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1 Introduction

Due to the strong/weak duality characteristic of the Anti-de Sitter/Conformal Field The-

ory correspondence (AdS/CFT) [1–3], it provides us with a powerful approach to study the

properties of strong coupled systems by a weak coupled AdS gravity. The high temperature

superconductivity is a potential area where the AdS/CFT correspondence is applicable.

According to the symmetry of the spatial part of wave function of the Cooper pair, su-

perconductors can be classified as the s-wave, p-wave, d-wave, f-wave superconductor, etc.

From a phenomenological perspective, the onset of superconductivity is characterized by

the condensation of a composite charged operator spontaneously breaking U(1) symmetry

at some temperature. The holographic s-wave superconductor model was first realized in

refs. [4, 5]. According to the AdS/CFT correspondence, in the gravity side, a Maxwell field

and a charged scalar field are introduced to describe the U(1) symmetry and the scalar

operator in the dual field theory side. This holographic model undergoes a phase transition

from black hole with no hair (normal phase/conductor phase) to the case with scalar hair

at low temperatures (superconducting phase). Holographic d-wave model was constructed

by introducing a charged massive spin two field propagating in the bulk [6–8]. To realize

a holographic p-wave superconductor model, one needs to introduce a charged vector field

in the bulk as a vector order parameter. Ref. [9] presented a holographic p-wave model by

introducing a SU(2) Yang-Mills field into the bulk, where a gauge boson generated by one

SU(2) generator is dual to the vector order parameter. Other generalized studies based on

this model can be found for example in refs. [10–15]. An alternative holographic realiza-

tion of p-wave superconductivity emerges from the condensation of a 2-form field in the

bulk [16].
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In a recent paper [17], we have studied a holographic model by introducing a complex

vector field ρµ charged under a Maxwell gauge field Aµ in the bulk, which is dual to a

strongly coupled system involving a charged vector operator with a global U(1) symmetry.

In this model there exists a non-minimal coupling between the vector field and the gauge

field characterizing the magnetic moment of the vector field, which plays a crucial role in the

condensate of the vector field induced by an applied magnetic field. We have studied this

model in the probe limit at finite density. Such a setup meets the minimum requirement

to construct a holographic p-wave superconductor model. Indeed, we have found a critical

temperature at which the system undergoes a second order phase transition. The critical

exponent of this transition is one half which coincides with the case in the Landau-Ginzburg

theory. In the condensed phase, a vector operator acquires a vacuum expectation value

breaking the U(1) symmetry as well as rotational symmetry spontaneously. Our calculation

indicates that this condensed phase exhibits an infinite DC conductivity and a gap in the

optical conductivity, which is very reminiscent of some characteristics known from ordinary

superconductivity. In this sense, our model can be regarded as a holographic p-wave model.

The probe approximation neglecting the back reaction of the matter fields is only

justified in the limit of large q with qρµ and qAµ fixed. It has been shown that new phases

can emerge (see refs. [18–20] for example) and the order of the phase transition can also

be changed [21–25] once the back reaction of the matter fields on the geometry is taken

into account. To study the complete phase diagram of our holographic system, we need to

go beyond the probe approximation and to include the back reaction. While the previous

paper [17] focused on the effects of the non-minimal coupling term and applied magnetic

field on the condensate of the vector operator, in this paper we aim at studying the effect

of the back reaction of the matter fields on the background geometry. We will turn off

the non-minimal coupling between the vector field ρµ and the gauge field Aµ since we

do not discuss magnetic effect in this paper. So the model is left with two independent

parameters, i.e., the mass m of the vector field giving the dimension of the dual vector

operator and its charge q controlling the strength of the back reaction on the background

geometry. We manage to construct asymptotically AdS charged black hole solutions with

nontrivial vector hair. It turns out that depending on m2 and q, our model exhibits a rich

phase structure.

The thermodynamic behavior of the model has a dramatic change from large m2 to

small m2. In the case with large m2, if one lowers the temperature, the normal phase will

become unstable to developing vector hair below a critical temperature Tc. The transition

from the normal phase to the condensed phase is second order for larger q, i.e., weak

strength of the back reaction. However, as we decrease q to a critical one, the phase

transition becomes first order. On the other hand, for the case with small m2, no matter

the value of q, there exists a temperature below which the condensed phase never exists.

When the back reaction is weak, hairy solutions dominate the phase diagram below a critical

temperature T2 through a second order transition, then the condensed phase terminates

at a lower temperature T0 at which its free energy jumps to the one in the normal phase,

indicating a zeroth order transition. As we strengthen the back reaction, we first encounter

for a first order transition at temperature T1 and then a zeroth order transition at T0.
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For the sufficiently strong back reaction case, the condensed phase only occurs at a high

temperature T > Tn rather than at a low temperature. Furthermore, the hairy phase has

higher free energy than the normal phase. The four critical transition temperatures Tc,

T2, T1 and T0 decrease as one increases the strength of the back reaction. To summarize

possible phases associated with different ranges of model parameters, we construct the

phase diagram in terms of charge q and temperature T for a given mass. We find that the

critical temperature increases with the charge and decreases with the mass of ρµ.

This paper is organized as follows. In the next section, we introduce the holographic

model and deduce the equations of motion of the model. In section 3, we give our ansatz

for the hairy black hole solution corresponding to the condensed phase and specify the

boundary conditions to be satisfied. Section 4 is devoted to calculating the free energy and

dual stress-energy tensor. We present numerical results in section 5. For each given m2,

we scan a wide range of q to find all possible types of phase transitions and construct the

phase diagram. The conclusion and some discussions are included in section 6.

2 The holographic model

Let us introduce a complex vector field ρµ, with mass m and charge q, into the (3 + 1)

dimensional Einstein-Maxwell theory with a negative cosmological constant. The complete

action reads

S =
1

2κ2

∫

d4x
√−g

(

R+
6

L2
+ Lm

)

,

Lm = −1

4
FµνF

µν − 1

2
ρ†µνρ

µν −m2ρ†µρ
µ + iqγρµρ

†
νF

µν ,

(2.1)

with L the AdS radius set to be unity and κ2 ≡ 8πG related to the gravitational constant in

the bulk. The Maxwell field strength reads Fµν = ∇µAν −∇νAµ. ρµν in (2.1) is defined by

ρµν = Dµρν −Dνρµ with the covariant derivative Dµ = ∇µ − iqAµ. The last non-minimal

coupling term characterizes the magnetic moment of the vector field ρµ, which plays an

important role in the case with an applied magnetic field [17]. In the present study, since

we only consider the case without external magnetic field, this term will not play any role.

Varying the action (2.1), we obtain the equations of motion for matter fields

∇νFνµ = iq(ρνρ†νµ − ρν†ρνµ) + iqγ∇ν(ρνρ
†
µ − ρ†νρµ) , (2.2)

Dνρνµ −m2ρµ + iqγρνFνµ = 0 , (2.3)

and the equations of gravitational field

Rµν−
1

2
Rgµν−

3

L2
gµν =

1

2
FµλFν

λ +
1

2
Lmgµν

+
1

2

{[

ρ†µλρν
λ+m2ρµ

†ρν−iqγ(ρµρλ
†−ρµ

†ρλ)Fν
λ
]

+µ ↔ ν
}

.

(2.4)

In the AdS/CFT correspondence, a hairy black hole with appropriate boundary con-

ditions can be explained as a condensed phase of the dual field theory, while a black hole
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without hair is dual to an uncondensed phase (normal phase). In our case, since ρµ is

charged under the U(1) gauge field, its dual operator will carry the same charge under

this gauge symmetry and a vacuum expectation value of this operator will then trigger the

U(1) symmetry breaking spontaneously. More precisely, we hope that this system would

admit hairy black hole solutions at low temperatures, but no hair at high temperatures.

