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aLAPTh, Université de Savoie et CNRS,

BP110, F-74941 Annecy-le-Vieux Cedex, France
bCERN, Theory Division,

1211 Geneva 23, Switzerland

E-mail: diego.guadagnoli@lapth.cnrs.fr, chanbeom.park@cern.ch

Abstract: Full event reconstruction is known to be challenging in cases with more than

one undetected final-state particle, such as pair production of two states each decaying

semi-invisibly. On the other hand, full event reconstruction would allow to access angular

distributions sensitive to the spin fractions of the decaying particles, thereby dissecting

their production mechanism. We explore this possibility in the case of Standard-Model

tt̄ production followed by a leptonic decay of both W bosons, implying two undetected

final-state neutrinos. We estimate the t and t̄ momentum vectors event by event using

information extracted from the kinematic variable MT2. The faithfulness of the estimated

momenta to the true momenta is then tested in observables sensitive to top polarization and

tt̄ spin correlations. Our method thereby provides a novel approach towards the evaluation

of these observables, and towards testing tt̄ production beyond the level of the total cross

section. While our discussion is confined to tt̄ production as a benchmark, the method is

applicable to any process whose decay topology allows to construct MT2.

Keywords: Hadronic Colliders, Supersymmetry Phenomenology

ArXiv ePrint: 1308.2226

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2014)030

mailto:diego.guadagnoli@lapth.cnrs.fr
mailto:chanbeom.park@cern.ch
http://arxiv.org/abs/1308.2226
http://dx.doi.org/10.1007/JHEP01(2014)030


J
H
E
P
0
1
(
2
0
1
4
)
0
3
0

Contents

1 Introduction 1

2 MAOS reconstruction of the top rest frame 4

2.1 MT2 and MAOS momenta 4

2.2 MAOS momenta in di-leptonic tt̄ decays 5

3 Top polarization 9

3.1 Top polarization from ratios of daughter to parent particle energies 9

3.2 Top polarization from angular variables 13

3.3 Remarks on the method’s comparison with existing ones 18

4 Spin correlations in tt̄ production 19

4.1 MAOS-reconstructed spin correlations in the helicity basis 20

4.2 MAOS-reconstructed spin correlations in a boost-dependent basis 24

5 Conclusions 26

1 Introduction

Top-quark decays are known to be privileged places for testing the Standard Model (SM)

and for providing hints on the theory that completes it at high energies. There are theoret-

ical, phenomenological and experimental reasons for this fact. At the theory level, within

the SM the top quark is the only ‘heavy’ fermion, with namely mass of the order of the

electroweak symmetry breaking (EWSB) scale, or equivalently with Higgs coupling of O(1).

This circumstance motivates beyond-SM scenarios where the top quark plays an active role

in the EWSB dynamics, at variance with the other quarks. At the phenomenological level,

the large top mass causes the top quark to decay before hadronization, so that the details

of its production mechanism (e.g. the relative weights of the different spin amplitudes) are

testable from the kinematic behavior of its decay products. Finally, at the experimental

level, any collider experiment devoted to directly exploring the EWSB scale is in principle

also a top-quark factory. Most notably, this is true for the LHC that, in 2011 alone, has

produced as many as 8 · 105 tt̄ pairs per experiment [1].

Within the SM, the top quark decays almost exclusively as t → Wb. Therefore, the

final states are the same as those of the W boson, aside from an additional b jet. Final

states in tt̄ can accordingly be classified as fully hadronic, semi-leptonic, and di-leptonic,

depending on the decay modes of the two W bosons. Among them, the di-leptonic final

state, consisting of two b jets, two charged leptons, and two neutrinos, is of particular

interest: it provides a clean signal because of the charged leptons, and its topology (pair
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production of visibles plus missing energy) resembles the typical signatures of beyond-SM

models with a dark matter candidate made stable by some discrete parity.

Full event reconstruction in di-leptonic tt̄ decays poses a challenge because of the two

undetected neutrinos. This is especially true at hadron colliders. In fact, theoretically the

parent four-momenta can be calculated analytically, as was shown in ref. [2], because the six

available kinematic constraints (invariant masses for t, t̄, W+, W− and transverse missing

momentum) are enough to solve for the six unknowns (the tt̄ momenta, or equivalently the

neutrino momenta, assuming a perfect measurement of the visibles’ momenta). However,

in real life finite detector resolutions and the imperfect, sometimes poor, particle identifi-

cation result in a proliferation of the actual number of analytic solutions [2], making this

method impractical. This leads the experimental collaborations to either opt for maximum-

likelihood-inspired methods, or else to resort to observables defined in the lab frame.

In this paper we explore the possibility of reconstructing the full t and t̄ boosts in

di-leptonic tt̄ decays, using information extracted from the kinematic variable MT2 [3, 4].

As well known, lack of knowledge of the t and t̄ momenta impairs evaluation of several top-

polarization and tt̄ spin-correlations observables. We calculate these observables with the

t and t̄ momenta determined with our approach. Our results make the underlying method

a potential novel avenue towards the measurement of these observables in di-leptonic tt̄

decays.

The MT2 variable is the pair-production generalization of the MT variable [5, 6], ex-

tensively used e.g. for W mass measurements in W → `ν. This decay is the simplest decay

to a visible plus an invisible particle. In the notation of this decay, the MT variable reads

M2
T = m2

` +m2
ν + 2(E`TE

ν
T − p`Tp

ν
T) . (1.1)

The same expression, with the E`TE
ν
T factor multiplied by cosh(η` − ην) and η the particle

rapidity, would equal m2
W . Therefore MT ≤ mW . Since kinematic configurations exist for

the equality to be fulfilled, the MT endpoint allows indeed to measure the W mass. The

generalization of this argument to two decay chains yields MT2 [3, 4] as mentioned. The

latter can be defined as follows

MT2 ≡ min
k

(1)
T +k

(2)
T =/pT

[
max

{
MT

(
p

(1)
T , k

(1)
T

)
, MT

(
p

(2)
T , k

(2)
T

)}]
, (1.2)

with p(i) and k(i) (i = 1, 2) denoting the sum of the visible-particle momenta and respec-

tively the momentum of the undetected particle in either of the two decay chains, labelled

by i. Similarly as MT, MT2 provides, event by event, a lower bound on the mother particle

mass: in the case of di-leptonic tt̄ decays MT2 ≤ mt. As a matter of fact, MT2 has been

extensively used for mass measurements such as the top quark’s,1 both at Tevatron [8] and

at the LHC [9, 10].

However, this variable has a much wider spectrum of potential applicability. In par-

ticular, by its very definition [3, 4], it is designed to make the most out of topologies

1For the original proposal in the context of the LHC, see [7].
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involving two decay chains, each consisting of an undetected2 particle and one or more

visible particles, topologies often encountered in beyond-SM extensions, as mentioned.

The MT2 potentialities can be understood from the two main complications naturally

encountered when going from eq. (1.1) to (1.2). First, the invisible-daughter mass is not

necessarily known. In such cases, MT2 is a function of this mass event by event. In fact,

it has been pointed out that, even in the absence of knowledge of the mother- and of the

invisible-particle masses (to be indicated with mY and mX , respectively), the inequality

MT2(mX) ≤ mY is a necessary and sufficient condition for the decay kinematics to be

physical [11].3 In other words, event momenta fulfilling this relation will correctly satisfy

the available kinematic constraints.

