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1 Introduction

QCD in the Veneziano limit [1],

Nc →∞, Nf →∞,
Nf

Nc
= xf fixed, λ = g2

YMNc fixed, (1.1)

is expected to display a host of interesting and mostly non-perturbative phenomena,

including:

• The “conformal window” with a nontrivial infrared (IR) fixed point, which extends

from xf = 11
2 to smaller values of xf . The region xf → 11

2 has an IR fixed point

while the theory is still weakly coupled, as was analyzed in [2] (see also [3, 4]).

• It is expected that at a critical xf = xc, the conformal window will end, and for

xf < xc, the theory will exhibit chiral symmetry breaking in the IR. This behavior

is expected to persist down to xf = 0. For xf > xc the IR theory is a conformal field

theory at strong coupling, that progressively becomes weak as xf → 11
2 .

• Near and below xc, there is the transition region to conventional QCD IR behavior.

In this region the theory is expected to be “walking”: This means that the theory

appears to be approaching the IR fixed point as the coupling evolves very slowly for

many e-foldings of energies. But chiral symmetry breaking is nevertheless triggered

and in the deep infrared the coupling diverges as in QCD. The slow evolution of the

coupling has been correlated with a nontrivial dimension for the quark mass operator

near two, rather than three (the free field value). IR observables are expected to obey

the Miransky scaling [5–7] as xf → xc from below.

• New phenomena are expected to appear at finite density driven by strong coupling

and the presence of quarks. These include color superconductivity [8, 9]. In this case,

however, gauge invariant vevs are effectively double trace operators and the phase

structure is determined at the next to leading order in 1/Nc.

– 1 –
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The existence of the “walking” region makes the theory extremely interesting for appli-

cations in dynamical electroweak symmetry breaking (technicolor). This has also motivated

an intensive lattice Monte Carlo work during recent years [10–14]. The bulk of this work

has been done at zero temperature; recently there appeared the first attempts to go to

finite T for QCD with Nc = 3, Nf up to 8 [14–16] and for non-QCD-like theories [17].

Chiral effective theories have also been applied [18–25].

The aim of the present work is to study a class of holographic bottom-up models (V-

QCD) that belong to the universality class of QCD with massless quarks in the Veneziano

limit [26] at finite temperature and zero chemical potential. We will calculate the tem-

perature dependence of the free energy density (= −pressure = −p(T )) and of the quark

condensate (〈q̄q〉(T )). The former acts as an effective order parameter for deconfinement

(at large Nc), for which there is no true order parameter associated with a symmetry.1

The quark condensate is a true order parameter for chiral symmetry if quarks are massless.

The calculation is carried out for the full range of xf , 0 < xf < 11/2.

Discontinuities or rapid variations in pressure (or energy density) and quark condensate

can be used to define phase boundaries associated with deconfinement and chiral symmetry

restoration temperatures Td(xf ) and Tχ(xf ). We will use the usual nomenclature: If the

nth derivative of p(T ) is discontinuous, the transition is of nth order. We also consider

continuous crossovers which are identified by using the scaled quantity (ε − 3p)/T 4. Its

maximum defines the crossover temperature Tcrossover(xf ). The phase diagram is defined

as a plot of all phase boundaries on the (xf , T ) plane. The phase diagrams we present will

also contain a rich structure of metastable states, namely local (but globally subleading)

minima of the free energy.

In the holographic approach the thermal transitions will be transitions between various

5-dimensional black hole and “thermal gas” metrics and the nomenclature of transitions,

explained later in great detail, will be correspondingly different. The holographic approach

is constrained but not fully constrained and we cannot give a precise prediction of the

phase diagram of hot V-QCD. We can state the most plausible behavior but we can also

mention a few other alternatives. We will always find the analogues of Td and Tχ, but we

will also find transitions with no obvious QCD interpretation. Whether these reflect real

physics of hot QCD in the Veneziano limit or whether they are artifacts of the holographic

approach will be an interesting problem for further study.

