl ∈ C. (4.7)

The second equation in (4.5) is then satisfied as well.

Eq. (4.7), (4.3) and (4.1) give the most general Dirac operator Dν on L2(R4) ⊗ HF ,

with Majorana mass term, coupling the right neutrino with its anti-particle. In tensorial

notations, one has

Dν = κts ΞI
J δ

ṫ
ṡ Ξβα where κ =

(
kr 0

0 kl

)
st

. (4.8)

By choosing kr = −kl = 1, one gets R = γ5 and one retrieves the Majorana coupling

Dν = γ5 ⊗ DR of the standard model. However, at this stage nothing forces us to make

this choice.
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4.2 First order condition for Majorana Dirac operator

We aim at obtaining the field σ as a fluctuation of Dν , compatible with the first order

condition. By (3.12) a generic element (Q,M) of AG acts as 10

A =

(
δt I
sJQ

ṫβ
ṡα 064

064 M t I
sJ δ

ṫα
ṡβ

)
CD

=:

(
Q 064

064 M

)
CD

. (4.9)

As well, with B = (R,N) ∈ AG, a generic element of the opposite algebra is

JBJ−1 = −JBJ = −

(
Ñ tI
sJ δ

ṫα
ṡβ 064

064 δt I
sJR̃

ṫβ
ṡβ

)
CD

= −

(
Ñ 064

064 R̃

)
CD

(4.10)

where we define

R̃ṫβṡα = (τR̄τ)ṫβṡα, Ñ tI
sJ = −(ηN̄η)tIsJ = −N̄ tI

sJ. (4.11)

The first order condition for Dν means that

0 =
[
[Dν , A] , JBJ−1

]
=

[[(
064 Dν
D†ν 064

)
CD

,

(
Q 064

064 M

)
CD

]
,

(
Ñ 064

064 R̃

)
CD

]

=

(
064 DνMR̃− QDνR̃− ÑDνM + ÑQDν

D†νQÑ−MD†νÑ− R̃D†νQ + R̃MD†ν 064

)
CD

. (4.12)

We look for solutions that satisfy the grading condition, i.e. inA′G. Inspired by the first

order condition for ALR and DF described in appendix A, we also impose the reductions

M4(C)r → Cr ⊕M3(C)r, M4(C)l → Cl ⊕M3(C)l (4.13)

as well as

M2(H)R → HR ⊕H ′R, M2(H)L → HL ⊕H ′L. (4.14)

The reduction (4.13) is obtained assuming that the components in (3.23) are (i, j = 1, 2, 3)

M rI
rJ =

(
M r0
r0 0

0 M ri
rj

)
IJ

=:

(
mr 0

0 M ri
rj

)
IJ

mr ∈ Cr,

M lI
lJ =

(
M l0
l0 0

0 M li
lj

)
IJ

=:

(
ml 0

0 M li
lj

)
IJ

ml ∈ Cl. (4.15)

The reduction (4.14) is obtained imposing that the off-diagonal part of Q in (3.20) is zero:

Q =

(
Q0̇β

0̇α
04

04 Q1̇β

1̇α

)
ṡṫ

(4.16)

where

Q0̇β

0̇α
=

(
qR 02

02 qL

)
αβ

, Q1̇β

1̇α
=

(
q′R 02

02 q′L

)
αβ

qR,L ∈ HR,L, q′R,L ∈ H ′R,L. (4.17)

10To lighten notation, for any pairs of indices x, y and u, v we write δxuyv = δxyδ
u
v .
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Finally we impose that qR and q′R are diagonal quaternions, that is

qR =

(
cR 0

0 c̄R

)
ṡṫ

, q′R =

(
c′R 0

0 c̄′R

)
ṡṫ

with cR, c
′
R ∈ C, (4.18)

meaning the reduction HR ⊕H ′R → CR ⊕ C ′R. We thus look for solutions of (4.12) in

A′′G =
(
HL ⊕H ′L ⊕ CR ⊕ C ′R

)
⊕ (Cl ⊕M3(C)l ⊕ Cr ⊕M3(C)r) . (4.19)

Notice that we do not claim there is no solution of (4.12) outside A′′G. But for our purposes,

it turns out that it is sufficient to work with A′′G.

Under these conditions, the first equation coming from (4.12), namely

DνMR̃− QDνR̃− ÑDνM + ÑQDν = 0, (4.20)

has explicit components

DνMR̃ = (κts ΞI
J δ

ṫ
ṡ Ξβα)(M t I

sJ δ
ṫα
ṡβ)(δtJsI R̃

ṫβ
ṡα) = (κΞM)tIsJ (ΞR̃)ṫβṡα

=

(
krmr 04

04 klml

)
st

⊗
(
−d̄′R 04
04 −d̄R

)
ṡṫ

;

QDνR̃ = (δtJsIQ
ṫβ
ṡα)(κts ΞI

J δ
ṫ
ṡ Ξβα)(δtJsI R̃

ṫβ
ṡα) = (κΞ)tIsJ (QΞR̃)ṫβṡα

=

(
kr Ξ 04
04 kl Ξ

)
st

⊗
(
−cRd̄′R 04

04 −c′Rd̄R

)
ṡṫ

;

ÑDνM = (ÑtIsJδ
ṫβ
ṡα)(κts ΞI

J δ
ṫ
ṡ Ξβα)(MtI

sJδ
ṫβ
ṡα) = ((ÑκΞM)tIsJ (δΞ)ṫβṡα =

=

(
−krn̄rmr 04

04 −kln̄lml

)
st

⊗
(

Ξ 04
04 Ξ

)
ṡṫ

;

ÑQDν = (Ñt IsJ δ
ṫα
ṡβ)(δtJsIQ

ṫβ
ṡα)(κts ΞI

J δ
ṫ
ṡ Ξβα) = (ÑκΞ)t IsJ(QΞ)ṫβṡα =

=

(
−krn̄r 04

04 −kln̄l

)
st

⊗
(
cR 04
04 c′R

)
ṡṫ

(4.21)

where we defined the 4× 4 complex matrices

mr,l =

(
mr,l 0

0 03

)
IJ

cR,L =

(
cR,L 0

0 03

)
αβ

c′R,L =

(
c′R,L 0

0 03

)
αβ

(4.22)

with mr,ml the components of M and cR, c
′
R the one of Q. Similarly we define the matrices

nr,l from the components nl,r of N , and the matrices d, d′R from the components dR, d
′
R of

R. The matrix Ξ carries the indices I, J in the second equation, and α, β in the third. In

each equation, to pass from the first to the second lines one uses (4.11).