The second complication/potentiality is the fact that the invisible particles’ transverse

momenta, k
(i)
T in eq. (1.2), are not measured individually — only their sum is. Therefore,

when constructing MT for each of the two decay chains, there is a two-dimensional pa-

rameter space, represented e.g. by k
(1)
T , out of which one has to pick up a value. While in

principle the choice of k
(1)
T is arbitrary, several kinematic considerations, that we will not

repeat here (see e.g. [3, 15]), suggest to take the k
(1)
T value that yields the minimum for the

largest between the two MT. Indicating this choice as k̄T, we see that, by construction,

max{M (1)
T ,M

(2)
T }|k(1)

T =k̄T
equals exactly MT2 (cf. eq. (1.2)). In other words, the MT2 eval-

uation, event by event, comes with a well-defined assignment for the individual invisible

particles’ momenta: k
(1)
T = k̄T, k

(2)
T = /pT

− k̄T. This assignment has been shown [15]

to be normally distributed around the true invisible momenta, and to provide, for several

practical purposes, an effective ‘best guess’ of the true momenta. Following ref. [15], we will

refer to the thus assigned invisible momenta as ‘MT2-assisted on-shell’ (MAOS) momenta.

In this paper we explore the question whether the t or t̄ boost reconstructed from

MAOS-determined invisible momenta is faithful enough to the real t or t̄ boost, that

it can be used to evaluate observables sensitive to the top spin. We find that MAOS-

calculated distributions measuring top polarization and tt̄ spin correlations have shapes

and asymmetries always close to the ones obtained using the true top boosts, and that

deviations can be systematically improved by just MT2 cuts.

The technique, to be discussed in the next sections, can be adapted to the measurement

of the spin distributions of any new particles produced in pairs. A vast literature exists on

this topic, that is impossible to acknowledge in full. References to which our approach is

directly applicable, or has been applied, include [16–27]. (This list does not include work

referred to later on within specific contexts.) More generally, provided one can construct

MT2, our approach may be applied to any observable requiring reconstruction of the parent-

particle’s boost. Several examples thereof exist e.g. among observables related to the

forward-backward asymmetry in tt̄ production, for which recent literature is even vaster.

2We note in this respect that, in evaluating MT2, the ‘undetected’ particle does not really need be so.

One may assign a neatly reconstructed charged lepton or a jet to the invisible part of the decay by just

including its transverse momentum in the missing-momentum budget.
3Ref. [11] presents a neat proof of this statement and a discussion of its implications. For further insights,

see also [12]. Before this literature, the idea of MT2 as the boundary of the physical region in the (mX ,mY )

plane had been used more or less implicitly in [13–15].
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In beyond-SM generalizations the method’s performance will depend on the nature,

production rate, decay modes and backgrounds of the new particles in question. We leave

this topic outside the scope of the present work, that as mentioned will be focused on SM

tt̄ production as a benchmark case.

2 MAOS reconstruction of the top rest frame

2.1 MT2 and MAOS momenta

In order to make the discussion as self-contained as possible, it is worthwhile to shortly

reproduce the line of reasoning [15, 28] leading to the definition of MAOS momenta.

Consider the following decay — our discussion will apply to any process with the same

topology

Y1 + Y2 → V (p1)X(k1) + V (p2)X(k2) , (2.1)

where Y1, 2 are pair-produced particles, assumed to have a common mass mY , V (pi) are

a set of one or more visible particles with total momentum pi, X(ki) are two undetected

particles with momentum ki and mass mX . Daughters labelled with i = 1, 2 are assumed

to be the decay products of Y1, 2, respectively. The di-leptonic tt̄ decay

t+ t̄→ b W+(→ `+ν) + b̄ W−(→ `−ν̄) (2.2)

is a SM prototype of the decay process in eq. (2.1), V (pi) being the two b` pairs and X(ki)

being the undetected neutrinos.

In the process (2.1) the momenta pi are assumed to be measurable, along with the

transverse component of the total missing momentum, /pT
. Our final task is to reconstruct

the full Yi boosts, for which we need to reconstruct ki individually. We can write the

following on-shell equations

(pi + ki)
2 = m2

Y , k2
i = m2

X , k1T + k2T = /pT
, (2.3)

corresponding to six constraints. In the general case of eq. (2.1), the unknowns include,

besides k1 and k2, also the masses mY and mX , so that there is a 2-parameter space of

solutions,4 that can be parameterized by k1T. Once k1T is fixed as two real numbers,

the longitudinal ki components, kiL, can be determined from (2.3) as the solutions of two

quadratic equations. In general, there will be therefore a two-fold ambiguity on either

of the kiL solutions, that we indicate as k̄±iL. Most interestingly, the condition that the

discriminants of the two quadratic equations be both real can be written as [15]

mY ≥ max
{
M

(1)
T , M

(2)
T

}
, (2.4)

4In the case of di-leptonic tt̄ mY and mX are known, hence the only unknowns are the two neutrino 3-

momenta. Therefore, in principle the full kinematics can be solved analytically. In practice, as mentioned

in the Introduction and elucidated in [2], imperfect knowledge of the measurable quantities leads to a

proliferation of the analytic solutions.
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where M
(i)
T is the transverse mass constructed for decay chain i. This relation shows a

certain kinship with the MT2 definition, and in fact one can go further. The discussion so

far holds independently of the k1T choice, that we have not yet specified. In fact, the r.h.s.

of eq. (2.4) should be seen as a function of k1T. This in turn suggests that, in order for the

inequality to be fulfilled for the largest possible number of events, the most ‘conservative’

choice of k1T is the one that yields the minimum of the r.h.s. of eq. (2.4), under the con-

straint k1T + k2T = /pT
. By comparing with eq. (1.2), one recognizes that this is exactly

the k1T value that yields MT2. This whole point has been first made in [15].

As already mentioned in the Introduction, we indicate the k1T choice required by MT2

with k̄1T. We refer to the resulting ki four-momenta as MAOS momenta, that read

k̄±i =

(√
m2
X + k̄

2
iT + (k̄±iL)2, k̄iT, k̄

±
iL

)
≡ kmaos

i , (2.5)

with k̄2T = /pT
−k̄1T, and k̄±iL the solutions of the first two eqs. (2.3). Note that the± choices

are independent for the two decay chains. Therefore, MAOS momenta come with a four-fold

ambiguity for each event. In the last equality of eq. (2.5), the MAOS superscript implicitly

includes this ambiguity. Henceforth in the analysis, when referring to or calculating MAOS-

reconstructed observables, it will be understood that all of the four solutions are included.

The interest of the MAOS momenta (2.5) is in the observation [15] that kmaos
i are

distributed around the true ki, even when calculated with mY and mX values that differ

from the true Y and X masses. (Of course these masses should still fulfill the inequality

mY ≥MT2(mX) in order to ensure that the kinematics be in the physical region [11]. See

corresponding discussion in the Introduction.) This observation makes MAOS momenta

potentially valuable ‘estimators’ of the separate invisible momenta ki, in processes of the

kind in eq. (2.1). The question is then how well these estimators actually represent the

true, unknown, momenta of the two invisible particles. In general, this question heavily

depends on the process and on the observable chosen. As detailed in the Introduction,

in this paper we confine this question to the per se interesting case of top polarization

and tt̄ spin correlations in di-leptonic tt̄ decays, eq. (2.2). Top-polarization observables (in

particular energy ratios and angular distributions) will be discussed in section 3 and spin

correlations in section 4. In the next section we will instead address in detail the different

MAOS-momenta definitions that are actually possible in di-leptonic tt̄ decays.

2.2 MAOS momenta in di-leptonic tt̄ decays

One important aspect of the MT2 variable is the fact that the decay topologies (2.1) to

which it is applicable may consist of one or more visible particles on each side of the decay.

MT2 needs as input only the total visible momentum pi for decay chain i, irrespective of

how it is composed. This ambiguity allows to construct more than one MT2 variable as

soon as pi is the resultant of more than one measurable momentum.

In the case of the di-leptonic tt̄ decay (2.2), to which the rest of the discussion will be

confined, there are three ways of defining the visible particle system, namely

1. b`+ and b̄`−: in this case mY = mt and mX = mν = 0,

– 5 –
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2. `+ and `−: this is a sub-system decay, with parent the W boson, thus mY = mW

and mX = 0,

3. b and b̄: here the W boson should be regarded as the ‘invisible’ particle on each

side of the decay. Then, the missing transverse momentum should be redefined as

/pT
→ /pT

+ p`
+

T + p`
−

T . In this case mY = mt and mX = mW .