The usual expectation is that there is a 1st order line at Td = Tχ; in the large Nc

limit one can actually prove that Tχ ≥ Td [18, 19]. The main class of our predictions

reflect these properties: for smaller xf we find that deconfinement and chiral symmetry

restoration coincide, but for xf approaching xc the deconfining and chiral transitions can

become separate so that Tχ > Td (see, for example, figure 13 below). The chiral transition

is then of 2nd order (and mean field type). Furthermore, for smaller xf the separate 2nd

order chiral transition is in the metastable region so that it can be reached if the system

is supercooled [27]. One might here add that Tχ < Td for stable phases may be reached at

large chemical potential [28, 29].

1A related one, used commonly in lattice work, is the expectation value of the Polyakov loop.

– 2 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
3

The starting point of our finite temperature analysis is the T = 0 holographic model

introduced in [26], based on previous theoretical ideas in [30–40]. Moving to finite T implies

studying black hole solutions of the action in [26]. A defining characteristic of this class

of models is that they contain full backreaction between the duals of the color and flavor

degrees of freedom. Earlier work [41–48] on thermodynamics in such bottom-up models

imposed quasiconformality directly on the beta function of the theory. One should note

that walking behavior and the related “conformal transition” at xf = xc have also been

studied in top-down models [49–54], as well as in simpler bottom-up models [55–60] which

do not attempt to model the backreaction. See also [40, 61] on introducing backreacted

flavor in the top-down models.

In this introduction we will first describe the special properties of V-QCD from [26]

and then discuss general properties of its black hole solutions. Section 2 will contain a

detailed discussion of the action of the model and of the two characteristic classes of scalar

potentials. Section 3 presents the Einstein equations of the model, describes how they are

numerically solved and, finally, how thermodynamics is computed from the numerical bulk

fields. A particularly delicate issue here is the fixing of the quark mass m to zero. We also

briefly comment on fixing m to some nonzero value. An extensive list of numerical results

is given in section 4. From these, the types of phase transition lines the models predict

are determined. In section 5, techniques for computing the condensate are described and

several numerical results are given. One should note that this, as well as many other

numerical issues in the model, are technically very demanding. Finally, section 6 contains

a discussion of what are the effects of making the quark mass nonzero. Several detailed

considerations are collected in appendices.

1.1 V-QCD at zero temperature

In [26] a class of bottom-up holographic models was introduced (named V-QCD) and

shown to be in the universality class of QCD in the Veneziano limit at zero temperature

and density. These were 5-dimensional models of two scalars coupled to gravity. One of

the scalars, the “dilaton” λ, is dual to Tr[F 2] (the QCD gauge coupling constant, or more

precisely the ’t Hooft coupling). The other scalar, the “tachyon” τ , is dual to the quark

mass operator q̄q. The potentials and interactions were modeled along successful bottom-

up models for YM, namely Improved Holographic QCD (IHQCD) [30–36] and the idea that

string theory tachyon condensation describes chiral symmetry breaking [37–39, 62–65].

The bulk action considered was

S = Sg + Sf , Sg = M3N2
c

∫
d5x
√
−g
[
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

]
, (1.2)

with λ the ’t Hooft coupling (exponential of the dilaton φ) and the tachyon2 action3

Sf = −xfM3N2
c

∫
d5x Vf (λ, τ)

√
det(gµν + κ(λ)∂µτ∂ντ). (1.3)

2We have taken the tachyon to be real and diagonal in flavor space.
3To find the vacuum (saddle point) solution we have set the gauge fields AL,Rµ dual to the QCD currents

to zero, as they are not expected to have vacuum expectation values at zero density. We have also suppressed

the Wess-Zumino terms as they also do not contribute to the vacuum solution.

– 3 –
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The pure glue potential Vg has been determined from previous studies [33–35]. The

tachyon potential Vf (λ, τ) must satisfy some basic properties determined by the dual theory

or by general properties of tachyons in string theory: (a) To provide the proper dimension

for the dual operator near the boundary (b) To exponentially vanish for τ → ∞. The

function κ(λ) captures, among other things, the transformation from the string frame to

the Einstein frame in five dimensions. The class of potentials that were investigated in [26]

are of the form

Vf (λ, τ) = V0f (λ)e−a(λ)τ2 . (1.4)

In the Veneziano limit, the back-reaction of the flavor sector on the glue sector is

fully included.