Collecting the components and assuming that both kr and kl are non zero, one finds

that (4.20) is equivalent to

(cR −mr)(n̄r − d̄′R) = 0, (d̄R − n̄r)(mr − c′R) = 0

(cR −ml)(n̄l − d̄′R) = 0, (d̄R − n̄l)(ml − c′R) = 0. (4.23)
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A similar calculation for the second components of (4.12) yields the same system of equa-

tions. Thus one solution to the first order condition induced by Dν is to impose

cR = mr = ml and dR = nr = nl, (4.24)

meaning the reduction of A′′G to

A′′′G = HL ⊕H ′L ⊕ C ′R ⊕ C ⊕M3(C)l ⊕M3(C)r. (4.25)

4.3 The σ field as a 1-form

We now consider the set of 1-forms
∑

iBi[Dν , Ai] generated by the Majorana Dirac operator

and the algebra A′′′G above. We are interested in showing that this set is non empty, and it

is enough to consider the simplest 1-form

[Dν , A] =

(
064 DνM− QDν

D†νQ−MD†ν 064

)
. (4.26)

We begin with A = (Q,M) in A′G. With notations of the precedent section, one has

DνM− QDν = (κts ΞI
J δ

ṫ
ṡ Ξβα)(M tI

sJδ
ṫβ
ṡα)− (δtJsIQ

ṫβ
ṡα)(κtsΞ

I
Jδ
ṫ
ṡΞ

β
α)

= (κΞM)tIsJ(Ξδ)ṫβṡα − (κΞ)tJsI(QΞ)ṫβṡα

=

(
krmr 04

04 klml

)
st

⊗
(

Ξ 04
04 Ξ

)
ṡṫ

−
(
kr Ξ 04
04 kl Ξ

)
st

⊗
(
cR 04
04 c′R

)
ṡṫ

=


(
kr(mr − cR)ΞIβ

Jα 0

0 kr(mr − c′R)ΞIβ
Jα

)
ṡṫ

032

032

(
kl(ml − cR)ΞIβ

Jα 032
032 kl(ml − c′R)ΞIβ

Jα

)
ṡṫ


st

.

By the reduction A′G → A′′′G, the component kr(mr − cR) vanishes, but the component

kl(ml− c′R) does not. This is the crucial difference with the algebra of the standard model:

the grand algebra allows to generates a non-vanishing 1-form associated to the Majorana

Dirac operator Dν , which satisfies the first order condition.

Restoring the order sṡIα of the indices, the matrix above is R = Rtṫsṡ ΞJ
I Ξβα with

Rtṫsṡ =


(

0 0

0 kr(mr − c′R)

)
ṡṫ

02

02

(
0 0

0 kl(mr − c′R)

)
ṡṫ


st

. (4.27)

For anti-selfadjoint A (that is M = −M†,Q = −Q†), one obtains the selfadjoint 1-form

[Dν , A] =

(
064 R
R† 064

)
. (4.28)
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The conjugate action of the real structure J yields

J [Dν , A]J−1 = −J [Dν , A]J = −

(
064 JR†J
JRJ 064

)
(4.29)

where the charge conjugation J acts only on the spin indices. Explicitly, omitting the

factor ΞJ
I Ξβα in the expression of R, one gets

JR†J = ηts τ
ṫ
ṡ (RT )

tṫ

sṡ η
t
s τ

ṫ
ṡ =

(
τ ṫṡRrṫrṡ τ ṫṡ 04

04 τ ṫṡRlṫlṡ τ ṫṡ

)
st

(4.30)

= −


(
kr(mr − c′R) 0

0 0

)
ṡṫ

02

02

(
kl(mr − c′R) 0

0 0

)
ṡṫ


st

, (4.31)

that is −JR†J is obtained by permuting the components in the blocks ṡṫ of R. As well

JRJ = ηts τ
ṫ
ṡ R̄tṫsṡ ηts τ ṫṡ = ηts τ

ṫ
ṡ (R†)tṫsṡ ηts τ ṫṡ (4.32)

is obtained from −R† by permuting the components in ṡṫ. Consequently,

Dν + [Dν , A] + J [Dν , A]J−1 =

(
064 Mν

M†ν 064

)
(4.33)

where Mν = RtṫsṡΞ
J
I Ξβα with

R =

(
kr(1 + (mr − c′R))δṫṡ 02

02 kl(1 + (mr − c′R))δṫṡ

)
st

. (4.34)

Now, considering that A is in C∞(M) ⊗ A′′G, the coefficients mr and c′R becomes

functions on the manifold M. Taking kl = −kr = kR, one obtains Rtṫsṡ = kRσγ
5 where

σ = (1 + (mr − c′R)) (4.35)

is now a field on M. In other terms, the fluctuation of Dν by AG yields the substitu-

tion (2.15). The grand algebra gives a justification for the presence of the field σ, necessary

to obtain the mass of the Higgs in agreement with experiment.