In the first definition, the visible particle masses are mb`+ and mb̄`− , whereas they are van-

ishing (to excellent approximation) in the other definitions. The MT2 variables calculated

from systems other than the full system are usually referred to as sub-system MT2 [29].

Depending on the definition of the visible particle system according to the three cases

above, we indicate the corresponding MT2 variable as M b`
T2, M `

T2, or M b
T2.

The main point is that different MT2 definitions imply different MAOS momenta, that

will be indicated as kmaos−b`, kmaos−`, or kmaos−b, respectively.5 One can expect that their

performance as estimators of the true invisible momenta be different. We have made this

comparison by generating parton-level Monte Carlo event samples of tt̄ production in pp col-

lisions at 14 TeV c.o.m. energy, using MadGraph 5 [30]. We excluded any kinematic cuts

in order to avoid cut-induced distortions of the phase space. Then, in order to calculate the

MAOS momenta, we chose events with MT2 values equal or smaller than the known Mmax
T2

— for instance M b`
T2 ≤ mt in the case of the full-system MT2.6 Explicitly imposing this

condition allows to minimize the number of events where the MT2 algorithm fails to find

the correct minimum. (This occurs more frequently in events very close to the end-point,

as they also get close to the boundary of the physical region [11]. In our simulation, the

fraction of such events is very small anyway, about 0.4%.) We note in passing that an MT2

upper cut may also reveal itself useful for analyzing detector-level data where particle iden-

tification and detector-resolution effects occasionally make the MT2 calculation badly fail.

Figure 1 displays the distributions of ∆kT/|kT| ≡ (kmaos
T − ktrue

T )/|ktrue
T | for the dif-

ferent MAOS momenta, showing that kmaos−b` matches best the true neutrino momenta.

From the distributions one sees that the vast majority of the MAOS-estimated invisible

momenta differ from the true momenta by less than a factor of two in either of the trans-

verse and the longitudinal directions. The kmaos−` performs somewhat worse than kmaos−b`,

whereas kmaos−b is not comparable to the others. Henceforth we will thus focus on kmaos−b`

and kmaos−`.

The difference of efficiency between kmaos−b` and kmaos−` is due to two main reasons.

The first one is the trivial MT2 zero when all the visible and invisible particles are massless,

as is the case for M `
T2 [31]. The trivial-zero solution occurs when the missing transverse

momentum /pT
lies inside of the smaller of the two cones enclosed between the visible-

5Obviously, in the case of Mb
T2, the ki momenta would correspond to those of the W bosons, not those

of the neutrinos. One can obtain each neutrino momentum by subtracting the known momentum of the

associated charged lepton. Here kmaos−b denotes the resulting neutrino momentum.
6In our instance, the Mmax

T2 value is known in each of the three cases mentioned at the beginning of

section 2.2. In cases where it is not known, it can be determined by a functional fit or a comparison with

template distributions, parameterized in terms of mY . In general, the MT2 distribution displays a tail

above Mmax
T2 , due to finite decay width as well as unreliable evaluations.
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Figure 1. Distributions of ∆kT/|kT| ≡ (kmaos
T −ktrue

T )/|ktrue
T | (left panel) and ∆kL/|kL| ≡ (kmaos

L −
ktrueL )/|ktrueL | (right panel). k is the neutrino momentum in SM tt̄ production (LHC, 14 TeV) followed

by a decay to b`ν on both sides. The x-axis variable in the left panel stands for either of ∆kx or ∆ky.
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Figure 2. Kinematic configuration for the trivial-zero MAOS solution. See text for details.

particle momenta p
(1)
T and p

(2)
T (see figure 2). In such case, the MT2 value is attained for a

momentum configuration where k
(i)
T is proportional to its visible partner momentum p

(i)
T ,

thus making the transverse masses in eq. (1.2) all vanish.

The right panels of figure 3 show indeed a tower of events in the lowest M `
T2 bin. Appli-

cation of the MAOS method to real situations requires a suitable MT2 cut, excluding events

with too small MT2 values. In fact, as stated in [15], the MAOS algorithm performs best in

events with MT2 values closer to the endpoint. Therefore, the trivial-zero solution does not

set a fatal limitation to the MAOS method as long as a reasonableMT2 lower cut is imposed.

The second reason for the different efficiency between kmaos−b` and kmaos−` is the

number of kinematic configurations close to the Mmax
T2 value — as we just said, the region

where the MAOS algorithm performs best. For instance, in the case of M b`
T2 the visible-

particle systems consist of one b quark and one charged lepton. By construction, M b`
T2

depends only on the sum of their momenta, irrespective of the individual momentum

magnitudes. This freedom implies that the same MT2 value can be attained with different

choices of these individual momenta, and the number of these choices is higher for higher

– 7 –
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Figure 3. Distributions of (upper frame) MT2 and (lower frame) the correlation between MT2 and

∆kT for (left panels) kmaos−b` and (right panels) kmaos−`.

MT2 values. Hence (many) more kinematical configurations close to the MT2 endpoint are

possible for M b`
T2 than for M `

T2 and this explains why, close to the endpoint, the M b`
T2 peak

is much sharper than the M `
T2 one (cf. left vs. right panels of figure 3).7

While the first reason (trivial-zero solution) does not occur in cases where the visi-

ble and invisible particles are massive, the second reason holds in general: the larger the

number of ways to compose individual momenta to obtain the same total visible momen-

tum (the only input needed for MT2), the larger the number of events close to the MT2

endpoint, where MAOS performs best. From this one can deduce that, in cascade decays

involving several steps, the best-performing MAOS momenta are those constructed from

the full-system MT2.

7It is worth noting that in reality also momenta flowing upstream with respect to the decay process of

interest — e.g. initial-state radiation — can play some role to make MT2 maximal [29, 32–37]. We confine

our discussion to the case of vanishing upstream transverse momentum for the sake of simplicity.
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A final remark on the possible role of initial-state QCD radiation (ISR) is in order.

The latter is known [32–36] to potentially affect the MT2 near-endpoint region, that, as

we have been arguing, is the region where the MAOS algorithm performs best. We have

checked the negligibility of this effect by studying the distributions in figure 1 for events

with an additional ISR jet, and found no appreciable differences.8

Using kmaos−b` we have now a systematic way of estimating the two neutrino momenta,

and of thereby reconstructing the t and t̄ rest frames. The latter can be used to evaluate

top-polarization or tt̄ spin-correlation observables, to be studied in the next sections.

3 Top polarization

Top decay products obey angular distributions that are correlated with the parent-top

spin. This well known fact is, among quarks, a unique property of the top, and it is due

to its large mass. The latter is responsible for the top-quark’s small lifetime, ∼ 1/(GFm
3
t ),

much shorter than the time, ∼ mt/Λ
2
QCD, needed by QCD interactions to decorrelate the

production-time spin configuration [38].

At hadron colliders, top quarks are produced predominantly as tt̄ pairs by QCD pro-

cesses, which a priori cause left and right polarizations to weigh equally in an event set.

However, in new-physics scenarios involving chiral couplings, top-quark polarizations may

be produced in unequal weights. Accurately measuring the top polarization is therefore

considered as an important clue for physics beyond the SM.

One can construct at least two different classes of observables measuring top polariza-

tion: energy ratios and the angular distributions of top decay products. We discuss them

in turn in the next two subsections.

3.1 Top polarization from ratios of daughter to parent particle energies

One way to test top polarization is via the energy spectra of the top decay products, that

may namely be peaked towards softer or harder values depending on the top being left-

or right-handed. We will focus here on top production followed by a leptonically-decaying

W , t→ bW (→ `+ν). In refs. [39, 40] it was pointed out that the chirality of the top quark

is correlated with the ratio

x` =
2E`+

Et
(3.1)

between the charged-lepton energy and that of its parent top quark. Specifically, charged

leptons produced by right-handed top quarks tend to be more energetic than those produced

by left-handed top quarks, the difference increasing with the top energy. This conclusion

follows from the fact that the b-quark is (to very good approximation) always produced

left-handed and the W predominantly longitudinal [39, 40].