Thus, the condensate of the dual vector operator will break the U(1) symmetry as well as

the spatial rotational symmetry since the condensate will pick out one direction as special.

Therefore, viewing this vector field as an order parameter, the holographic model can be

used to mimic a p-wave superconductor (superfluid) phase transition. This turns out to be

true in the probe limit [17]: when one lowers the temperature to a certain value, the nor-

mal background becomes unstable and a nontrivial vector hair ρx appears. In this paper,

we continue to study this model by considering the back reaction of matter fields on the

background geometry.

3 Equations of motion and boundary conditions

To construct homogeneous charged black hole solutions with vector hair, we adopt the

following ansatz

ds2 = −f(r)e−χ(r)dt2 +
dr2

f(r)
+ r2h(r)dx2 + r2dy2,

ρνdx
ν = ρx(r)dx , Aνdx

ν = φ(r)dt .

(3.1)

We will denote the position of the horizon as rh and the conformal boundary will be at

r → ∞. Our consideration is as follows. Since we would like to study a dual theory with

finite chemical potential or charge density accompanied by a U(1) symmetry, we turn on At

in the bulk. We want to allow for states with a non-trivial current 〈Ĵx〉, for which we further

introduce ρx in the bulk. Because a non-vanishing 〈Ĵx〉 picks out x direction as special,

which obviously breaks the rotational symmetry in x− y plane. Therefore we introduce a

function h(r) in the xx component of the metric in order to describe the anisotropy.

The horizon rh is determined by f(rh) = 0. The temperature T of the black hole is

given by

T =
f ′(rh)e

−χ(rh)/2

4π
, (3.2)

and the thermal entropy S is given by the Bekenstein-Hawking entropy of the black hole

S =
2π

κ2
A =

2πV2

κ2
r2h
√

h(rh) , (3.3)

where A denotes the area of the horizon and V2 =
∫

dxdy.

One finds that the r component of (2.2) implies that the phase of ρx must be constant.

Without loss of generality, we can take ρx to be real. Then, the independent equations of
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motion in terms of the above ansatz are deduced as follows

φ′′ +

(

h′

2h
+

χ′

2
+

2

r

)

φ′ − 2q2ρ2x
r2fh

φ = 0 ,

ρ′′x +

(

f ′

f
− h′

2h
− χ′

2

)

ρ′x +
eχq2φ2

f2
ρx −

m2

f
ρx = 0 ,

χ′ − 2f ′

f
− h′

h
+

ρ′2x
rh

− reχφ′2

2f
− eχq2ρ2xφ

2

rf2h
+

6r

L2f
− 2

r
= 0 ,

h′′ +

(

f ′

f
− h′

2h
− χ′

2
+

2

r

)

h′ +
2ρ′x

2

r2
− 2eχq2ρ2xφ

2

r2f2
+

2m2ρ2x
r2f

= 0 ,

(

2

r
− h′

2h

)

f ′

f
+

(

1

r
+
χ′

2

)

h′

h
− ρ′2x
r2h

+
eχφ′2

2f
+
3eχq2ρ2xφ

2

r2f2h
−m2ρ2x

r2fh
− 6

L2f
+

2

r2
= 0 ,

(3.4)

where the prime denotes the derivative with respect to r.

The full coupled equations of motion do not admit an analytical solution with non-

trivial ρx. Therefore, we have to solve them numerically. We will use shooting method

to solve equations (3.4). In order to find the solutions for all the five functions F =

{ρx, φ, f, h, χ} one must impose suitable boundary conditions at both conformal boundary

r → ∞ and the horizon r = rh.

In order to match the asymptotical AdS boundary, the general falloff near the boundary

r → ∞ behaves as

φ = µ− ρ

r
+ . . . , ρx =

ρx−
r∆−

+
ρx+
r∆+

+ . . . ,

f = r2
(

1 +
f3
r3

)

+ . . . , h = 1 +
h3
r3

+ . . . , χ = 0 +
χ3

r3
+ . . . ,

(3.5)

where the dots stand for the higher order terms in the expansion in power of 1/r and

∆± = 1±
√
1+4m2

2 .1 We impose ρx− = 0 since we want the condensate to arise spontaneously.

According to the AdS/CFT dictionary, up to a normalization, the coefficients µ, ρ, ρx+
are regarded as chemical potential, charge density and the x component of the vacuum

expectation of the vector operator Ĵµ in the dual field theory, respectively.

We are interested in black hole configurations that have a regular event horizon located

at rh. Therefore, in addition to f(rh) = 0, one must require φ(rh) = 0 in order for gµνAµAν

being finite at the horizon. We require the regularity conditions at the horizon r = rh,

which means that all our functions have finite values and admit a series expansion in terms

of (r − rh) as

F = F(rh) + F ′(rh)(r − rh) + · · · . (3.6)

By plugging the expansion (3.6) into (3.4), one can find that there are five independent

parameters at the horizon {rh, ρx(rh), φ′(rh), h(rh), χ(rh)}. However, there are three useful
1The m2 has a lower bound as m2 = −1/4 with ∆+ = ∆

−
= 1/2. In that case, there is a logarithmic

term in the asymptotical expansion. We treat such a term as the source set to be zero to avoid the instability

induced by this term [26]. The treatment for m2 = −1/4 is very subtle. We will not discuss this case in

this paper and instead we are going to give a detailed study in future.
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scaling symmetries in the equations of motion, which read

eχ → λ2eχ, t → λt , φ → λ−1φ , (3.7)

ρx → λρx , x → λ−1x , h → λ2h , (3.8)

and

r → λr , (t, x, y) → λ−1(t, x, y) , (φ, ρx) → λ(φ, ρx) , f → λ2f , (3.9)

where in each case λ is a real positive number.

Taking advantage of above three scaling symmetries, we can first set {rh = 1, χ(rh) =

0, h(rh) = 1} for performing numerics. After solving the coupled differential equations, we

should use the first two symmetries again to satisfy the asymptotic conditions χ(∞) = 0

and h(∞) = 1. Thus we finally have two independent parameters {ρx(rh), φ′(rh)} at hand.

We shall use φ′(rh) as the shooting parameter to match the source free condition, i.e.,

ρx− = 0. After solving the set of equations, we can obtain the condensate 〈Ĵx〉, chemical

potential µ and charge density ρ by reading off the corresponding coefficients in (3.5),

respectively.

Under the third symmetry, the revelent quantities transform as

T → λT , S → S , µ → λµ , ρ → λ2ρ , ρx+ → λ∆++1ρx+ . (3.10)

We will use the transformation to fix the chemical potential for each solution the same,

i.e., we work in grand canonical ensemble.

Note that the set of equations admits an analytical solution with vanishing ρµ, corre-

sponding to the normal phase (conductor phase). This solution is just the AdS Reissner-

Nordström black hole, given by

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2(dx2 + dy2) ,

f(r) = r2 − 1

r

(

r3h +
µ2rh
4

)

+
µ2r2h
4r2

, φ(r) = µ

(

1− rh
r

)

,

(3.11)

with the temperature T = rh
4π

(

3− µ2

4r2
h

)

and the entropy S = 2πV2

κ2 r2h.