5 Reduction to the standard model

Starting with the grand algebra AG reduced to A′G by the grading condition, we have

shown how to generate the field σ by a fluctuation of the Majorana-Dirac operator Dν , in

a way satisfying the first order condition imposed by Dν . As explained below (4.8), one

can choose in particular Dν = γ5 ⊗ DR, where DR is the internal Dirac operator DF of

the standard model in which only the dominant term (i.e. the Majorana mass) is taken

into account. In other words, the field σ is generated by fluctuating the second term in the

Dirac operator (2.9) of the standard model. We now show that the first order condition of

the first term in (2.9), i.e. the free Dirac operator, yields the reduction of the grand algebra

to the standard model.
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5.1 First order condition for the free Dirac operator

The first term in (2.9) is the Euclidean free Dirac operator, extended trivially to the internal

space of one generation. In tensorial notation it reads

/∂ ⊗ I32 = −i δCIβ
DJα γ

µ∂µ. (5.1)

For A = (Q,M) ∈ C∞(M)⊗A′G, the commutator

[/∂ ⊗ I32, A] = −i

(
δI

J[γµ∂µδ
β
α, δtsQ

ṫβ
ṡα] 064

064 [γµ∂µδ
I
J,M

tI
sJ]δβα

)
CD

(5.2)

has components (omitting the non relevant δ)

[γµ∂µδ
β
α, δ

t
sQ

ṫβ
ṡα] =

[(
08 σµṫṡ∂µδ

β
α

σµṫṡ∂µδ
β
α 08

)
st

,

(
Qṫβṡα 08

08 Qṫβṡα

)
st

]

=

(
08 P ṫβṡα + T ṫβ,µṡα ∂µ

P̄ ṫβṡα + T̄ ṫβ,µṡα ∂µ 08

)
st

(5.3)

where

P ṫβṡα = (σµu̇ṡ∂µQ
ṫβ
u̇α), T ṫβ,µṡα =

[
σµṫṡ, Q

ṫβ
ṡα

]
(5.4)

and similar definitions for P̄ and T̄ with σ̄ instead of σ; and

[γµ∂µδ
I
J,M

tI
sJδ

ṫ
ṡ] =

[(
08 σµṫṡ∂µδ

I
J

σµṫṡ∂µδ
I
J 08

)
st

,

(
M rI
rJδ

ṫ
ṡ 08

08 M lI
lJδ

ṫ
ṡ

)
st

]

=

(
08 LIṫ

Jṡ +KIṫ,µ
Jṡ ∂µ

L̄Iṫ
Jṡ + K̄Iṫ,µ

Jṡ ∂µ 08

)
st

(5.5)

where

LIṫ
Jṡ =

(
σµṫṡ∂µM

lI
lJ

)
, KIṫ,µ

Jṡ =
(
M lI
lJ −M rI

rJ

)
σµṫṡ,

L̄Iṫ
Jṡ =

(
σµṫṡ∂µM

rI
rJ

)
, K̄Iṫ,µ

Jṡ =
(
M rI
rJ −M lI

lJ

)
σµṫṡ. (5.6)

For B = (R,N) ∈ A′G, the commutator of [/∂,A] with JBJ given in (4.10) is a block
diagonal matrix in CD with components [

δIJ [γµ∂µδ
β
α, δ

t
sQ

ṫβ
ṡα], Ñ tI

sJ δ
ṫβ
ṡα

]
=

=

[(
032 δIJ(P ṫβṡα + T ṫβ,µṡα ∂µ)

δIJ(P̄ ṫβṡα + T̄ ṫβ,µṡα ∂µ) 032

)
st

,

(
ÑrI
rJδ

ṫβ
ṡα 032

032 Ñ lI
lJδ

ṫβ
ṡα

)
st

]
;

[
[γµ∂µδ

I
J,M

tI
sJδ

ṫ
ṡ] δ

β
α, δ

tI
sJ R̃

ṫβ
ṡα

]
=

=

[(
032 (LIṫ

Jṡ +KIṫ,µ
Jṡ ∂µ)δβα

(L̄Iṫ
Jṡ + K̄Iṫ,µ

Jṡ ∂µ)δβα 032

)
st

,

(
δJI R̃

ṫβ
ṡα 032

032 δJI R̃
ṫβ
ṡα

)
st

]
. (5.7)
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Omitting the indices (and noticing that the P, T, P̄ , T̄ all commute with Ñ r
r , Ñ

l
l ), the first

components is a diagonal matrix with first entry

(Ñ l
l − Ñ r

r )(P + Tµ∂µ) + Tµ(∂µÑ
l
l ). (5.8)

The vanishing of the differential operator part implies either Tµ = 0 or Ñ l
l = Ñ r

r . But the

expression should be zero in particular for non-constant fields, that is for P 6= 0. So in case

one imposes Tµ = 0, the vanishing of the term in P implies Ñ l = Ñ r. In case one imposes

Ñ l
l = Ñ r

r , the vanishing of the remaining term implies either Tµ = 0, or Ñ l
l = Ñ r

r = cst.

The last solution is unacceptable, it would mean that spacetime is reduced to a point,

hence in any case one has both conditions: Tµ = 0 and Ñ l
l = Ñ r

r . One then checks that

the other components of (5.7) vanish as well.

The only matrix that commutes with all the Pauli matrices is the identity, therefore

Tµ = 0 ∀µ⇐⇒ Q0̇β

0̇α
= Q1̇β

1̇α
and Q0̇β

1̇α
= Q1̇β

0̇α
= 0, (5.9)

meaning the breaking

M2(H)L ⊕M2(H)R → HL ⊕HR. (5.10)

Meanwhile Ñ l
l = Ñ r

r means that

M4(C)l ⊕M4(C)r →M4(C). (5.11)

Thus

A′G → HL ⊕HR ⊕M4(C) (5.12)

where representation of the r.h.s. algebra is now diagonal on the spinorial indices ṡ, s.

To summarize, the grand algebra AG is broken by the chirality and the first order

condition of the free Dirac operator to the left-right symmetric algebra ALR of the standard

model.

5.2 Emergence of spin

In noncommutative geometry the topological information is encoded in the algebra, while

the geometry (e.g. the metric11) is in the D operator. In particular the Riemann-spin

structure is encoded in the way this operator, which contains the gamma matrices, acts on

the Hilbert space. Without this operator there is just an algebra which acts in an highly

reducible way on a 128 dimensional Hilbert space. This is conceptually what distinguishes

HF from HF in (3.5): on C∞(M)⊗HF , the free Dirac operator (trivially extended to the

internal indices) is

/∂ = −iγµ∂µ ⊗ δCIβ
DJα. (5.13)

On C∞(M)⊗ HF the same operator writes

/∂ = −i∂µ ⊗ δCIβ
DJαγ

µ (5.14)

11The metric aspects of the almost commutative geometry of the standard model have been investigated

in [15, 56]
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and the spin structure, carried by the γ matrices, is hidden among the internal degrees

of freedom. In this sense the first order condition, which governs the passage from (5.14)

to (5.13), corresponds to the emergence of the spin structure.