This feature can easily be checked quantitatively in pp collisions at 14 TeV by gener-

ating Monte Carlo events for purely left-handed, purely right-handed, or SM-produced tt̄

pairs.9 The resulting dΓ(t → b`+ν)/dx` distribution at parton level is shown in the left

panel of figure 4. The difference between the tL and tR cases can be better appreciated via

8An argument in support of this statement is provided by figure 12 of the second ref. in [32, 33].
9Our Monte Carlo results are, as elsewhere in the paper, generated with MadGraph 5 [30]. In particular,
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Figure 4. (Left panel) differential distribution of the energy ratio in eq. (3.1) and (right panel)

corresponding cumulative distribution. The three distributions in either plot refer to purely left-

handed, or purely right-handed, or QCD-produced tops (see legend). The antitop branches of each

event are also included.

the integral of the differential distribution up to a given x` = xc value:

R(xc) ≡
1

Γ

∫ xc

0

dΓ

dx`
dx` . (3.2)

Qualitatively, this cumulative distribution estimates how early the differential distribution

approaches the peak. The cumulative distributions of the histograms in figure 4 (left panel)

are shown in the right panel of the same figure.

This strategy can be applied to the extent that the top energy can be reconstructed.

For example, in tt̄ decays where one top decays semi-leptonically and the other hadroni-

cally, the momentum of the semi-leptonically decaying top can be reconstructed by using

the on-shell relations(
pb + p` + kν

)2
= m2

t or
(
p` + kν

)2
= m2

W ,

(kν)2 = 0, kνT = /pT
. (3.3)

Hence x` is calculable from eq. (3.3) up to a discrete degeneracy.

More generally, however, the tt̄ pair may be the result of a longer decay chain, in-

volving further undetected particles than just a neutrino — for example supersymmetric

t̃ t̃ production would lead to tt̄ plus two additional neutralinos. In this case Et cannot be

reconstructed directly and it is meaningful to search for ‘proxies’ of the variable in eq. (3.1),

that do not involve Et. This issue has been recently explored in [43].10

the purely left- and right-handed tt̄ cases are simulated via a toy model containing a new vector with chiral

couplings to quarks, implemented in MadGraph via FeynRules [41, 42].
10Another instance in which one can construct top-polarization observables without the need to recon-

struct the top rest frame is when tops are highly boosted [44–46], as is the case if they are produced from

accordingly massive new physics.
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In particular, the authors of [43] consider the case where one of the tops decays as

t→ b`+ν and the other as t̄→ b̄qq̄′. The energy of the semileptonically-decaying top, Et,

is estimated, event by event, via the energy of the other (anti-)top, Et̄, that at least in

principle is measurable. They thus introduce the modified energy-ratio variable

x′` =
2E`+

Et̄
=

2E`+

Eb̄ + Eq + Eq̄′
. (3.4)

The above strategy cannot (or at least is not designed to) be applied in tt̄ events where

both W decay to leptons, because the two undetected neutrinos in the final state challenge

the reconstruction of both Et and Et̄. On the other hand, since the tt̄ decay topology is

suitable for the construction ofMT2, the parent-particles’ energies can actually be estimated

using the MAOS method discussed in the previous section. We accordingly define

xmaos
` =

2E`+

Emaos
t

=
2E`+

Eb + E`+ + Emaos
ν

, (3.5)

where Emaos
ν = |kmaos−b`|. Here we choose the MAOS four-momentum estimated from the

full-system MT2, kmaos−b` (cf. discussion in section 2.2).11 The differential and respectively

cumulative (the analogue of eq. (3.2)) distributions of xmaos
` are shown in the upper frames

of figure 5. As a comparison, the corresponding distributions for the case of the x′` variable

in eq. (3.4) are shown in the lower frames of figure 5.

It should be noted that application of the x` variable to di-leptonic tt̄ decays comes, by

construction, with an additional uncertainty, namely the two-fold combinatorial ambiguity

of correctly assigning the 2 b-jets (that are not flavor-tagged, i.e. their charge is not deter-

mined in general) + 2` final state to the two decay chains. We address this ambiguity using

the method in [47]. Energy-ratio variables, such as those considered in this section, turn out

to be rather robust with respect to the combinatorial error: distributions where this error

is taken into account barely differ with respect to those with final states always paired cor-

rectly. Hence in this section we only show distributions where this ambiguity is included.12

The following comments on figure 5 are in order.

1. Since the computation of the MAOS momentum preserves energy-momentum conser-

vation, E` is always smaller than Emaos
t , hence the xmaos

` distribution has a definite

cutoff at 2, like the xtrue
` distribution constructed with the true Et, and shown in

figure 4. Note that, on the other hand, the x′` differential distribution does not fulfill

the same cutoff requirement, as confirmed by the lower plots of figure 5.

2. In the cumulative xmaos
c distribution, the unpolarized case (the SM one) lies neatly

between the purely tL and the purely tR cases, in close resemblance to the true dis-

tribution. Again, this is largely consequence of the fact that the MAOS distributions

fulfill the cutoff constraint mentioned in item 1.

11Note that, event by event, the mt and mW masses that enter the MT2 calculation float according to

their finite widths. This effect is taken into account in all of our numerics.
12We will return to this issue in much more detail in sections 3.2 and 4, where its interplay with the

MAOS method and the cuts leads to more insights on our method.
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Figure 5. Same as figure 4, but with the x` variable evaluated with the MAOS method, as in

eq. (3.5) (upper frames), or using the primed variable in eq. (3.4) [43] (lower frames).

3. From the previous items, one concludes that the distribution constructed with the

MAOS method is fairly close to the true distribution already at the differential level.

Thus this method allows to test top polarization via the x` variable, even in the

di-leptonic tt̄ decay channel.

A further virtue of the MAOS method is that the accuracy of the approximation is

under the control of the MT2 cut. As mentioned, the MAOS momenta become closer to the

true momenta for events with MT2 approaching Mmax
T2 , as shown in the lower left frame of

figure 3. Therefore, by imposing a suitable MT2 cut, the accuracy of the MAOS momentum

can be increased at the expense of statistics. Figure 6 shows the same distributions as in

the upper frames of figure 5 but with the inclusion of an M b`
T2 > 150 GeV cut. Note that,

because the MT2 distribution has a peak structure close to the endpoint (see left panels of

figure 3), the number of events not passing this cut is (only) half of the total dataset. By
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Figure 6. Same as the upper panels of figure 5, but including a lower cut on MT2.

comparing figure 6 with figures 5 and 4, one can see that the cumulative MAOS distribution

is close to the true distribution, and that the distribution with the MT2 cut gets even closer

to it. In fact, the inclusion of the MT2 cut is above all intended to check explicitly that

it does not introduce distortions in the overall distributions. This would occur if the cut

selected kinematic configurations more populated e.g. by tR than by tL, so as to introduce

cut-induced asymmetries.

3.2 Top polarization from angular variables

The MAOS method allows full reconstruction of the parent-particle’s momentum. This per-

mits to test the most direct of top-polarization observables, the angular distribution of top

decay products. Among the latter, charged leptons have the double advantage of a ‘maxi-

mal’ spin-analyzing power [48] and of being especially clean objects for experiments. At tree

level, the charged-lepton distribution in top-quark decays can be written as (see e.g. [49])

1

Γ

dΓ

d cos θ
=

1 + α cos θ

2
, (3.6)

where θ denotes the angle between the decaying-particle spin-quantization axis and the

direction of the charged lepton, viewed in the decaying-particle’s rest frame. The coef-

ficient α denotes the mentioned charged-lepton spin-analyzing power, equalling +1 (−1)

for spin-up (spin-down) tops or spin-down (spin-up) antitops. Angular distributions from

decay products other than charged leptons obey relations entirely analogous to eq. (3.6),

but for a different spin-analyzing power |α| ≤ 1.