4 Free energy and dual stress-energy tensor

In order to determine which phase is thermodynamically favored, we should calculate the

free energy of the system for both normal phase and condensed phase. We will work in grand

canonical ensemble in this paper, where the chemical potential is fixed. In gauge/gravity

duality the grand potential Ω of the boundary thermal state is identified with temperature

T times the on-shell bulk action in Euclidean signature. The Euclidean action must include

the Gibbons-Hawking boundary term for a well-defined Dirichlet variational principle and

further a surface counterterm for removing divergence. Since we consider a stationary

problem, the Euclidean action is related to the Minkowski one by a minus sign as

− 2κ2SEuclidean =

∫

dx4
√−g (R+ 6 + Lm) +

∫

r→∞
d3x

√

−h̄ (2K − 4) , (4.1)
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where h̄ is the determinant of the induced metric h̄µν on the boundary, and K is the trace

of the extrinsic curvature Kµν .
2

Employing the equations of motion, the on-shell action reduces to

− 2κ2Son-shell
Euclidean = 2βV2e

−χ/2r
√

fh (Kr − 2r −
√

f)|r→∞ , (4.2)

with β = 1/T and V2 =
∫

dxdy. Substituting the asymptotical expansion (3.5) into (4.1),

we obtain

Ω = TSon-shell
Euclidean =

V2

2κ2
f3 , (4.3)

where we have used the condition h3 = χ3 which can be easily found form the equations

of motion (3.4). Note that for the normal phase shown in (3.11), one has f3 = −r3h −
µ2rh
4 ,

and h3 = χ3 = 0.

According to the AdS/CFT dictionary, the stress-energy tensor of the dual field theory

can be calculated by [27]

Tij =
1

κ2
lim
r→∞

[

r(Kh̄ij −Kij − 2h̄ij)
]

, (4.4)

with i, j = {t, x, y}. By using of the asymptotical expansion (3.5), we have

Ttt =
1

2κ2
(−2f3 + 3h3) ,

Txx =
1

2κ2
(−f3 + 3h3) ,

Tyy =
1

2κ2
(−f3) ,

(4.5)

with vanishing non-diagonal components. For the normal phase with h3 = χ3 = 0, we

find that Txx = Tyy and Ω/V2 = −Tyy; the former shows the isotropy in x − y plane and

the latter gives the correct thermodynamical relation for the dual field theory to the AdS

Reissner-Nordström black hole. In the condensed phase with nonzero 〈Ĵx〉, the rotational

symmetry is broken, thus it is expected to have Txx 6= Tyy. But in both cases, the stress

energy tensor is traceless, which is consistent with the fact that we are considering a dual

conformal field theory at the AdS boundary.

5 Phase transition

In what follows we will look for condensed phases numerically. We take different m2’s into

consideration and for each m2 we scan a wide range of q which determines the strength

of the back reaction of matter fields on the background. Our numerical results reveal

that the system exhibits distinguished behavior depending on concrete value of m2. There

exists a particular value of m2, for which we denote as m2
c . In the case with m2 > m2

c ,

the condensed phase seems to survive even down to sufficiently low temperatures, i.e.,

T → 0. In contrast, in the case with m2 < m2
c , the condensed phase cannot exist below

2In principle, we should also consider the surface counterterm for the charged vector field ρµ, but one

can easily see that this term makes no contribution under the source free condition, i.e., ρx− = 0.
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Figure 1. The condensate 〈Ĵx〉 as a function of temperature. We choose q = 1.5 and m2 = 3/4.

The condensate begins to appear at Tc ≃ 0.0179µ and rises continuously as one further lowers the

temperature, signaling a second order transition.

a finite temperature. To determine the precise value for m2
c , we need to solve the coupled

equations of motion (3.4) at very low temperatures to see whether the condensate would

turn back to a higher temperature. The T → 0 limit is a challenge in numerical calculation.

Nevertheless, our numerical calculation suggests that m2
c = 0, for which we have some to

say below. We will consider one concrete example for both cases. In each case we find

similar results for other values of m2.

5.1 m2 = 3/4

For the case with m2 > m2
c , we choose m2 = 3/4 as a concrete example. For each value of

q, the AdS Reissner-Nordström solution always exists even down to the zero temperature

limit. However, for sufficiently low temperature, we always find additional solutions with

non-vanishing ρx that are thermodynamically preferred. That is to say, for each value of q

we take, there is a phase transition occurring at a certain temperature Tc, where a charged

black hole developing vector hair becomes thermodynamically favored. In the dual field

theory side, it means that a vector operator acquires a vacuum expectation value 〈Ĵx〉 6= 0

breaking the U(1) symmetry spontaneously. Furthermore, the condensate 〈Ĵx〉 chooses a

special direction, so the rotational symmetry in x−y plane is also destroyed. Our numerical

calculation indicates that the order of the phase transition can be changed from second

order to first order as one increases the strength of the back reaction. More precisely, the

phase transition is second order for q > qc and first order for q < qc, where qc ≃ 1.3575 for

m2 = 3/4.

Taking q = 1.5 > qc as a typical example, apart from the AdS Reissner-Nordström

solution, we find another set of solutions with nonzero 〈Ĵx〉 appearing below the critical

temperature Tc. Figure 1 presents the condensate as a function of temperature, from which

one can see that 〈Ĵx〉 rises continuously from zero at Tc. The grand potential Ω is drawn

in the left plot of figure 2. It is clear that below the critical temperature Tc, the state

with non-vanishing vector “hair” is indeed thermodynamically favored over the normal

phase. We draw the thermal entropy S with respect to temperature in the right plot of

– 8 –
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2 Κ2 W

V2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
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0.10
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T�Tc

Κ2S

2 ΠV2

Figure 2. The grand potential Ω (left plot) and thermal entropy S (right plot) as a function of

temperature. In both plots, the dashed blue curves are for the normal phase, while the solid curves

are for the condensed phase. For T > Tc, one can only get the blue curve, but for lower temperature

T < Tc the condensed phase appears and has the lower free energy, thus is thermodynamically

favored.

0.2 0.4 0.6 0.8 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

T�Tc

XJx\
2�5

Figure 3. The condensate 〈Ĵx〉 as a function of temperature for q = 1.2 and m2 = 3/4. The

critical temperature Tc ≃ 0.00342µ is denoted by a vertical dotted line. The condensate becomes

multi-valued at T ≃ 1.03Tc. The value of condensate has a sudden jump from zero to the upper

part of the purple solid curve at Tc, indicating a first order transition.

figure 2. One can see that at the critical temperature Tc, the entropy S is continuous but

its derivative has a jump, indicating a second order phase transition. Our numerical results

also suggest that the critical exponent for all q > qc is always 1/2, i.e., 〈Ĵx〉 ∼ (1−T/Tc)
1/2.

A qualitative change happens as we decrease q past qc. Consider the case with q =

1.2 < qc. The condensate 〈Ĵx〉 versus temperature is presented in figure 3. Compared

to the previous case, the condensate becomes multi-valued and we can find two new sets

of solutions with non-vanishing 〈Ĵx〉 at temperatures lower than T ≃ 1.03Tc, involving

an upper-branch with large 〈Ĵx〉 and a down-branch with small 〈Ĵx〉. Therefore, there

are three states that are available to the system at some temperature, i.e., one is for

〈Ĵx〉 = 0 and two for 〈Ĵx〉 6= 0. To determine which is the physical state, we draw the

grand potential Ω in figure 4. One can find that the free energy versus temperature

develops a characteristic “swallow tail” which is typical in first order phase transition.

The normal phase is thermodynamically favored at higher temperatures, but as we lower
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Figure 4. The grand potential Ω (left plot) and thermal entropy S (right plot) with respect to

temperature with q = 1.2 and m2 = 3/4. In both plots, dashed blue curves come from the normal

phase, while the solid curves come from the condensed phase. Trace the physical curve by choosing

the lowest grand potential at a fixed T . The critical temperature at which the condensed phase

begins to be thermodynamically favored is Tc ≃ 0.00342µ, denoted by a vertical dotted line. The

entropy jumps from the blue curve to the lowest branch of the green solid curve at Tc.

the temperature down to Tc, the upper-branch finally dominates the system. We present

the entropy S versus temperature in the right part of figure 4, from which one can see

that S is also multi-valued and has a sudden jump from the normal phase to the physical

condensed phase at Tc. Clearly, the transition is first order.