As with IHQCD, it was arranged that the theory is asymptotically AdS in the UV up

to logarithmic corrections in the bulk coordinate. The function V0f (λ) is such that the

potential Vg(λ)−xfV0f (λ), when the tachyon has not condensed (τ = 0) has an extremum
4 at a finite value λ = λ∗. As we approach the Banks-Zaks region [2], xf → 11

2 , the value of

λ∗ approaches zero. Without the tachyon, τ = 0, the equations of motion imply that also

β(λ∗) = 0, i.e., λ∗ is an IR fixed point. When the dynamics of τ is included, the system

approaches λ∗ but is driven away from it as long as xf < xc (see figure7 of [26]).

The dimension of the chiral condensate was calculated in the IR fixed point theory from

the bulk equations. It was found that it decreases monotonically with xf for reasonably

chosen potentials. It crossed the value 2 at xf = xc where xc corresponds to the end of the

conformal window as argued in [66].

The lower edge of the conformal window xc lies in the vicinity of 4. Requiring the

holographic β-functions to match with QCD in the UV, we find that

3.7 . xc . 4.2, (1.5)

where the bounds are not strict but hold approximately for potentials that have smooth

λ-dependence in the UV.

There is also a phenomenological heuristic argument for the value xc ≈ 4, simply from

counting degrees of freedom. At low T chiral symmetry is broken and the massless degrees

of freedom are N2
f Goldstone bosons. At large T there are 2N2

c + 7
2 NcNf weakly coupled

degrees of freedom. These numbers are equal for xf = 4. Conformal window and the

location of its edge was also discussed within holographic frameworks related to V-QCD

in [45, 67–69].

Apart from xf , there is a single parameter in the theory, namely m
ΛQCD

where m is the

UV value of the (flavor independent) quark mass. For each value of xf , the bulk equations

were solved with fixed sources corresponding to fixed m,ΛQCD. The vevs were determined

such that the solution is “regular” in the IR. The notion of regularity is tricky even in the

case of IHQCD (pure glue), as there is a naked singularity in the far IR. For the dilaton

this has been settled in [30–35]. For the tachyon the notion of regularity is different and

has been studied in detail in [38, 39].

4The extremum may exist for all 0 < xf <
11
2

or may disappear at some small xf . No changes in the

phase structure at zero temperature for these two cases were found in [26].

– 4 –
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The regularity condition was implemented in the IR. After solving the equations from

the IR to the UV (this was done mostly numerically), there is a single parameter that

determines the solutions as well as the UV coupling constants and vevs, and this is a real

number τ0 controlling the value of the tachyon in the IR. This number reflects the single

dimensionless parameter m
ΛQCD

of the theory.

For different values of xf and m the following qualitatively different regions were

found in [26]:

• When xc ≤ xf < 11/2 and m = 0, the theory flows to an IR fixed point. The IR

conformal field theory is weakly coupled near xf = 11
2 and strongly coupled in the

vicinity of xc. Chiral symmetry is unbroken in this regime (this is known as the

conformal window).

• When xc ≤ xf < 11/2 and m 6= 0, the tachyon has a nontrivial profile, and there is

a single solution with the given source, which is “regular” in the IR. The IR theory

is a theory with a mass gap.

• When 0 < xf < xc and m = 0, there is an infinite number of regular solutions with

nontrivial tachyon profile, and a special solution with an identically vanishing tachyon

and a nontrivial IR fixed point. The infinite number of solutions with nontrivial

tachyon are classified by their number of zeros. The solution with the lowest free

energy is the one with no zeros.

• When 0 < xf < xc and m 6= 0, the theory has vacua with nontrivial profile for the

tachyon. For every non-zero m, there is a finite number of regular solutions that

grows as m approaches zero.