Alternatively, a spin structure means that the vectors in the Hilbert space transform in

a particular representation under the “Lorentz” group. Since we are dealing with spinors

in the Euclidean case, the group is actually Spin(4). It is generated by the commutators

of the Dirac matrices, that act on H as

Sµν := [γµ, γν ]⊗ I(CIα)
32 . (5.15)

Let us distinguish between an element a of C∞(M)⊗AG and its representation π(a) := A

given in (3.12). For any Λ = λµνS
µν ∈ Spin(4) and A ∈ π(C∞(M)⊗AG), let

αΛA = U(Λ)AU(Λ)∗. (5.16)

The representation (3.12) of the grand algebra is not invariant under the adjoint ac-

tion (5.16) of Spin(4) since αΛπ(a) is not in π(C∞(M)⊗AG). In this sense the represen-

tation of the grand algebra is not Lorentz invariant, unlike its reduction to ALR which is

diagonal in the spin indices. However, at the abstract level the algebra is preserved under

Lorentz transformations since the latter are implemented by unitary operators: for any Λ

one has that αΛ(π(C∞(M)⊗AG)) is isomorphic to C∞(M)⊗AG. This suggests to view

the grand algebra as a phase of the universe in which the spin and rotation structure of

spacetime has not yet emerged, only the topology (i.e. the abstract algebra) is fixed.

5.3 Fiat neutrino

The grand algebra together with the Majorana Dirac operator Dν generates the field σ at

the right position (i.e. as required in (2.15)), respecting the first order condition induced

by Dν. However, by (4.35) one has that σ becomes constant when one takes into account

the first order condition imposed by the free Dirac operator, because (5.9) implies that

c′R = cR = mr. This suggests a scenario in which the neutrino Majorana mass is the first

field to appear and fluctuate, before the geometric structure of spacetime emerges through

the breaking described in section 5.2. In this picture, the field σ is viewed as a fluctuation

of a vacuum that satisfies the first order condition of the free Dirac operator.

This scenario is supported by some preliminary calculations, which indicate that the

first order condition of the free Dirac operator can be equivalently obtained as a minimum

of the spectral action. In this way, the geometrical breaking imposed by the mathematical

requirement of the theory becomes a dynamical breaking, and the field σ would appear

as the “Higgs field” associated to it. This idea has been investigated, in the case of the

standard model algebra, in the recent papers [30, 31]. The case of the grand algebra is in

progress.

6 Conclusions and outlook

It is known that, although the spectral action requires the unification of interactions at a

single scale, the usual grand unified theories, such as SU(5) or SO(10), do not fit in the
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noncommutative geometry framework, and are possible only renouncing to associativity [57,

58]. In this paper we pointed out there is a “next level” in noncommutative geometry, but

that it is intertwined with the Riemannian and spin structure of spacetime, and therefore

it naturally appears at a high scale. The added degrees of freedom are related to the

Riemann-spin structure of spacetime, which emerges as a symmetry breaking very similar

in nature to the Higgs mechanism. In addition, the higher symmetry explains the presence

of the σ field necessary for a correct fit of the mass of the Higgs. The results presented

here, as is common in this model, are crucially depending on the Euclidean structure of the

theory. This is particularly important as far as the role of chirality and the doubling of the

degrees of freedom is concerned. A Wick rotation is far from simple in this context, and

the construction of a Minkowskian noncommutative geometry is yet to come (for recent

works see [59, 60]).

The presence of this grand symmetry will have also phenomenological consequences

which should be investigated. The breaking mechanisms we described in this paper are just

barely sketched, we only looked at the group structure. A more punctual analysis should

reveal more structure, and possibly alter the running of the constants at high energy.

For the moment we can only speculate. One of the problems of the spectral action in

its present form is that it requires unification of the three gauge couplings at a single scale,

Λ, and physical predictions are based on the value of this scale. It is known experimentally

that in the absence of new physics the three constants do not meet in a single point, but

the three lines form an elongated triangle spanning nearly three orders of magnitude. On

the other side in the spectral action is not clear what would happen after this point, if one

consider scales higher that Λ, i.e. earlier epochs. For a theory dealing with the unification

of gauge theory and gravity a more natural scale is the Planck scale. An unification of the

coupling constants at the Planck scale in the form of a pole has been considered [61, 62],

but it requires new fermions. In the case at hand the “new physics” is in the form of a

different structure which mixes spacetime spin and gauge degrees of freedom. This might

have consequences for the interactions, and hence for the running of the various quantities,

as well.

Other mathematical issues should be investigated. In particular the choice of the action

of the grand algebra on the spin indices reflects how much the algebra is not diagonal in

the “interaction” encoded by the free Dirac operator. Hopefully this could be interpreted

at the light of Connes unitary invariant in Riemannian geometry [63].
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A Reduction of the AF algebra

We give the details of the reduction of AF to Asm by the grading and the first order

condition. Rather than HR ⊕HL ⊕HcR ⊕HcL, it is convenient to work in the CIα basis of

HF = C32 (one generation of leptons l and quarks q), namely

HlR ⊕HlL︸ ︷︷ ︸
I=0;α=1,...,4

⊕ (HqR ⊕HqL)⊗ I3︸ ︷︷ ︸
I=i;α=1,...,4︸ ︷︷ ︸

C=0

⊕HclR ⊕HclL︸ ︷︷ ︸
I=0;α=1,...,4

⊕ (HcqR ⊕HcqL)⊗ I3.︸ ︷︷ ︸
I=i;α=1,...,4︸ ︷︷ ︸

C=1

(A.1)

In this basis the internal Dirac operator is

DF =

(
D1

1 D1
2

D2
1 = D1

2
†
D2

2 = D̄1
1

)
CD

(A.2)

where

D1
1 =

(
M0 0

0 Mi

)
IJ

, D1
2 =

(
MR 0

0 012

)
IJ

(A.3)

are 16× 16 matrix with

M0 =


0 0 k̄ν 0

0 0 0 k̄e
kν 0 0 0

0 ke 0 0


αβ

, Mi=1,2,3 =


0 0 k̄u 0

0 0 0 k̄d
ku 0 0 0

0 kd 0 0


αβ

, MR =


kR 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


αβ

(A.4)

where ke, ku, kd, kν are the Yukawa couplings of the electrons, quarks and neutrino, and kR
is the neutrino Majorana mass.