One interesting feature presented in both cases is that the hairy black hole exhibits tiny

entropy at finite low temperatures, compared with the normal phase in figure 2 and figure 4.

Since the values of S are obtained from the behavior of the solutions at the horizon, it is

difficult to extract them with high accuracy at sufficiently low temperature. Nevertheless,

our numerical results suggest that entropy remains small and smoothly decreases as the

temperature is gradually lowered. As being a single state without any degeneracy, a super-

conducting ground state should not have any entropy. In the gravity side, it corresponds

to the fact that the zero temperature limit of the superconducting black holes should have

zero horizon area, which was previously observed in refs. [28, 29].

The main results of this subsection are summarized by the (T , q) phase diagram shown

in figure 5. The solid curve gives the critical temperature Tc for the phase transition from

the normal phase to the condensed phase. There is a critical value of q, denoted as qc,

above which the phase transition is second order, while below which the transition becomes

first order. It is also clearly that as q decreases, Tc decreases gradually, which tells us that

the increase of the back reaction hinders the phase transition.

5.2 m2 = −3/16

Similar to the previous discussion, for each m2 < m2
c we scan a wide range of q to find all

possible types of transitions. There exist two special values of q, denoted as qα and qβ with

qα > qβ , which divides the parameter space of q into three regions, q > qα, qβ < q < qα and

q < qβ , respectively. The thermodynamic behavior changes qualitatively in three regions.

We may find second order transition, first order transition and zeroth order transition.

In order to take account of the order of the phase transitions, we denote the transition

– 10 –
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Figure 6. The condensate 〈Ĵx〉 (left) and free energy Ω (right) as a function of temperature for

q = 2 and m2 = −3/16. The dashed blue curve is from the normal phase, while the solid curves are

from the condensed phase. T2 ≃ 0.1487µ is denoted by a vertical dashed line and T0 ≃ 0.05972µ is

denoted by a vertical dot dashed line. The condensate becomes multi-valued between T0 and T2.

The lower branch of the condensed phase has the lowest free energy. For temperatures T < T0 and

T > T2, the normal phase is thermodynamically preferred.

temperature as T2, T1 and T0, respectively. As a typical example, we will take the mass

parameter m2 = −3/16 in this subsection. In this case qα ≃ 1.0175 and qβ ≃ 0.9537.

Details are given as follows.

For the case with small back reaction, i.e., q > qα, we focus on the case with q = 2.

The condensate versus temperature is exhibited in the left plot of figure 6. We immediately

see that 〈Ĵx〉 is multi-valued above the temperature denoted as T0 ≃ 0.05972µ. Similar

to the first order transition for m2 = 3/4, the condensed phase has two branches, i.e.,

the upper-branch with large 〈Ĵx〉 and a down-branch with small 〈Ĵx〉. The free energy

Ω drawn in the right plot of figure 6 also shows a “swallow tail” shape, but it is very

different from the one in figure 4. Comparing the free energy Ω for each solution, we find
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Figure 7. The charge density ρ (left) and thermal entropy S (right) versus temperature for q = 2

and m2 = −3/16. The dashed blue curves are for the normal phase, while the solid curves for the

condensed phase. T2 ≃ 0.1487µ is denoted by a vertical dashed line and T0 ≃ 0.0597µ is denoted

by a vertical dot dashed line. As T0 < T < T2, ρ and S become multi-valued between, where only

the lower branch of the charge density and the upper branch of the entropy are thermodynamically

preferred. In other region of temperature, the normal phase dominates the phase diagram. Both ρ

and S are continuous but not differentiable at T2, characterizing a second order phase transition.

that the condensed solutions in the down-branch are thermodynamically favored, which

only exist in a small range T0 < T < T2. At other temperatures, including T < T0 and

T > T2, it is the normal phase with 〈Ĵx〉 = 0 that is thermodynamically relevant. At

the temperature T0, the free energy has a sudden jump from the condensed phase to the

normal phase, indicating a zeroth order transition. The charge density ρ and entropy S in

figure 7 show that both ρ and S are continuous but have a kink at T2, indicating a second

order transition. It is interesting to note that the condensed phase terminates at a finite

lower temperature T0.

For the case qβ < q < qα, let us consider for example the case with q = 39/40. The

behaviors of condensate and other thermodynamical quantities are much more complicated.

Figure 8 plots the condensate with respect to temperature, where 〈Ĵx〉 is also multi-valued

above T0 ≃ 0.03992µ. But there are three sets of condensed solutions. According to

the value of condensate, we denote them as the upper-branch for large 〈Ĵx〉, the middle-

branch for middle 〈Ĵx〉 and the down-branch for small 〈Ĵx〉, respectively. We also draw

the grand potential Ω in the right plot of figure 8. We present the charge density as

well as the thermal entropy in figure 9. The values of ρ and S have a sudden jump

from the normal phase to the thermodynamically favored branch of the condensed phase

at T1, indicating a first order phase transition. As we lower the temperature, the phase

with 〈Ĵx〉 = 0 is first thermodynamically favored, and then the middle-branch begins to

dominate the thermodynamics through a first order transition at T1 ≃ 0.04102µ, finally the

condensed phase ends up at the temperature T0 where a zeroth order transition appears.

Our numerical results uncover that as one increases the strength of the back reaction, T1

decreases while T0 also decrease but with a slowly rate, and finally T1 becomes equal to

T0 at qβ . For the present case qβ < q < qα, the value of T1 is always larger than T0, so

we have a first order transition from the normal phase to the condensed phase at higher
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Figure 8. The condensate 〈Ĵx〉 (left) and free energy Ω (right) as a function of temperature for

q = 39/40 and m2 = −3/16. The dashed blue curve is from the normal phase, while the solid

curves are from the condensed phase. T1 ≃ 0.04102µ is denoted as a vertical dashed line and

T0 ≃ 0.03992µ is denoted as a vertical dot dashed line. The condensate behaves multi-valued. The

middle branch of the condensed phase has the lowest free energy between T0 and T1. For other

range of temperature, the normal phase is thermodynamically favored.
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Figure 9. The charge density ρ (left) and thermal entropy S (right) versus temperature for

q = 39/40 and m2 = −3/16. The dashed blue curves correspond to the normal phase, while

the solid curves to the condensed phase. T1 ≃ 0.04102µ is denoted by a vertical dotted line and

T0 ≃ 0.03992µ is denoted by a vertical dot dashed line. When T0 < T < T1, ρ and S are both

multi-valued. In both plots, it is the middle branch that is thermodynamically preferred. In other

region of temperature, the normal phase is thermodynamically favored. Both ρ and S are not

continuous at T1, but rather jump from the blue dashed line to the middle branch of the solid line,

signaling a first order transition.

temperature T1 and then a zeroth order transition from the condensed phase to the normal

phase at lower temperature T0.