By its definition, to calculate the angle θ one should reconstruct the top rest frame.13

The cos θ` distribution in tt̄ production followed by a leptonic decay of both W is shown

13An alternative strategy is to search for lab-frame angular observables sensitive to top polarization.

An instance is the lab-frame azimuthal angle of the charged lepton φ` [50, 51]. For a general analysis of

azimuthal-angle distributions, see [52]. Yet another approach is to consider angular variables that depend
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Figure 7. The distributions of cos θ` using the true top-quark momentum.

in figure 7, where we have used the true top rest frames. The figure shows graphically the

very distinct cos θ` behavior between the tL and the tR cases dictated by eq. (3.6).14

Figure 7 is purely theoretical, because the two neutrinos in the final state challenge

the reconstruction of the rest frames of the two tops. Experimentally, event reconstruction

in this case is performed via maximum-likelihood criteria, such as the neutrino-weighting

method [57–59], used in [60, 61], or matrix-element weighting techniques [62], as in [63] (cf.

also section 3.3).

We attempt this reconstruction with the MAOS method, and denote the correspond-

ingly calculated angle as θmaos
` .15 Specifically, we again calculate the neutrino momenta

from the full-system MT2. Denoting them as k(i)maos−b`, the parent-particle boost is re-

constructed event by event as pmaos−b`
t(t̄)

= pb + p` + k(i)maos−b`, with i = 1, 2 labelling the t

or t̄ decay chain. The resulting distributions for purely left-, purely right-handed, and SM

tt̄ production are shown in the left panel of figure 8.

Two observations are in order. First, the just mentioned reconstruction of the pt(t̄)
momenta suffers from the combinatorial ambiguity of correctly pairing the two b-jets with

the two charged leptons. The left panel of figure 8 does not include this combinatorial

ambiguity — the b` pairings are namely taken to be the correct ones. This plot is meant

to show the modifications with respect to the true distributions, coming from the MAOS

reconstruction alone. The combinatorial error is included in the right panel of figure 8.

This error can be straightforwardly addressed by implementing the four (MT2-based) test

variables proposed in [47].16 We find that the method correctly assigns the two b` pairs in

on longitudinal-boost-invariant combinations of the final-state kinematics, such as rapidity differences [53]

(see also [54]). Comparative studies of these variables in the context of new physics can be found in [55, 56].
14The figure implicitly includes the anti-top decays as well. This is the case also elsewhere in the paper,

whenever we do not specify the charge of the lepton.
15As spin-quantization direction we take the helicity, measured in the tt̄ rest frame.
16For another MT2-based technique to address the same problem see [64].
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Figure 8. The distributions of cos θ` using the MAOS-reconstructed top-quark momentum without

(left panel) and with (right panel) inclusion of the b`-assignment combinatorial ambiguity (see text).

83% of the events, before any cut. Henceforth, we will refer to the method’s percentage of

events with correctly assigned pairs as efficiency.

A second observation concerns the (only) non-negligible distortion of the MAOS-

reconstructed distributions with respect to the truth-level ones. This distortion, as ap-

parent from figure 8, occurs for leptons produced in the backward direction (cos θ` ≈ −1),

that is well populated in the tL and SM cases. We have investigated in detail the origin

of this distortion. A first general explication is the fact that this region is inherently unfa-

vorable for the application of the MAOS algorithm. In fact, leptons produced backwards

with respect to the parent tops have an energy spectrum peaked towards softer values (see

e.g. figure 4, left), whereas the MAOS-algorithm reliability increases with larger visible

momenta, as detailed in section 2.2. Another, more technical, reason for the distortion

is the fact that kinematic configurations with one of the visible daughter particles pro-

duced backwards with respect to the parent tend more often to have an ‘unbalanced’

MT2 value [4, 65, 66]. (Namely the k
(1)
T , k

(2)
T configuration yielding MT2 is such that

MT2 = max{M (1)
T ,M

(2)
T }, with M

(1)
T 6= M

(2)
T . On the other hand, in a balanced solution

one has by definition MT2 = M
(1)
T = M

(2)
T .) Invisible momenta reconstructed from unbal-

anced MT2 solutions are more likely to deviate from the true momenta than if they come

from balanced MT2 solutions.17 As a check, we have repeated figure 8 (left), but excluding

events with unbalanced MT2 solutions, and indeed the distortion gets mildened.

17This statement is easy to understand for endpoint events, where MT2 = mt. If MT2 is balanced, then

mt = MT2 = M
(1)
T = M

(2)
T , and the uniqueness of the minimum will guarantee that the MAOS momenta

for both decay chains will correspond to the true momenta. On the other hand, if MT2 is unbalanced, and

taking for definiteness M
(1)
T > M

(2)
T , then mt = MT2 = M

(1)
T 6= M

(2)
T , so that only the MAOS momentum

for the first decay chain will be the true one, whereas the MAOS momentum for the second decay chain

will in general deviate from the true momentum.
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Figure 9. Same as figure 8, but for the inclusion of an MT2 cut.

Both of these effects — the combinatorial ambiguity and the cos θ+
` ≈ −1 distortion

— can be systematically improved by selecting events with MT2 closer to its endpoint,

where incidentally the MAOS algorithm itself is known [15] to be more reliable — see

lower-left panel of figure 3. Furthermore, a lower cut on MT2 represents a standard cut in

detector-level analyses. In figure 9 we show histograms which differ from those in figure 8

for the application of an MT2 > 150 GeV cut, that halves the number of events. The

figure demonstrates how the cut indeed effects positively both the MAOS method alone

(left panel) as well as the MAOS method with combinatorial error included (right panel).

It should also be noted that in the right panel of figure 9 the above-discussed distortion

has largely disappeared.

All in all, from the sequence of plots in figures 8–9 one can draw three non-trivial

conclusions: (i) the MAOS reconstruction of the invisible momenta is accurate enough

for top-polarization distributions not to be appreciably distorted with respect to the true

ones; (ii) the combinatorial error (intrinsic to the method, at least for the full-system MT2

case) has in fact a marginal impact on the MAOS reconstruction; (iii) this error can be

systematically controlled by the same sort of cuts that also help the MAOS method itself.

As a side comment to item iii, we note that in fact the most effective cut to improve

the efficiency of the combinatorial method is a lower cut on the full-system transverse mass

M tt̄
T (see ref. [47] for quantitative details). The interesting aspect is that this variable is

correlated with the overall boost of the tt̄ system — the harder the M tt̄
T cut, the more

boosted the selected tt̄ sample. Therefore, we expect our method to perform very well also

in the boosted regime.18

A more realistic comparison between the truth-level and the MAOS-reconstructed

distributions would involve the inclusion of a set of cuts such that the selected event sample

18An intuitive argument for this is the fact that, for boosted tops, a wrong pairing leads very frequently

to kinematic solutions outside of the physical boundaries, and this information can be exploited to take the

other pairing as the correct one.
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Figure 10. Comparison between the true (cf. figure 7) and the MAOS-reconstructed (cf. right

panel of figure 9) distributions, but for the inclusion of a pT and an |η| cut. In the true distribution

(left panel) we also include an MT2 cut for consistency with the analysis of the MAOS-reconstruced

distribution (right panel).

resemble as much as possible the one selected by the experimental trigger, as well as the

simulation of hadronization and energy-momentum smearing effects. We refrain from a

refined analysis of this kind in a theory study. Similarly as in [67], we limit ourselves to the

introduction of two ‘minimal’ centrality cuts, that approximately identify the kinematic

fiducial region of the tt̄ sample. From the recent Atlas analysis [68], we conservatively

take these cuts to be pT > 20 GeV and |η| < 2.5, applied to all final states.19 We show

in figure 10 how the true distribution (cf. figure 7) and the MAOS-reconstructed one (cf.

right panel of figure 9) are modified by the introduction of these cuts. As expected, the

main effect is to underpopulate the bins with cos θ` close to −1, where the charged lepton

tends to be softer, as already discussed. Noteworthy is that this distortion effects the true

and the MAOS-reconstructed distribution in a very similar way.