Let us first examine the grading condition. By (3.8) the element A = (Q,M) ∈ AF
act on HF as

A =

(
Q 016

016 M

)
CD

(A.5)

where

Q = δI
JQ

β
α ∈M2(H), M = M I

Jδ
β
α ∈M4(C). (A.6)

To guarantee that A commutes with Γ, the factor ηβα in (3.18) requires Q to be diagonal

in the α index, which reduces this part of the algebra to HL ⊕ HR. This means that Qαβ
in (3.8) acts separately on the left and right handed doublets. No such breaking occurs

in complex part, because δI
J in (3.18) does not put any constraints on M4(C). Likewise,

ηts does not produce any breaking because the action of both quaternions and complex

matrices is diagonal on the spin indices. Thus we have AF → ALR.

Let us now examine the first order condition. For any B = (R,N) ∈ ALR one has

JFBJF =

(
N̄ 016

016 R̄

)
CD

. (A.7)
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Assuming there is no neutrino Majorana mass (i.e D1
2 = 0), the first order condition for

the finite dimensional spectral triple yields

[[DF , A] , JFBJF ] =

( [[
D1

1,Q
]
, N̄
]

016

016

[[
D̄1

1,M
]
, R̄
])

CD

= 0. (A.8)

Let nI
J be the components of N̄ ∈M4(C). The upper-left term in the r.h.s. of (A.8) is[(

[M0, Q]βα 0

0 [Mi, Q]βα ⊗ I3

)
IJ

,

(
n0

0δ
β
α n0

jδ
β
α

ni0δ
β
α ni0δ

β
α

)
IJ

]
. (A.9)

It is zero if and only if

n0
i [M0 −Mi, Q]βα = ni0[M0 −Mi, Q]βα = 0 ∀i = 1, 2, 3. (A.10)

Writing Q =

(
qR 0

0 qL

)
∈ HL ⊕ HR with qR =

(
a1 a2

−ā2 ā1

)
and qL =

(
a3 a4

−ā4 ā3

)
this

means

n0
i (a1 − a3)(kν − ku) = n0

i (a1 − a3)(ke − kd) = 0 , i = 1, 2, 3

n0
i (a2(kν − ku)− a4(ke − kd)) = n0

i (a2(ke − kd)− a4(kν − ku)) = 0 , i = 1, 2, 3 (A.11)

and a similar equation for ni0.

A first solution could be a1 = a3 and a2 = a4 = 0, which means that the quaternionic

part reduces to C while M4(C) is not touched. The gauge group is then U(1) × U(4),

which is to small to contain the gauge group of the standard model. The other solution is

imposing ni0 = n0
i = 0, which yields the reduction M4(C)→ C⊕M3(C). Then the second

component of (A.8) vanishes as well. Thus the first order condition without Majorana

mass, together with the grading condition, induces the breaking:

AF → ALR → (HL ⊕HR)⊕ (C ⊕M3(C)) . (A.12)

A non-zero Majorana coupling kR (a constant at this stage) in the Dirac operator

induces new terms in (A.8):[[(
016 D1

2

D1
2
†

016

)
,

(
Q 016

016 M

)]
,

(
N̄ 016

016 R̄

)]
(A.13)

=

(
016 D1

2MR̄− QD1
2R̄− N̄D1

2M + N̄QD1
2

D1
2
†
QN̄−MD1

2
†
N̄− R̄D1

2
†
Q + R̄MD1

2
†

016

)
.

Writing R̄ =

(
q′R 0

0 q′L

)
∈ HL ⊕HR with q′R =

(
b1 b2
−b̄2 b̄1

)
, q′L =

(
b3 b4
−b̄4 b̄3

)
, one gets

D1
2MR̄ =

(
(MRR̄)βα 0

0 012

)
IJ

(
m0

0δ
β
α 0

0 mi
jδ
β
α

)
IJ

(A.14)

=

(
m0

0(MRR̄βα) 0

0 012

)
IJ

=

 kR

(m0
0b1 m

0
0b2

0 0

)
02

02 02


αβ

0

0 012


IJ

, (A.15)
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and similarly

QD1
2R̄ =

 kR

( a1b1 a1b2
−ā2b1 −ā2b2

)
02

02 02


αβ

0

0 012


IJ

, (A.16)

N̄D1
2M =

 kR

(m0
0n

0
0 0

0 0

)
02

02 02


αβ

0

0 012


IJ

, (A.17)

N̄QD1
2 =

 kR

( n00a1 0

−n00ā2 0

)
02

02 02


αβ

0

0 012


IJ

. (A.18)

Asking (A.14) to be zero is thus equivalent to the system

m0
0b1 − a1b1 −m0

0n
0
0 + n0

0a1 = (m0
0 − a1)(b1 − n0

0) = 0 (A.19)

b2(m0
0 − a1) = 0, ā2b1 − n0

0ā2 = 0, ā2b2 = 0, (A.20)

leading to a1 = m0
0, b1 = n0

0 and a2 = b2 = 0. This means

(HL ⊕HR)⊕ (C⊕M3(C))→
(
HL ⊕ C′

)
⊕ (C⊕M3(C)) (A.21)

with

C = C′. (A.22)

Hence the standard model algebra Asm = C⊕H⊕M3(C).

B Fluctuation of DR by the standard model algebra

The notations are the one of appendix A. One easily checks that the set of 1-forms induced

by the Majorana Dirac operator

DR =

(
016 D1

2

D1
2
†

016

)
CD

(B.1)

is actually zero. Indeed, an element of Asm is

A = (Q,M) with Q = δI
JQ

β
α, M = M I

Jδ
β
α (B.2)

where Qβα is as below (A.10) with a2 = 0, and M has components mi
0 = m0

i = 0, i = 1, 2, 3.