For the above two examples, an interesting common feature is that the thermodynam-

ically favored hairy black hole solutions exist up to a minimal temperature T0, where it

connects with an unstable condensed branch starting from higher temperature, which will

be discussed below. In the present model we restrict the case with ρx turned on, only the

uncondensed phase can appear below T0, so the free energy has a sudden jump from the

condensed phase to the normal phase at T0, indicating a zeroth order transition. Note that

in the theory of superfluidity and superconductivity, a discontinuity of the free energy was
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Figure 10. The condensate 〈Ĵx〉 as a function of temperature for q = 19/20 (left) and q = 9/10

(right). The condensate only emerges above the temperature Tn ≃ 0.03766µ for q = 19/20 and

Tn ≃ 0.03174µ for q = 9/10. The condensate in the left plot behaves multi-valued.
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Figure 11. The charge density ρ as a function of temperature for q = 19/20 (left) and q = 9/10

(right). The dashed blue curves come from the normal phase, while the solid curves from the

condensed phase.

discovered theoretically and an exactly solvable model for such phase transition was given

in ref. [30]. Therefore, it is quite interesting to see whether the holographic model has some

relation to the model in ref. [30].

As q decreases past qβ, we see a dramatic change in the thermodynamics. We draw the

condensate versus temperature in figure 10 for q = 19/20 and q = 9/10, from which we can

find that hairy solutions only appear at temperatures above Tn and the general trend is that

〈Ĵx〉 increases with the temperature.3 The value of 〈Ĵx〉 is multi-valued for the case with

larger q. As we decrease q, this multi valuedness disappears. For completeness, we show

the charged density ρ in figure 11 and the thermal entropy S in figure 12. Similar feature

can also be found in these two figures. At a first glance, this appears to be surprising,

since in general one expects the condensed phase to emerge at low temperatures rather

than at high temperatures. To have a physical condensed phase, the hairy black hole

3One may wonder if the curve could turn back at a higher temperature. We numerically check this

increasing trend up to a very high temperature as we can and find the curve has a well defined asymptotic

behavior. Therefore, we believe it will not turn around.
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Figure 12. The thermal entropy S as a function of temperature for q = 19/20 (left) and q = 9/10

(right). The dashed blue curves come from the normal phase, while the solid curves from the

condensed phase.
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Figure 13. The free energy Ω as a function of temperature for q = 19/20 (left) and q = 9/10

(right). The dashed blue curves come from the normal phase, while the solid red curves from the

condensed phase. The free energy of the condensed phase in the left plot forms a typical swallow

tail. In both plots, the condensed phase has the free energy larger than the normal phase, and thus

is not thermodynamically preferred.

configuration should have free energy less than the AdS Reissner-Nordström black hole

describing the normalphase. Comparing Ω between the condensed phase and normal phase,

we can clearly see in figure 13 that the condensed phase has free energy much larger than

the normal phase and thus is not thermodynamically favored. Therefore these hairy black

holes represent unstable branches that do not contribute to the thermodynamics. Similar

phenomenon was previously found in ref. [31] through a phenomenological model, known as

“exotic hairy black holes”. Such a phenomenon also exists in some consistent truncations

of string/M-theory in refs. [32, 33] as well as inhomogeneous black hole solutions in AdS

space dual to spatially modulated phase of a field theory at finite chemical potential [34].

This phenomenon of a thermodynamically subdominant condensate at higher temperature

is known as “retrograde condensation”.4

4The terminology “retrograde condensation” was first introduced to describe the behavior of a binary

mixture during isothermal compression above the critical temperature of the mixture [35]. A subdominant

condensate can exist in this system in some temperature range.
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Figure 14. The (T , q) phase diagram form2 = −3/16. The green region is related to the condensed

phase through a second order transition from the normal phase, while the red region is associated

with the case by a first order transition. For other areas, the normal phase is thermodynamically

favored. The transition temperature Tn for the retrograde condensation is denoted by the dashed

line in the left down corner.

We summarize the main results of this subsection by constructing the (T , q) phase

diagram in figure 14. The upper solid curve indicates the transition from the normal

phase to the condensed phase as we lower the temperature, which is the combination of

T2 for q > qα and T1 for qβ < q < qα. The lower solid curve represents the minimal

temperature T0 at which hairy solutions terminate. The region between the two boundary

curves shrinks as one increases the strength of the back reaction and the two curves intersect

at qβ . The dashed curve for q < qβ gives the value of Tn, above which a thermodynamically

subdominant condensed phase appears.

We now return to the critical mass m2
c . For very small m2, we can find the temperature

T0 easily by directly numerical calculation. Figure 15 presents the temperature T0 for each

m2. We find that the value of T0 decreases quickly as one increasesm2 from its lower bound.

But, to search for T0 numerically becomes more and more difficult as the value ofm2 is close

to the critical one. Due to the lake of numerical control at sufficiently low temperatures,

we are not able to give the values of physical quantities, such as condensate 〈Ĵx〉, charge
density ρ and entropy S, at very low T . Nevertheless, believing T0 as a function of m2

exhibits a well-behaved behavior and using the extrapolation, we find that the value of m2
c

locates at m2
c = 0 up to a numerical error.5 There are also two other hints that support

our numerical result for the value of m2
c : (1) comparing our model to the SU(2) p-wave

model, the effective mass of the vector operator is equal to zero for the latter, we find that

the reduced equations of motion look very similar with each other and the asymptotical

expansions near the boundary are the same. Since there does not exist any particular

temperature at which the condensate terminates and turns around to high temperatures

5In the case with m2 = −399/160000 and q = 2, we find the turning point is T0 ≃ 0.00429µ. For the

case with m2 = 0 and q = 2, we numerically solve the model up to the temperature T ≃ 0.00038µ with

very high computational accuracy and find no turning point.
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Figure 15. The transition temperature from the normal phase to the condensed phase (upper

curve) and the turning temperature T0 (lower curve) with respect to m2. Here q = 2. The leftmost

two points correspond to the mass square slightly above m2 = −1/4.

in the SU(2) p-wave case, it is natural to expect that the result is also true in our model

with m2 = 0. Indeed, for the special case m2 = 0, if we ignore the possible turning point

T0 at very low temperature, the model exhibits extremely similar behavior as the SU(2)

p-wave model [22, 36]. Furthermore, our ongoing analysis of our model with the full back

reaction in (4+1) dimensional black hole as well as soliton background cases exhibits all

known phase structure presented in this paper. (2) Looking at the asymptotical expansion

of ρx in (3.5), one can see that the leading term with coefficient ρx− for m2 > 0 is divergent

as r → ∞. In this case such a term must be regarded as source term and set to be zero.

In contrast, this term for m2 < 0 is regular as r → ∞. Similar to the case in the s-wave

model [4], we may have freedom to consider ρx− either as source term or expectation value

of the dual operator. The critical value of mass square is m2 = 0. Thus, it is not surprised

that the model exhibits distinguished behaviors for m2 < 0 and m2 > 0 numerically.

One may suspect that even for very large m2 there exists a non zero but very small

minimal temperature like T0. Indeed, we can not rule out this possibility by numerical

approach only. Nonetheless, for large m2 > m2
c , our numerical calculation indicates that

the physical branch of 〈Ĵx〉 (ρ and S) versus temperature may behave well up to zero

temperature. In particular, we do not find any evidence of the branch turning back to

a one at higher temperature as a characteristic of a zeroth order transition shown, for

example, in figure 6.6 Of course it is helpful to clear up this issue by constructing the

extremal limit of the hairy black hole solutions. We leave this for future investigation.

We draw the plot of the critical temperature versus the mass of the vector field from the

normal phase to the condensed phase in figure 15. One can see that the critical temperature

decreases with the mass of ρµ at a given q. This behavior is also observed in holographic

models involving a charged scalar field [37, 38].