A more quantitative idea of the difference between all the discussed cases may be

obtained by calculating the asymmetry observable

A` =
σ(cos θ` > 0)− σ(cos θ` < 0)

σ(cos θ` > 0) + σ(cos θ` < 0)
. (3.7)

table 1 collects the values of this asymmetry, calculated for the true distribution vs. the

MAOS-reconstructed one for purely left-handed, purely right-handed, or SM-produced tt̄

pairs (table columns) and without or with inclusion of the most significant cuts and ef-

fects discussed (table rows). To limit clutter, we have labelled the considered cases by

the corresponding figure. These cases include, in order of descending row, the following

distributions: (i) the true one; (ii) the MAOS-reconstructed one, without combinatorial

19This choice is rather qualitative also because the analysis [68] refers to 7 TeV data. We think nonetheless

that for our main line of argument it is sufficient to use an approximate, conservative figure.
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Atrue
` (figure 7) −0.43 0.43 −0.001

Amaos
` (figure 8, left) −0.27 0.41 −0.05

Amaos
` (figure 9, right) −0.33 0.42 0.03

Atrue
` (figure 10, left) −0.37 0.38 0.05

Amaos
` (figure 10, right) −0.28 0.40 0.07

Table 1. Numerical comparison of the MAOS-reconstructed vs. truth-level A` as defined in

eq. (3.7). The considered cases (table rows) are labelled by the corresponding figure. The tt̄ pairs are

assumed to be purely left-handed, purely right-handed, or produced via SM QCD (table columns).

error or cuts; (iii) the MAOS one, including combinatorial error and the MT2 cut; (iv) the

true one, with pT and η cuts included; (v) the MAOS one as in item iii, with pT and η cuts

included. As previously discussed in detail, the most relevant comparisons are between

cases (i) and (iii) and between cases (iv) and (v).

3.3 Remarks on the method’s comparison with existing ones

Having introduced all the main method’s features in a concrete application, it is worthwhile

to comment at this point on how ours compares to existing methods aimed at the recon-

struction of the t and t̄ boosts in di-leptonic tt̄ decays. As already mentioned in section 3.2,

these ‘likelihood-based’ methods include the neutrino weighting (νW) method [57–59] as

well as the matrix-element weighting (MEW) one [62].

Each of these methods involves as a crucial step the construction of weighting func-

tions (based on Monte Carlo procedures) to estimate the likelihood of each of the possible

solutions for the neutrino momenta compatible with the system of kinematic equations.

We advance the following remarks on the various methods.

• Both methods, ours and the likelihood methods, are kinematics-based: in the likeli-

hood methods one solves a system of equations corresponding to all kinematic con-

straints; in ours one uses an MT2 property that somewhat summarizes these very

kinematic constraints.

• One difference is in the treatment of the resulting kinematic solutions. We expect

that the robustness of the νW and MEW methods will depend on the reliability of

the Monte Carlo used to determine the weighting function. On the other hand, our

method relies solely on kinematics, namely on the decay topology being suitable for

the construction of MT2.

• Still concerning the kinematic information used, we further remark that likelihood

methods use both of the mW and mt constraints, that actually differ event by event

due to the finite W and t widths. On the other hand, the MAOS method is using only

one of these mass constraints, mt in the case of M b`
T2. The explicit use of less kinematic

information may be beneficial to reduce the associated systematic uncertainty.
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• The accuracy of the MAOS method can be controlled by an MT2 cut, as long as

the statistics permits it, as is expectedly the case at LHC14. We are not aware of a

systematic and intuitive way to control accuracy in likelihood methods.

In general, it is to be expected that the information from one method will improve the

efficiency of the other ones (and vice versa). Therefore, barring strong correlations across

the methods, the best overall reconstruction efficiency will be obtained by integrating (and

optimizing accordingly) the MAOS method with the other ones.

4 Spin correlations in tt̄ production

Top polarization may be unobservable if its production mechanism involves tL and tR in

similar fractions. This is the case in the SM, where tops are produced dominantly as tt̄ pairs

by QCD interactions, which weigh equally left-handed and right-handed components. The

SM distribution in figure 7 is in fact unobservably flat (cf. also top-polarization asymmetries

in the last column of table 1). In these circumstances, the different spin components in tt̄

production can still be tested by looking at spin correlations between t and t̄. The latter

impart correlations between the angular distribution of decay product i from the top and

the angular distribution of decay product ī from the anti-top. The doubly-differential (with

respect to these two decay products) distribution can be written as [69]

1

σ

d2σ

d cos θi d cos θī
=

1 + Ctt̄ αiαī cos θi cos θī
4

, (4.1)

where θi(̄i) is the angle between the chosen spin-quantization axis and the direction of decay

product i(̄i), viewed in the respective mother-particle’s rest frame, and αi(̄i) has already

been introduced below eq. (3.6). Furthermore

Ctt̄ =
σt↑ t̄↑ + σt↓ t̄↓ − σt↑ t̄↓ − σt↓ t̄↑
σt↑ t̄↑ + σt↓ t̄↓ + σt↑ t̄↓ + σt↓ t̄↑

, (4.2)

where the symbols on the r.h.s. denote the cross sections for production of tt̄ pairs in either

of the four possible spin configurations, with ↑ (↓) denoting a particle with spin up (down)

with respect to the chosen spin-quantization axis.

Spin correlations within the SM, as well as the question how they can best be measured

at hadron colliders, have been extensively studied [49, 67, 69–77]. Given the Ctt̄ dependence

in eq. (4.1), it is clear that spin correlations are larger when Ctt̄ increases in magnitude,

namely when the difference between like- and unlike-spin tt̄ pairs is maximal. One crucial

insight by Mahlon, Parke and Shadmi [49, 67, 72] is the realization that this difference can

be maximized by an appropriate choice of the spin-quantization axis. Once the appropriate

basis choice is made, the tt̄ cross section turns out to be dominated by one single spin

configuration. This ‘optimal’ basis choice is different between the Tevatron and the LHC.

At Tevatron, tt̄ pairs are produced dominantly through qq̄ annihilation. For this pro-

cess, it has been shown [67, 72] that one can choose a spin basis in which the like-spin tt̄

components (t↑t̄↑ and t↓t̄↓) in the cross section vanish identically, and this basis is referred
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to as the ‘off-diagonal’ basis [72]. A very useful parameterization of the corresponding

spin eigenvector is provided by Uwer in [77]. In the tt̄ rest frame, the angle between the

incoming beam (usually identified with +ẑ) and the top spin axis reads

tanψ =
tan θ

(
1− γ−1

)
1 + γ−1 tan2 θ

, (4.3)

with θ the top-quark scattering angle with respect to ẑ and γ = 1/
√

1− β2, β being the

top-quark speed. Note that, close to threshold (γ → 1), the spin axis becomes aligned

to the beam axis, so that in this limit one recovers the ‘beam-line’ basis [49], whereas at

very high energies (γ � 1), the spin axis becomes aligned to the top-momentum direction,

it namely coincides with the ‘helicity’ basis [49]. Concretely, for tt̄ pairs dominantly pro-

duced close to threshold, as was the case at Tevatron, the off-diagonal basis lies close to

the beamline basis for all scattering angles [72]. For Tevatron data, this suggests to use

the off-diagonal basis as the optimal choice for spin-correlation studies, and the beamline

basis as a sub-optimal choice [67, 72].