One thus gets

[DR, A] =

(
016 D1

2M− QD1
2

D1
2
†
Q−MD1

2
†

016

)
CD

(B.3)

– 24 –



J
H
E
P
0
1
(
2
0
1
4
)
0
4
2

with

D1
2M− QD1

2 =

(
(MRm

1
1)βα − (QMR)βα 0

0 012

)
IJ

=


(
kR(m1

1 − a1) 0

0 03

)
αβ

0

0 012


IJ

which vanishes because of (A.22). The same is true for D1
2
†
Q−MD2

1
†
. Hence

[DR, A] = 0. (B.4)

One may think of inverting the order of the reductions: first impose the first order

condition of the Majorana-Dirac operator DR, then the one of D0 := DF − DR. By

repeating the computation (A.14)–(A.18) with A,B elements of ALR (instead of being

elements of the algebra at the r.h.s. of (A.12)), one obtains extra-constraints

b1m
0
i −m0

0n
0
i = 0

−mi
0n

0
0 + ni0a1 = 0

mi
0n

0
i = 0 (B.5)

whose solution is mi
0 = m0

i = 0. This means that the breaking

ALR → Asm (B.6)

can also be obtained directly from DR alone, without reducing first to the algebra (A.12).

Consequently, starting from C∞(M)⊗AF reduced to C∞(M)⊗ALR by the grading

condition, there is no way to fluctuate the Dirac operator — respecting the first order

condition — so that to obtain the field σ as required by eq. (2.15).
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[20] F. Lizzi and P. Vitale, Gauge and Poincaré’ Invariant Regularization and Hopf Symmetries,

Mod. Phys. Lett. A 27 (2012) 1250097 [arXiv:1202.1190] [INSPIRE].

[21] J.W. Barrett, A Lorentzian version of the non-commutative geometry of the standard model

of particle physics, J. Math. Phys. 48 (2007) 012303 [hep-th/0608221] [INSPIRE].

[22] A.H. Chamseddine and A. Connes, Resilience of the Spectral Standard Model, JHEP 09

(2012) 104 [arXiv:1208.1030] [INSPIRE].

[23] J. Elias-Miro, J.R. Espinosa, G.F. Giudice, H.M. Lee and A. Strumia, Stabilization of the

Electroweak Vacuum by a Scalar Threshold Effect, JHEP 06 (2012) 031 [arXiv:1203.0237]

[INSPIRE].

[24] N. Krasnikov, Restriction of the Fermion Mass in Gauge Theories of Weak and

Electromagnetic Interactions, Yad. Fiz. 28 (1978) 549 [INSPIRE].

[25] P.Q. Hung, Vacuum Instability and New Constraints on Fermion Masses, Phys. Rev. Lett.

42 (1979) 873 [INSPIRE].

[26] H.D. Politzer and S. Wolfram, Bounds on Particle Masses in the Weinberg-Salam Model,

Phys. Lett. B 82 (1979) 242 [Erratum ibid. 83B (1979) 421] [INSPIRE].

– 26 –

http://dx.doi.org/10.1063/1.528916
http://inspirehep.net/search?p=find+J+J.Math.Phys.,31,316
http://arxiv.org/abs/hep-th/0111236
http://inspirehep.net/search?p=find+EPRINT+hep-th/0111236
http://dx.doi.org/10.4310/ATMP.2007.v11.n6.a3
http://arxiv.org/abs/hep-th/0610241
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610241
http://dx.doi.org/10.1142/S0129055X1230004X
http://arxiv.org/abs/1204.0328
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.0328
http://arxiv.org/abs/0810.2088
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.2088
http://dx.doi.org/10.1007/BF02506388
http://arxiv.org/abs/hep-th/9603053
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,182,155
http://dx.doi.org/10.1016/j.geomphys.2007.09.011
http://arxiv.org/abs/0706.3688
http://inspirehep.net/search?p=find+J+J.Geom.Phys.,58,38
http://dx.doi.org/10.1002/prop.201000069
http://dx.doi.org/10.1002/prop.201000069
http://arxiv.org/abs/1004.0464
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.0464
http://dx.doi.org/10.1007/s002200050126
http://dx.doi.org/10.1007/s002200050126
http://arxiv.org/abs/hep-th/9606001
http://inspirehep.net/search?p=find+EPRINT+hep-th/9606001
http://dx.doi.org/10.1103/PhysRevLett.44.1733
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,44,1733
http://dx.doi.org/10.1016/0550-3213(84)90413-9
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B233,232
http://dx.doi.org/10.1016/0550-3213(84)90414-0
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B233,247
http://dx.doi.org/10.1016/0550-3213(84)90287-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B231,269
http://dx.doi.org/10.1142/S0217732312500976
http://arxiv.org/abs/1202.1190
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1190
http://dx.doi.org/10.1063/1.2408400
http://arxiv.org/abs/hep-th/0608221
http://inspirehep.net/search?p=find+EPRINT+hep-th/0608221
http://dx.doi.org/10.1007/JHEP09(2012)104
http://dx.doi.org/10.1007/JHEP09(2012)104
http://arxiv.org/abs/1208.1030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.1030
http://dx.doi.org/10.1007/JHEP06(2012)031
http://arxiv.org/abs/1203.0237
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.0237
http://inspirehep.net/search?p=find+J+Yad.Fiz.,28,549
http://dx.doi.org/10.1103/PhysRevLett.42.873
http://dx.doi.org/10.1103/PhysRevLett.42.873
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,42,873
http://dx.doi.org/10.1016/0370-2693(79)90746-9
http://inspirehep.net/search?p=find+J+Phys.Lett.,B82,242


J
H
E
P
0
1
(
2
0
1
4
)
0
4
2

[27] C.A. Stephan, New Scalar Fields in Noncommutative Geometry, Phys. Rev. D 79 (2009)

065013 [arXiv:0901.4676] [INSPIRE].

[28] C.A. Stephan, Almost-commutative geometries beyond the standard model, J. Phys. A 39

(2006) 9657 [hep-th/0509213] [INSPIRE].