6As a typical example, we choose the model parameters m2 = 3/4 and q = 43/40. We manage to solve

the coupled equations of motion (3.4) up to the temperature as low as T ≃ 3.332 × 10−6µ and find no

evidence of the condensate turning around to a branch extending to the high temperature region.
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We did not find any hint in the probe limit that the condensate as well as other

quantities turns back to a branch extending to the high temperature region at a certain

temperature like T0 [17]. Therefore, the appearance of T0 is the consequence of the back

reaction. For sufficiently large q, the back reaction can be ignored and we should recover the

results in the probe limit. In other words, T0 should be zero and the critical temperatures

Tc and T2 should arrive at some finite constants as q → ∞. However, one can see from

figure 14 that the value of T0 increases with q, and from figure 5 and figure 14 that the

critical temperatures Tc and T2 from the normal phase to the condensed phase also increase

with large q linearly. This is seemingly inconsistent with the expectation in the probe limit.

In fact our numerical results are consistent with the probe limit. The reason is as follows.

Note that the probe limit demands that one takes the limit q → ∞, while keeping qρµ and

qAµ fixed in our model. To compare our results to the ones in the probe limit, we should

make the scaling transformation ρµ → qρµ and Aµ → qAµ. Under such a transformation,

the chemical potential µ becomes qµ and the temperature T changes to T/q. Therefore,

it is the value T/q that corresponds to the temperature in the probe limit. Indeed, in

our numerical calculations, we checked that T0/q → 0 and the critical temperatures Tc/q

and T2/q approach to some constants as q → ∞. Therefore our numerical results are in

agreement with the probe limit analysis.

Furthermore, we know from from (4.5) that to see whether the dual stress-energy

tensor is isotropic or not, we have to extract the value of h3 carefully in our calculations.

We find that the numerical solutions presented in our paper have h3 = 0 up to a numerical

error (∼ 10−14). It means that although the model has an anisotropic structure associated

with the p-wave order with non-vanishing 〈Ĵx〉 in the condensed phase, the stress-energy

tensor is isotropic. This is the same as in the SU(2) p-wave model case7 and is consistent

with the arguments presented in ref. [39].

6 Conclusion and discussions

In this paper we studied a holographic p-wave superconductor model in a four dimensional

Einstein-Maxwell-complex vector field theory with a negative cosmological constant. The

complex vector field ρµ is charged under the Maxwell field. Taking the back reaction of

matter fields into consideration, we managed to construct hairy black hole solutions which

satisfy all asymptotic conditions. We found the model presents a rich phase structure

controlled by the mass m and charge q of the vector field ρµ. We investigated possible

phase transitions in detail. It turns out that there exist zeroth order, first order and second

order phase transitions in this model. Hairy black holes were also found in the unusual

higher temperature range T > Tn, which always have free energy higher than the normal

phase. The phase diagrams in terms of the temperature and charge were constructed.

Our numerical calculation suggests the existence of a critical m2 denoted as m2
c = 0.

When m2 > m2
c , we have a second order phase transition from the normal phase to the

7The anisotropy of the stress-energy tensor in the SU(2) model is controlled by the constant fb
2 appearing

in equation (21) of ref. [22]. It has been confirmed that the value of fb
2 should be vanishing up to a reasonable

numerical error [39].
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condensed phase for the weak back reaction case. This transition becomes a first order one

as we increase the strength of the back reaction. The transition temperature Tc decreases

as we decrease the value of q, which means that the increase of the back reaction makes

the transition more difficult. When m2 < m2
c , the thermodynamic behavior of the system

changes a lot. Starting from the high temperature region, one can find the following

transitions: for q > qα, the system undergoes a second order phase transition from the

normal phase to the condensed phase at T2 and as the temperature decreases to T0, there

is a zeroth order transition back to the normal phase; for qβ < q < qα, the system first

undergoes a first order phase transition from the normal phase to the condensed phase

at T1, then at the lower temperature T0, it comes back to the normal phase by a zeroth

order transition; for q < qβ , we can only get hairy black hole solutions that are always

subdominant in the free energy referred to as “retrograde condensation”. Here the concrete

values of qα and qβ depend on the mass squared m2 of the vector field ρµ.

It was argued in ref. [40] that the holographic free energy can be thought of as a sort

of generalized version of Landau-Ginzburg free energy. In Landau-Ginzburg theory, it is

usually assumed that the quadratic term depends on the temperature linearly while the

fourth order term is not strongly temperature dependent. In our present study, we found

the behaviors deviating from the mean field theory. In the context of Landau-Ginzburg

theory, such deviation would be a sign of an unusual temperature dependence of the higher

order terms. It should be stressed that our model is dual to a strongly coupled system.

A priori the dual system does not obey the usual assumption for the free energy. It is

in principle possible that there is some new temperature scale at which the coefficients of

higher order terms change their signs, giving rise to non-standard phase transitions in the

framework of Landau-Ginzburg theory.

Our study can be straightforwardly generalized to the higher dimensional case and

other gravitational backgrounds, such as the AdS soliton backgrounds which can mimic

the superconductor/insulator phase transition [41]. In a recent paper [42], we studied the

effect of an applied magnetic field effect on the AdS soliton background, and found that the

magnetic field can induce the AdS soliton instability due to the non-minimal coupling of

the vector field and the background magnetic field. By comparing our complex vector field

model to the SU(2) p-wave model with a constant non-Abelian magnetic field, we found

that the SU(2) p-wave model can be recovered by the restriction m2 = 0 and γ = 1 in our

model with the ansatz in ref. [42]. It suggests that in some sense, the charged vector model

is a generalization of the SU(2) p-wave model to the case with a general mass squared

m2 and gyromagnetic ratio γ for the vector field. Due to the adjustable parameter m, we

can see in this paper that our model shows a much richer phase structure than the SU(2)

p-wave model, thus can be used to describe more phenomena in dual strongly coupled

systems.

In the present paper, we limited ourselves to a simple case with ρx non-vanishing only.

In principle, in order to understand the full phase structure of the model at fixed chemical

potential, one should search for the dominant thermodynamic configuration not only in this

given sector but in a more general setup, especially turning on the temporal component

of the charged vector ρt. This would of course be much more involved, since one should
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search for the hairy black hole configuration with the least free energy among all possible

configurations. We will leave this issue for further study.

As a phenomenological approach, we consider the model as a p-wave superconducting

(superfluid) one. Indeed, this toy model could be applicable in a wide variety of condensed

matter systems and beyond. Indeed, as we have discussed in ref. [17], it may also be

revelent for holographically mimicking the phenomenon that the QCD vacuum undergoes

a phase transition to an exotic phase with charged ρ-meson condensed in a sufficiently

strong magnetic field [43, 44].

As we have mentioned above, according to the symmetry of the macroscopic wave

function or condensate of Cooper pairs in the real superconducting materials, the super-

conductor can be classified by s-wave, p-wave, d-wave and so on. The holographic s-wave

model has well studied (especially with back reaction) in the literature. Adopting the

present p-wave model, it is quite interesting to study holographic models with multiple su-

perconducting order parameters, including the competition or coexistence between s-wave

order and p-wave order or between two p-wave orders.8 We will leave all these issues for

further study.

Finally we like to mention that with suitable parameters m and q, our model shows

the normal/superconducting/normal phase transition (see figure 14) as one lowers the

temperature continuously. Such a phase transition is called reentrant phase transition

in the literature [47]. The reentrant phase transition usually happens in the binary and

multicomponent liquid mixtures. But it is interesting to note that such a phase transition

also appears in some superconducting materials, for example, granular BaPb0.75Bi0.25O3

compound [48] and cuprate superconductors [49]. Thus it would be of some interest to see

whether our model is relevant to these superconducting phase transitions.
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8It might be difficult to combine the s-wave model [4] and the SU(2) p-wave model [9] in one theory,

since the order parameter in the SU(2) model is charged under a U(1) subgroup of the Yang-Mills field and

this U(1) subgroup can not play the role of the gauge group for the s-wave model in a natural manner. The

current p-wave model is charged under a U(1) gauge group which also can be naturally taken as the gauge

group of the s-wave order. The competition and coexistence between two s-wave orders were first studied

in ref. [45] in the probe limit, and in ref. [18] with back reaction. More recently, ref. [46] constructed a

model with a scalar triplet charged under a SU(2) gauge field, there the s-wave order and p-wave order can

coexist.