At the LHC, tt̄ pairs are produced dominantly through gg fusion. For gg → tt̄, there

is no basis where the tt̄ pairs are in purely like- or unlike-spin configurations, because this

basis is different depending on whether gg are in like- or unlike-helicity configurations,

and in general both helicity components are present in the gg → tt̄ cross section [69, 77].

An ‘optimized’ spin-basis choice can still be made according to whether the gg pair is

dominantly in a like- or unlike-helicity configuration [69], which in turn depends on the

center-of-mass energy of the pp collisions, or equivalently on Mtt̄. Specifically, at low Mtt̄,

gg pairs are dominantly produced with like helicities. In this case, the amplitudes squared

yielding tt̄ pairs in unlike-spin configurations can be made to vanish (for all β) in the helicity

basis [69]. Conversely, at (very) high Mtt̄, gg → tt̄ occurs dominantly via unlike-helicity

gluons. In this case, the amplitudes squared to tt̄ in like-spin configurations vanish in the

off-diagonal basis [69], similarly as in the qq̄ → tt̄ case seen in the previous paragraph.

However, as noted in [69], the fraction of tt̄ pairs produced in this ultrarelativistic limit

at the LHC (with 14 TeV collision energy) is very small.20 One concludes that, at the

LHC with 14 TeV, tt̄ spin correlations are well described in the helicity basis [49, 69]. We

will then use this basis for our reference study of tt̄ spin correlations reconstructed via the

MAOS algorithm. We will afterwards address the case where an ‘optimized’ basis is used.

4.1 MAOS-reconstructed spin correlations in the helicity basis

From eq. (4.1) it is clear that, along with an accurate choice of the spin-quantization axis, it

is also essential to choose correctly the final states i and ī — different states have different

spin-analyzing power, and pose different detection challenges [70, 78]. In this paper, since

we are focusing on kinematic methods based onMT2, we confine ourselves to tt̄→ b`+ν̄ b̄`−ν

and take i = `+ and ī = `−. As already remarked, di-leptonic tt̄ decays have the advantage

that the charged-leptons’ spin-analyzing power is maximal, |α`+ | = |α`− | = 1, and that `±

20The cross-over point between gg in like- vs. unlike-helicity configurations occurs for Mtt̄ ≈ 850 GeV,

and at that point the overall gg → tt̄ cross section has decreased by more than one order of magnitude [49].
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Figure 11. The differential distribution in eq. (4.1) as a function of cos θ`+ cos θ`− for tt̄ produced

from pp collisions at 14 TeV and by its subprocesses gg and qq̄ (see legend). Spin axes are in the

helicity basis.

are clean objects experimentally, and the drawback of two final-state neutrinos, that hinder

the reconstruction of the t and t̄ rest frames,21 required by the θ`± definition. Experimen-

tally, the two main techniques used [57–59, 62] have already been mentioned in the context

of top polarization. They have been applied in tt̄ spin correlation studies in [79–82].

In section 3.2 on top polarization we have estimated these angular variables using the

MAOS-reconstructed invisible momenta k(i)maos−b`. We namely calculated the t or t̄ rest

frames as pmaos−b`
t(t̄)

= pb + p` + k(i)maos−b`, using the values for the invisible momenta that

yield MT2 for the event, and reconstructed the angles θ`± accordingly. Here we apply this

technique to reconstruct the tt̄ spin-correlation in eq. (4.1).

As in the top-polarization study, we provide truth-level distributions as a reference.

A convenient quantity to measure the ‘size’ of tt̄ spin correlations from the distribution in

eq. (4.1) is the asymmetry [70]

A`` ≡
N(cos θ`+ cos θ`− > 0)−N(cos θ`+ cos θ`− < 0)

N(cos θ`+ cos θ`− > 0) +N(cos θ`+ cos θ`− < 0)
=

1

4
Ctt̄ α`+α`− , (4.4)

where N denotes the number of events satisfying the condition in parentheses, and we

have specialized the notation to di-leptonic tt̄. This asymmetry may be visualized from

the dependence of the differential distribution in eq. (4.1) on the product cos θ`+ cos θ`− .

In figure 11 we show such dependence in the case of the true distribution of tt̄ produced in

pp collisions at 14 TeV (as well as via the subprocesses gg and qq̄).22 The superscript ‘true’

in the x-axis emphasizes that in this plot the t and t̄ rest frames are calculated using the

21An alternative approach to testing tt̄ spin correlations is to look for variables that can be measured in

the lab frame. An example is the difference between the azimuthal angles of the two charged leptons in

di-leptonic tt̄ decays [69]. We will not pursue this approach in the present work.
22We use the CTEQ6L1 parton distribution functions [83].
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Figure 12. Same distributions as in figure 11, but with MAOS-reconstructed t and t̄ boosts (see

text). The left panel does not include the b` combinatorial ambiguity, which is instead taken into

account in the right panel.

true neutrino momenta, and also assigning the correct b` pairs to the two decay chains, i.e.

without including combinatorial ambiguities.

We now turn to the MAOS-reconstructed version of the histograms in figure 11. The

equivalent histograms, namely including no other uncertainty than the one due to MAOS-

estimated t and t̄ boosts rather than the true boosts, are shown in the left panel of figure 12.

In the right panel, we also include the combinatorial ambiguity of assigning the two b` pairs

to the t and t̄ decay chains. This ambiguity is addressed via the same method [47] as the

one used in the top-polarization study, section 3.2. Figure 12 provides an already non-

trivial test: the clear-cut asymmetry visible in figure 11 is still present in the histogram

with MAOS-reconstructed momenta and combinatorial ambiguity included.

Inspection of figure 12 reveals that the asymmetry is more pronounced after inclusion

of the combinatorial error (right panel) than before it (left panel). This is due to the fact

that the efficiency of the combinatorial method is higher in the cos θ`+ cos θ`− < 0 region

than in the cos θ`+ cos θ`− > 0 one: it equals 87% vs. 79% before cuts. As a consequence,

some of the wrongly-paired solutions belonging to cos θ`+ cos θ`− > 0 will migrate to the

other region, whereas the converse will happen less likely. So, while the MAOS method

ignoring combinatorial ambiguities slightly dilutes the asymmetry in figure 11, the inclu-

sion of combinatorial ambiguities largely compensates this dilution, yielding an asymmetry

closer to the truth-level one.

The spurious asymmetry component induced by the treatment of combinatorial am-

biguities can be made to disappear by a suitable MT2 cut. In fact, the latter reduces

substantially the difference between the negative and the positive x-axis efficiencies —

with the cut MT2 > 150 GeV, the two efficiencies equal 92% vs. 91%. In figure 13 we

show the same MAOS distributions as figure 12, but for the inclusion of the require-

ment MT2 > 150 GeV. As already discussed, the introduction of an MT2 cut is beneficial
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Figure 13. Same distribution as figure 12, but for the introduction of an MT2 > 150 GeV cut.

to the MAOS-reconstruction reliability, and in fact the left panel of figure 13 displays a

larger asymmetry than the corresponding panel of figure 12. Turning to the right panel

of figure 13, where the combinatorial uncertainty is taken into account, we note that the

asymmetry is increased with respect to the case of no cut. We observe in this respect that,

per se, an MT2 cut has the effect of increasing the asymmetry — already at the level of

the true distribution. For example, the asymmetry A`` (4.4) in the pp case equals −0.087

for the truth-level distribution of figure 11 (cf. also table 2 to follow) and reaches −0.114

for the same histogram in presence of an MT2 > 150 GeV cut.

As a final comparison of the MAOS-reconstructed distribution with respect to the

truth-level one, we include in both cases the two minimal centrality cuts pT > 20 GeV

and |η| < 2.5, as already discussed in the top-polarization study (cf. end of section 3.2).