[29] C.A. Stephan, Almost-commutative geometries beyond the standard model. II. New Colours,

J. Phys. A 40 (2007) 9941 [arXiv:0706.0595] [INSPIRE].

[30] A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Inner Fluctuations in

Noncommutative Geometry without the first order condition, J. Geom. Phys. 73 (2013) 222

[arXiv:1304.7583] [INSPIRE].

[31] A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Beyond the Spectral Standard Model:

Emergence of Pati-Salam Unification, JHEP 11 (2013) 132 [arXiv:1304.8050] [INSPIRE].

[32] F. Lizzi, G. Mangano, G. Miele and G. Sparano, Fermion Hilbert space and fermion doubling

in the noncommutative geometry approach to gauge theories, Phys. Rev. D 55 (1997) 6357

[hep-th/9610035] [INSPIRE].

[33] J.M. Gracia-Bondia, B. Iochum and T. Schucker, The Standard model in noncommutative

geometry and fermion doubling, Phys. Lett. B 416 (1998) 123 [hep-th/9709145] [INSPIRE].

[34] F. Lizzi, G. Mangano, G. Miele and G. Sparano, Mirror fermions in noncommutative

geometry, Mod. Phys. Lett. A 13 (1998) 231 [hep-th/9704184] [INSPIRE].

[35] P. Martinetti, Carnot-Caratheodory metric and gauge fluctuation in noncommutative

geometry, Commun. Math. Phys. 265 (2006) 585 [hep-th/0506147] [INSPIRE].

[36] M.A. Rieffel, Morita equivalence for operator algebras, in Operator Algebras and

Applications, R.V. Kadison ed., Proc. Symp. Pure Math. 285 (1982) 38, Amer. Math. Soc.,

Providence, 1982.

[37] P. Gilkey, Invariance Theory, the Heat Equation and the Athiya-Singer Index Theorem,

Publish or Perish, 1984.

[38] D. Vassilevich, Heat kernel expansion: User’s manual, Phys. Rept. 388 (2003) 279

[hep-th/0306138] [INSPIRE].

[39] A. Andrianov and F. Lizzi, Bosonic Spectral Action Induced from Anomaly Cancelation,

JHEP 05 (2010) 057 [arXiv:1001.2036] [INSPIRE].

[40] A. Andrianov, M. Kurkov and F. Lizzi, Spectral action, Weyl anomaly and the Higgs-Dilaton

potential, JHEP 10 (2011) 001 [arXiv:1106.3263] [INSPIRE].

[41] M. Kurkov and F. Lizzi, Higgs-Dilaton Lagrangian from Spectral Regularization, Mod. Phys.

Lett. A 27 (2012) 1250203 [arXiv:1210.2663] [INSPIRE].

[42] T. van den Broek and W.D. van Suijlekom, Supersymmetric QCD from noncommutative

geometry, Phys. Lett. B 699 (2011) 119 [INSPIRE].

[43] W. Nelson and M. Sakellariadou, Natural inflation mechanism in asymptotic

noncommutative geometry, Phys. Lett. B 680 (2009) 263 [arXiv:0903.1520] [INSPIRE].

[44] M. Sakellariadou, Cosmological consequences of the noncommutative spectral geometry as an

approach to unification, J. Phys. Conf. Ser. 283 (2011) 012031 [arXiv:1010.4518] [INSPIRE].

[45] M. Marcolli and E. Pierpaoli, Early Universe models from Noncommutative Geometry, Adv.

Theor. Math. Phys. 14 (2010) [arXiv:0908.3683] [INSPIRE].

– 27 –

http://dx.doi.org/10.1103/PhysRevD.79.065013
http://dx.doi.org/10.1103/PhysRevD.79.065013
http://arxiv.org/abs/0901.4676
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.4676
http://dx.doi.org/10.1088/0305-4470/39/30/016
http://dx.doi.org/10.1088/0305-4470/39/30/016
http://arxiv.org/abs/hep-th/0509213
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509213
http://dx.doi.org/10.1088/1751-8113/40/32/017
http://arxiv.org/abs/0706.0595
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.0595
http://dx.doi.org/10.1016/j.geomphys.2013.06.006
http://arxiv.org/abs/1304.7583
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7583
http://dx.doi.org/10.1007/JHEP11(2013)132
http://arxiv.org/abs/1304.8050
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.8050
http://dx.doi.org/10.1103/PhysRevD.55.6357
http://arxiv.org/abs/hep-th/9610035
http://inspirehep.net/search?p=find+EPRINT+hep-th/9610035
http://dx.doi.org/10.1016/S0370-2693(97)01310-5
http://arxiv.org/abs/hep-th/9709145
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709145
http://dx.doi.org/10.1142/S0217732398000292
http://arxiv.org/abs/hep-th/9704184
http://inspirehep.net/search?p=find+EPRINT+hep-th/9704184
http://dx.doi.org/10.1007/s00220-006-0001-9
http://arxiv.org/abs/hep-th/0506147
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,265,585
http://dx.doi.org/10.1016/j.physrep.2003.09.002
http://arxiv.org/abs/hep-th/0306138
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306138
http://dx.doi.org/10.1007/JHEP05(2010)057
http://arxiv.org/abs/1001.2036
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2036
http://dx.doi.org/10.1007/JHEP10(2011)001
http://arxiv.org/abs/1106.3263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.3263
http://dx.doi.org/10.1142/S0217732312502033
http://dx.doi.org/10.1142/S0217732312502033
http://arxiv.org/abs/1210.2663
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.2663
http://dx.doi.org/10.1016/j.physletb.2011.03.053
http://inspirehep.net/search?p=find+J+Phys.Lett.,B699,119
http://dx.doi.org/10.1016/j.physletb.2009.08.059
http://arxiv.org/abs/0903.1520
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.1520
http://dx.doi.org/10.1088/1742-6596/283/1/012031
http://arxiv.org/abs/1010.4518
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.4518
http://arxiv.org/abs/0908.3683
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3683


J
H
E
P
0
1
(
2
0
1
4
)
0
4
2

[46] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[47] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[48] I. Pris and T. Schucker, Noncommutative geometry beyond the standard model, J. Math.