– 20 –

http://creativecommons.org/licenses/by/4.0/


J
H
E
P
0
1
(
2
0
1
4
)
0
3
2

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113]

[hep-th/9711200] [INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[4] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor,

Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].

[5] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors,

JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].

[6] J.-W. Chen, Y.-J. Kao, D. Maity, W.-Y. Wen and C.-P. Yeh, Towards a holographic model of

d-wave superconductors, Phys. Rev. D 81 (2010) 106008 [arXiv:1003.2991] [INSPIRE].

[7] F. Benini, C.P. Herzog, R. Rahman and A. Yarom, Gauge gravity duality for d-wave

superconductors: prospects and challenges, JHEP 11 (2010) 137 [arXiv:1007.1981]

[INSPIRE].

[8] K.-Y. Kim and M. Taylor, Holographic d-wave superconductors, JHEP 08 (2013) 112

[arXiv:1304.6729] [INSPIRE].

[9] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor,

JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].

[10] M.M. Roberts and S.A. Hartnoll, Pseudogap and time reversal breaking in a holographic

superconductor, JHEP 08 (2008) 035 [arXiv:0805.3898] [INSPIRE].

[11] H.-B. Zeng, W.-M. Sun and H.-S. Zong, Supercurrent in p-wave holographic superconductor,

Phys. Rev. D 83 (2011) 046010 [arXiv:1010.5039] [INSPIRE].

[12] R.-G. Cai, Z.-Y. Nie and H.-Q. Zhang, Holographic phase transitions of p-wave

superconductors in Gauss-Bonnet gravity with back-reaction, Phys. Rev. D 83 (2011) 066013

[arXiv:1012.5559] [INSPIRE].

[13] L.A. Pando Zayas and D. Reichmann, A holographic chiral px + ipy superconductor,

Phys. Rev. D 85 (2012) 106012 [arXiv:1108.4022] [INSPIRE].

[14] D. Momeni, N. Majd and R. Myrzakulov, p-wave holographic superconductors with Weyl

corrections, Europhys. Lett. 97 (2012) 61001 [arXiv:1204.1246] [INSPIRE].

[15] D. Roychowdhury, Holographic droplets in p-wave insulator/superconductor transition,

JHEP 05 (2013) 162 [arXiv:1304.6171] [INSPIRE].

[16] F. Aprile, D. Rodriguez-Gomez and J.G. Russo, p-wave holographic superconductors and

five-dimensional gauged supergravity, JHEP 01 (2011) 056 [arXiv:1011.2172] [INSPIRE].

[17] R.-G. Cai, S. He, L. Li and L.-F. Li, A holographic study on vector condensate induced by a

magnetic field, JHEP 12 (2013) 036 [arXiv:1309.2098] [INSPIRE].

[18] R.-G. Cai, L. Li, L.-F. Li and Y.-Q. Wang, Competition and coexistence of order parameters

in holographic multi-band superconductors, JHEP 09 (2013) 074 [arXiv:1307.2768]

[INSPIRE].

– 21 –

http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1103/PhysRevLett.101.031601
http://arxiv.org/abs/0803.3295
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3295
http://dx.doi.org/10.1088/1126-6708/2008/12/015
http://arxiv.org/abs/0810.1563
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1563
http://dx.doi.org/10.1103/PhysRevD.81.106008
http://arxiv.org/abs/1003.2991
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.2991
http://dx.doi.org/10.1007/JHEP11(2010)137
http://arxiv.org/abs/1007.1981
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1981
http://dx.doi.org/10.1007/JHEP08(2013)112
http://arxiv.org/abs/1304.6729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6729
http://dx.doi.org/10.1088/1126-6708/2008/11/033
http://arxiv.org/abs/0805.2960
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.2960
http://dx.doi.org/10.1088/1126-6708/2008/08/035
http://arxiv.org/abs/0805.3898
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.3898
http://dx.doi.org/10.1103/PhysRevD.83.046010
http://arxiv.org/abs/1010.5039
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5039
http://dx.doi.org/10.1103/PhysRevD.83.066013
http://arxiv.org/abs/1012.5559
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5559
http://dx.doi.org/10.1103/PhysRevD.85.106012
http://arxiv.org/abs/1108.4022
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.4022
http://dx.doi.org/10.1209/0295-5075/97/61001
http://arxiv.org/abs/1204.1246
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1246
http://dx.doi.org/10.1007/JHEP05(2013)162
http://arxiv.org/abs/1304.6171
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.6171
http://dx.doi.org/10.1007/JHEP01(2011)056
http://arxiv.org/abs/1011.2172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.2172
http://dx.doi.org/10.1007/JHEP12(2013)036
http://arxiv.org/abs/1309.2098
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2098
http://dx.doi.org/10.1007/JHEP09(2013)074
http://arxiv.org/abs/1307.2768
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2768


J
H
E
P
0
1
(
2
0
1
4
)
0
3
2

[19] Y. Liu, K. Schalm, Y.-W. Sun and J. Zaanen, Bose-Fermi competition in holographic metals,

JHEP 10 (2013) 064 [arXiv:1307.4572] [INSPIRE].

[20] F. Nitti, G. Policastro and T. Vanel, Dressing the electron star in a holographic

superconductor, JHEP 10 (2013) 019 [arXiv:1307.4558] [INSPIRE].

[21] G.T. Horowitz and B. Way, Complete phase diagrams for a holographic

superconductor/insulator system, JHEP 11 (2010) 011 [arXiv:1007.3714] [INSPIRE].

[22] M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave

superfluids with back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].

[23] Y. Peng, Q. Pan and B. Wang, Various types of phase transitions in the AdS soliton

background, Phys. Lett. B 699 (2011) 383 [arXiv:1104.2478] [INSPIRE].

[24] R.-G. Cai, S. He, L. Li and L.-F. Li, Entanglement entropy and Wilson loop in Stückelberg

holographic insulator/superconductor model, JHEP 10 (2012) 107 [arXiv:1209.1019]

[INSPIRE].

[25] R.-G. Cai, L. Li, L.-F. Li and R.-K. Su, Entanglement entropy in holographic p-wave

superconductor/insulator model, JHEP 06 (2013) 063 [arXiv:1303.4828] [INSPIRE].

[26] G.T. Horowitz and M.M. Roberts, Holographic superconductors with various condensates,

Phys. Rev. D 78 (2008) 126008 [arXiv:0810.1077] [INSPIRE].

[27] V. Balasubramanian and P. Kraus, A stress tensor for anti-de Sitter gravity,

Commun. Math. Phys. 208 (1999) 413 [hep-th/9902121] [INSPIRE].

[28] S.S. Gubser, S.S. Pufu and F.D. Rocha, Quantum critical superconductors in string theory

and M-theory, Phys. Lett. B 683 (2010) 201 [arXiv:0908.0011] [INSPIRE].

[29] G.T. Horowitz and M.M. Roberts, Zero temperature limit of holographic superconductors,

JHEP 11 (2009) 015 [arXiv:0908.3677] [INSPIRE].

[30] V.P. Maslov, Zeroth-order phase transitions, Math. Notes 76 (2004) 697.