The resulting distributions are shown in figure 14. Worth remarking is the fact that the

pT and |η| cuts do not introduce major distortions in these distributions. As seen in the

top-polarization discussion, this sort of cuts is expected to underpopulate the kinematic

region where one of the charged leptons is produced backwards with respect to the parent,

cos θ` ≈ −1. Since the angle of the other lepton is generic, the effect is diluted in the whole

cos θ`+ cos θ`− ∈ [−1,+1] range, and does not visibly affect figure 14.

We conclude this section by calculating the asymmetry parameter A`` defined in

eq. (4.4) in the most representative among the cases discussed. These values are collected

in table 2. The considered cases include (in order of descending row): (i) the true asym-

metry, without inclusion of any errors or cuts; (ii) the corresponding MAOS-reconstructed

asymmetry, again without errors or cuts; (iii) the MAOS asymmetry, with inclusion of

the combinatorial ambiguity and of an MT2 cut; (iv) the true asymmetry, with inclusion

of centrality cuts on pT and |η|; (v) the MAOS asymmetry as in item iii, and including

the centrality cuts. The most significant comparisons are between cases (i) and (iii), and

between cases (iv) and (v).
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Figure 14. Comparison between the true (cf. figure 11) and the MAOS-reconstructed (cf. right

panel of figure 13) spin-correlation distributions, but for the inclusion of a pT and an |η| cut. In

the true distribution (left panel) we also include an MT2 cut for consistency with the analysis of

the MAOS-reconstruced distribution (right panel).

helicity basis pp gg qq̄

Atrue
`` (figure 11) −0.087 −0.12 0.11

Amaos
`` (figure 12, left) −0.055 −0.075 0.060

Amaos
`` (figure 13, right) −0.15 −0.16 −0.003

Atrue
`` (figure 14, left) −0.11 −0.13 0.080

Amaos
`` (figure 14, right) −0.11 −0.13 0.009

Table 2. Numerical comparison of the MAOS-reconstructed vs. the truth-level spin-correlation

asymmetry A`` as defined in eq. (4.4) and calculated in the helicity basis. The considered cases

(table rows) are labelled by the corresponding figure. The initial states (table columns) are pp at

14 TeV, or its gg or qq̄ subprocesses.

4.2 MAOS-reconstructed spin correlations in a boost-dependent basis

As discussed at the beginning of section 4, unlike the case of qq̄ → tt̄ one cannot define

an optimal basis to calculate tt̄ spin correlations in the case of gg → tt̄ [69, 77], because

the optimal basis is different for like- or unlike-helicity gg, and both helicity components

are present for gg colliding via pp pairs. In practice though, the relative weights of the

different helicity components change with the collision energy, and one may define a
√
s-

dependent spin-quantization basis according to the helicity component that is dominant at

that
√
s. A numerical approach to this possibility was presented in [77], and an analytic

solution in [69]. This paper identifies the relation βγ sin θ = 123 as the kinematic condition

23With β the t boost and θ its production angle with respect to the beam axis, in the rest frame of the

colliding partons.
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hybrid basis pp gg qq̄

Atrue
`` (figure 11) −0.072 −0.11 0.13

Amaos
`` (figure 12, left) −0.047 −0.067 0.073

Amaos
`` (figure 13, right) −0.13 −0.15 0.030

Atrue
`` (figure 14, left) −0.078 −0.11 0.13

Amaos
`` (figure 14, right) −0.095 −0.11 0.052

Table 3. Same as table 2, but for the use of the hybrid basis (see text) in place of the helicity basis.

separating the region where like-helicity gg dominate (βγ sin θ � 1) from the one where

unlike-helicity gg do (βγ sin θ � 1). Then, in the first (second) region one can define a β-

and θ-dependent spin-quantization axis that maximizes the t↑t̄↑+t↓t̄↓ (t↑t̄↓+t↓t̄↑) fractions.

We henceforth refer to this axis as ψlike (ψunlike), in the notation of eq. (4.3). As a practical

approximation to this basis, ref. [69] suggests to use the helicity (off-diagonal) basis in the

βγ sin θ < 1 (> 1) region. This suggestion can be understood by noting that the region

βγ sin θ � 1 (� 1) can be identified with the near-threshold (ultra-relativistic) regime,

and by recalling that, at the LHC, the helicity basis performs well near threshold, while

the off-diagonal basis does so in the ultra-relativistic regime (cf. beginning of section 4).

We have repeated the helicity-basis study of section 4.1 in the basis suggestion of

ref. [69]. We will henceforth refer to this choice as the ‘hybrid’ basis. Our results for A``
in this basis are collected in table 3. By comparing this table with table 2 one immedi-

ately notes that the hybrid basis indeed improves the qq̄ component of our spin-correlation

asymmetries, but it slightly worsens the gg component, which is however the dominant

one in pp collisions. As a consequence, we find the helicity basis [49] to performs globally

better than the hybrid basis.

A few comments on these findings are in order. First, we note explicitly that, by con-

struction, the hybrid basis coincides with the helicity basis for βγ sin θ < 1, including the

near-threshold region. By looking at the pp → tt̄ production cross section at 14 TeV, one

easily realizes that the overwhelming majority of tt̄ pairs is produced in this region. From

this argument alone, it is clear that any difference between the helicity and the hybrid basis

will affect only the tail of the 14 TeV tt̄ distribution. A second observation concerns the

βγ sin θ > 1 region, where the hybrid basis becomes the off-diagonal one. In fact, it is worth

remarking that, for βγ sin θ > 1 the off-diagonal basis tends analytically to the optimal

basis, indicated above by ψunlike, only for cos θ → 0 [69]. Away from this limit, deviations

between the two bases occur, and it is not obvious how these deviations affect a given ob-

servable. In this respect, it should be noted that, while for βγ sin θ < 1 like-helicity gg pairs

clearly dominate the cross section (gglike : ggunlike = 55% : 20%), for βγ sin θ > 1 unlike-

helicity gg pairs dominate the cross section only slightly (ggunlike : gglike = 15% : 10%) [69].

Our finding that the helicity basis performs somewhat better than the hybrid one for

the spin-correlation asymmetry (4.4) is specific to SM pp → tt̄ production at 14 TeV. At

higher collision energies and in presence of new physics, the hybrid basis may be substan-
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tially more advantageous for tt̄ spin-correlation studies. We leave this topic outside the

scope of the present work.

5 Conclusions

A known challenge in pair-production of two particles each decaying semi-invisibly is the

reconstruction of the full event kinematics. This reconstruction would on the other hand be

very useful: for instance, it would be instrumental to testing differential distributions with

respect to suitable final-state momenta. These distributions would in turn allow to deter-

mine the spin fractions with which the decaying particles are produced, thereby dissecting

their production mechanism.

In this paper we have explored this general idea in the benchmark case of tt̄ production

followed by a leptonic decay of both W bosons — in this case the two invisible particles are

the two neutrinos. We have studied the possibility of reconstructing the full t and t̄ boosts

using the invisible momenta that correspond to the MT2 minimum — in the literature

known as MAOS invisible momenta.

The relevant question is whether the thus reconstructed t and t̄ momenta are faithful

enough to the true momenta. ‘Enough’ depends in general on the class of observables

considered. We test the MAOS-reconstructed t and t̄ momenta against observables sensitive

to top polarization and tt̄ spin correlations, most notably angular distributions of the

daughter charged leptons. We find that the MAOS-reconstructed distributions and the

corresponding asymmetries are always very close to the truth-level ones, and that the

method’s performance can be systematically improved by only an MT2 cut.

The discussion in this work is confined to tt̄ production from pp collisions at 14 TeV.

Nonetheless, the main line of argument is clearly applicable to any decay process where

one can define and calculate MT2, e.g. pair production of new states, each one decaying to

visibles plus an escaping24 particle.

In this application, the method would open the possibility of measuring the spin frac-

tions of the produced new states, arguably one of the most direct ways to probe the details

of the production mechanism. Not committing here to any specific model beyond the SM,

we leave this direction to future work.
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