Phys. 38 (1997) 2255 [hep-th/9604115] [INSPIRE].

[49] M. Paschke, F. Scheck and A. Sitarz, Can (noncommutative) geometry accommodate

leptoquarks?, Phys. Rev. D 59 (1999) 035003 [hep-th/9709009] [INSPIRE].

[50] T. Schucker and S. Zouzou, Spectral action beyond the standard model, hep-th/0109124

[INSPIRE].

[51] R. Squellari and C.A. Stephan, Almost-Commutative Geometries Beyond the Standard

Model. III. Vector Doublets, J. Phys. A 40 (2007) 10685 [arXiv:0706.3112] [INSPIRE].

[52] C.A. Stephan, Beyond the Standard Model: A Noncommutative Approach, arXiv:0905.0997

[INSPIRE].

[53] A.H. Chamseddine and A. Connes, Conceptual Explanation for the Algebra in the

Noncommutative Approach to the Standard Model, Phys. Rev. Lett. 99 (2007) 191601

[arXiv:0706.3690] [INSPIRE].

[54] J.C. Pati and A. Salam, Lepton Number as the Fourth Color, Phys. Rev. D 10 (1974) 275

[Erratum ibid. D 11 (1975) 703] [INSPIRE].

[55] F. Lizzi, G. Mangano, G. Miele and G. Sparano, Constraints on unified gauge theories from

noncommutative geometry, Mod. Phys. Lett. A 11 (1996) 2561 [hep-th/9603095] [INSPIRE].

[56] P. Martinetti and R. Wulkenhaar, Discrete Kaluza-Klein from scalar fluctuations in

noncommutative geometry, J. Math. Phys. 43 (2002) 182 [hep-th/0104108] [INSPIRE].

[57] R. Wulkenhaar, The Standard model within nonassociative geometry, Phys. Lett. B 390

(1997) 119 [hep-th/9607096] [INSPIRE].

[58] S. Farnsworth and L. Boyle, Non-Associative Geometry and the Spectral Action Principle,

arXiv:1303.1782 [INSPIRE].

[59] M. Paschke and R. Verch, Local covariant quantum field theory over spectral geometries,

Class. Quant. Grav. 21 (2004) 5299 [gr-qc/0405057] [INSPIRE].

[60] N. Franco, Lorentzian approach to noncommutative geometry, arXiv:1108.0592 [INSPIRE].

[61] L. Maiani, G. Parisi and R. Petronzio, Bounds on the Number and Masses of Quarks and

Leptons, Nucl. Phys. B 136 (1978) 115 [INSPIRE].

[62] A. Andrianov, D. Espriu, M. Kurkov and F. Lizzi, Universal Landau Pole, Phys. Rev. Lett.

111 (2013) 011601 [arXiv:1302.4321] [INSPIRE].

[63] A. Connes, A Unitary invariant in Riemannian geometry, Int. J. Geom. Meth. Mod. Phys. 5

(2008) 1215 [arXiv:0810.2091] [INSPIRE].

– 28 –

http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://dx.doi.org/10.1063/1.531971
http://dx.doi.org/10.1063/1.531971
http://arxiv.org/abs/hep-th/9604115
http://inspirehep.net/search?p=find+EPRINT+hep-th/9604115
http://dx.doi.org/10.1103/PhysRevD.59.035003
http://arxiv.org/abs/hep-th/9709009
http://inspirehep.net/search?p=find+EPRINT+hep-th/9709009
http://arxiv.org/abs/hep-th/0109124
http://inspirehep.net/search?p=find+EPRINT+hep-th/0109124
http://dx.doi.org/10.1088/1751-8113/40/34/020
http://arxiv.org/abs/0706.3112
http://inspirehep.net/search?p=find+EPRINT+arXiv:0706.3112
http://arxiv.org/abs/0905.0997
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0997
http://dx.doi.org/10.1103/PhysRevLett.99.191601
http://arxiv.org/abs/0706.3690
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,99,191601
http://dx.doi.org/10.1103/PhysRevD.10.275
http://inspirehep.net/search?p=find+J+Phys.Rev.,D10,275
http://dx.doi.org/10.1142/S0217732396002575
http://arxiv.org/abs/hep-th/9603095
http://inspirehep.net/search?p=find+EPRINT+hep-th/9603095
http://dx.doi.org/10.1063/1.1418012
http://arxiv.org/abs/hep-th/0104108
http://inspirehep.net/search?p=find+EPRINT+hep-th/0104108
http://dx.doi.org/10.1016/S0370-2693(96)01336-6
http://dx.doi.org/10.1016/S0370-2693(96)01336-6
http://arxiv.org/abs/hep-th/9607096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607096
http://arxiv.org/abs/1303.1782
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1782
http://dx.doi.org/10.1088/0264-9381/21/23/001
http://arxiv.org/abs/gr-qc/0405057
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0405057
http://arxiv.org/abs/1108.0592
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.0592
http://dx.doi.org/10.1016/0550-3213(78)90018-4
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B136,115
http://dx.doi.org/10.1103/PhysRevLett.111.011601
http://dx.doi.org/10.1103/PhysRevLett.111.011601
http://arxiv.org/abs/1302.4321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4321
http://dx.doi.org/10.1142/S0219887808003284
http://dx.doi.org/10.1142/S0219887808003284
http://arxiv.org/abs/0810.2091
http://inspirehep.net/search?p=find+Meth.Mod.Phys.,5,1215

	Introduction
	The spectral triple of the standard model
	Spectral triples
	Hilbert space of the standard model 
	Dirac operator
	Spectral action, Higgs mass and the sigma field 

	Algebras and representations
	The algebra of the standard model
	The grand algebra 
	Reduction due to grading  

	The Majorana coupling and the sigma field  
	Dirac operator with Majorana mass term
	First order condition for Majorana Dirac operator
	The sigma field as a 1-form

	Reduction to the standard model
	First order condition for the free Dirac operator
	Emergence of spin 
	Fiat neutrino

	Conclusions and outlook
	Reduction of the A(F) algebra
	Fluctuation of D(R) by the standard model algebra