[31] A. Buchel and C. Pagnutti, Exotic hairy black holes, Nucl. Phys. B 824 (2010) 85

[arXiv:0904.1716] [INSPIRE].

[32] A. Donos and J.P. Gauntlett, Superfluid black branes in AdS4 × S7, JHEP 06 (2011) 053

[arXiv:1104.4478] [INSPIRE].

[33] F. Aprile, D. Roest and J.G. Russo, Holographic superconductors from gauged supergravity,

JHEP 06 (2011) 040 [arXiv:1104.4473] [INSPIRE].

[34] B. Withers, Black branes dual to striped phases, Class. Quant. Grav. 30 (2013) 155025

[arXiv:1304.0129] [INSPIRE].

[35] J.P. Kuenen, Measurements on the surface of van der Waals for mixtures of carbonic acid

and methyl chloride, Commun. Phys. Lab. Univ. Leiden 4 (1892).

[36] A. Akhavan and M. Alishahiha, p-wave holographic insulator/superconductor phase

transition, Phys. Rev. D 83 (2011) 086003 [arXiv:1011.6158] [INSPIRE].

[37] F. Denef and S.A. Hartnoll, Landscape of superconducting membranes,

Phys. Rev. D 79 (2009) 126008 [arXiv:0901.1160] [INSPIRE].

[38] S.S. Gubser, C.P. Herzog, S.S. Pufu and T. Tesileanu, Superconductors from superstrings,

Phys. Rev. Lett. 103 (2009) 141601 [arXiv:0907.3510] [INSPIRE].

– 22 –

http://dx.doi.org/10.1007/JHEP10(2013)064
http://arxiv.org/abs/1307.4572
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4572
http://dx.doi.org/10.1007/JHEP10(2013)019
http://arxiv.org/abs/1307.4558
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.4558
http://dx.doi.org/10.1007/JHEP11(2010)011
http://arxiv.org/abs/1007.3714
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3714
http://dx.doi.org/10.1016/j.physletb.2010.02.021
http://arxiv.org/abs/0912.3515
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.3515
http://dx.doi.org/10.1016/j.physletb.2011.04.025
http://arxiv.org/abs/1104.2478
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2478
http://dx.doi.org/10.1007/JHEP10(2012)107
http://arxiv.org/abs/1209.1019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.1019
http://dx.doi.org/10.1007/JHEP06(2013)063
http://arxiv.org/abs/1303.4828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.4828
http://dx.doi.org/10.1103/PhysRevD.78.126008
http://arxiv.org/abs/0810.1077
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1077
http://dx.doi.org/10.1007/s002200050764
http://arxiv.org/abs/hep-th/9902121
http://inspirehep.net/search?p=find+EPRINT+hep-th/9902121
http://dx.doi.org/10.1016/j.physletb.2009.12.017
http://arxiv.org/abs/0908.0011
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.0011
http://dx.doi.org/10.1088/1126-6708/2009/11/015
http://arxiv.org/abs/0908.3677
http://inspirehep.net/search?p=find+EPRINT+arXiv:0908.3677
http://dx.doi.org/10.1023/B:MATN.0000049669.32515.f0
http://dx.doi.org/10.1016/j.nuclphysb.2009.08.017
http://arxiv.org/abs/0904.1716
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.1716
http://dx.doi.org/10.1007/JHEP06(2011)053
http://arxiv.org/abs/1104.4478
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4478
http://dx.doi.org/10.1007/JHEP06(2011)040
http://arxiv.org/abs/1104.4473
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.4473
http://dx.doi.org/10.1088/0264-9381/30/15/155025
http://arxiv.org/abs/1304.0129
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0129
http://dx.doi.org/10.1103/PhysRevD.83.086003
http://arxiv.org/abs/1011.6158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.6158
http://dx.doi.org/10.1103/PhysRevD.79.126008
http://arxiv.org/abs/0901.1160
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1160
http://dx.doi.org/10.1103/PhysRevLett.103.141601
http://arxiv.org/abs/0907.3510
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.3510


J
H
E
P
0
1
(
2
0
1
4
)
0
3
2

[39] A. Donos and J.P. Gauntlett, On the thermodynamics of periodic AdS black branes,

JHEP 10 (2013) 038 [arXiv:1306.4937] [INSPIRE].

[40] F. Aprile, S. Franco, D. Rodriguez-Gomez and J.G. Russo, Phenomenological models of

holographic superconductors and Hall currents, JHEP 05 (2010) 102 [arXiv:1003.4487]

[INSPIRE].

[41] T. Nishioka, S. Ryu and T. Takayanagi, Holographic superconductor/insulator transition at

zero temperature, JHEP 03 (2010) 131 [arXiv:0911.0962] [INSPIRE].

[42] R.-G. Cai, L. Li, L.-F. Li and Y. Wu, Vector condensate and AdS soliton instability induced

by a magnetic field, arXiv:1311.7578 [INSPIRE].

[43] M.N. Chernodub, Superconductivity of QCD vacuum in strong magnetic field,

Phys. Rev. D 82 (2010) 085011 [arXiv:1008.1055] [INSPIRE].

[44] M.N. Chernodub, Spontaneous electromagnetic superconductivity of vacuum in strong

magnetic field: evidence from the Nambu-Jona-Lasinio model,

Phys. Rev. Lett. 106 (2011) 142003 [arXiv:1101.0117] [INSPIRE].

[45] P. Basu, J. He, A. Mukherjee, M. Rozali and H.-H. Shieh, Competing holographic orders,

JHEP 10 (2010) 092 [arXiv:1007.3480] [INSPIRE].

[46] Z.-Y. Nie, R.-G. Cai, X. Gao and H. Zeng, Competition between the s-wave and p-wave

superconductivity phases in a holographic model, JHEP 11 (2013) 087 [arXiv:1309.2204]

[INSPIRE].

[47] T. Narayanan and A. Kumar, Reentrant phase transitions in multicomponent liquid mixtures,

Phys. Rept. 249 (1994) 135.

[48] T.H. Lin et al., Observation of a reentrant superconducting resistive transition in granular

BaPb0.75Bi0.25O3 superconductor, Phys. Rev. B 29 (1984) 1493.

[49] Y. Zhao et al., Normal-state reentrant behavior in superconducting

Bi2Sr2CaCu2O8/Bi2Sr2Ca2Cu3O10 intergrowth single crystals, Phys. Rev. B 51 (1995) 3134.

– 23 –

http://dx.doi.org/10.1007/JHEP10(2013)038
http://arxiv.org/abs/1306.4937
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4937
http://dx.doi.org/10.1007/JHEP05(2010)102
http://arxiv.org/abs/1003.4487
http://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4487
http://dx.doi.org/10.1007/JHEP03(2010)131
http://arxiv.org/abs/0911.0962
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0962
http://arxiv.org/abs/1311.7578
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.7578
http://dx.doi.org/10.1103/PhysRevD.82.085011
http://arxiv.org/abs/1008.1055
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1055
http://dx.doi.org/10.1103/PhysRevLett.106.142003
http://arxiv.org/abs/1101.0117
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.0117
http://dx.doi.org/10.1007/JHEP10(2010)092
http://arxiv.org/abs/1007.3480
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.3480
http://dx.doi.org/10.1007/JHEP11(2013)087
http://arxiv.org/abs/1309.2204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2204
http://dx.doi.org/10.1016/0370-1573(94)90015-9
http://dx.doi.org/10.1103/PhysRevB.29.1493
http://dx.doi.org/10.1103/PhysRevB.51.3134

	Introduction
	The holographic model
	Equations of motion and boundary conditions
	Free energy and dual stress-energy tensor
	Phase transition
	m**2=3/4
	m**2=-3/16

	Conclusion and discussions