In [26] two large classes of tachyon potentials were identified. Potentials in class I,

have a(λ) constant in (1.4). In this case the tachyon diverges exponentially in the IR for

the regular solution

τ ∼
r→∞

τ0 exp [Cr] , (1.6)

where C is a known constant (see appendix B) and τ0 is the only integration constant

controlling the solution. It determines the source (mass) in the UV. Potentials in class II,

have a(λ) ∼ λ
2
3 as λ→∞, and a tachyon that diverges in a milder way in the IR as

τ ∼
r→∞

C
√
r − r1, (1.7)

where again C is known and r1 is the single integration constant controlling the regular solu-

tion. The qualitative conclusions above and below were valid for both classes of potentials.

In the region xf < xc where several solutions exist, there is a interesting relation

between the IR value τ0 controlling the regular solutions, and the UV parameters, namely

m. This is determined numerically, and a relevant plot describing the relation between m

and τ0 at fixed xf is in figure 1.

The solutions are characterized by the number of times n the tachyon field changes

sign as it evolves from the UV to the IR. For all values of m there is a single solution with

– 5 –
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no tachyon zeroes. In addition, for each positive n there are two solutions5 which exist

within a finite range 0 < m < mn, where the limiting value mn decreases with increasing

n, and one solution for m = 0. In particular, for large enough fixed m, we find that only

the solution without tachyon zeroes exists.

For m 6= 0, out of all regular solutions, the “first” one without tachyon zeroes has

the smallest free energy. The same is true for m = 0, namely the solution with nontrivial

tachyon without zeroes is energetically favored over the solutions with positive n as well

as over the special solution with identically vanishing tachyon, which appears only for

m = 0 and would leave chiral symmetry unbroken. Therefore, chiral symmetry is broken

for xf < xc.

In the region just below xc, [26] found Miransky scaling for the chiral condensate.

As xf → xc,

σ = 〈q̄q〉 ∼ Λ3
QCD exp

(
− 2K̂
√
xc − xf

)
. (1.8)

For x ≥ xc, let mIR(x) be the mass of the tachyon at the IR fixed point and `IR(x) the IR

AdS radius. The coefficient K̂ is then fixed as

K̂ =
π√

d
dx

[
m2

IR`
2
IR

]
x=xc

. (1.9)

The behavior at and below the conformal transition at xf = xc is to a large extent

independent of the details of the model. In particular, no information on the nonlinear

terms in the tachyon EoM is needed or how the IR boundary conditions are fixed. In the

same region, “walking” of gauge coupling is realized. The YM coupling flows from small

values to values very near λ∗, remains approximately constant for many e-foldings of energy

(in this regime the tachyon remains small), and then runs off to infinity, driven by a large

value of the tachyon field in the IR. The walking is related to a long section of the solution

which is similar to the one studied in earlier bottom-up models for walking [55–59].

The finite temperature analysis of V-QCD amounts to studying all black hole solu-

tions with appropriate boundary conditions. To start with, any zero temperature solution

becomes a candidate saddle point at finite temperature by compactifying time on a cir-

cle of radius β. Any other competing black hole solution must have the same boundary

conditions as well as a regular horizon in the IR.

As the dilaton always has a nontrivial UV source, it will always have a nontrivial

profile in the black-hole solutions. With the tachyon, things can be different. In the

massless case, its source is zero. Therefore there are two possible options (as in the zero

temperature configurations discussed above): either it is identically zero (if the vev 〈q̄q〉 is

also zero) or it is non-zero (implying a non-zero vev).

Therefore we have two large classes of black holes in the massless case: those with

τ = 0 and those with τ 6= 0. We will first consider the tachyon-free class.

5As m and −m are related by a chiral rotation by π, we can take m ≥ 0.

– 6 –
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1.2 Black holes without tachyon hair

If τ = 0, we have black holes in a single scalar theory, with potential V (λ) = Vg(λ) −
xfV0f (λ) from (1.4). This is a potential with an extremum for xf 6= 06 and no extremum

when xf = 0.

Black hole solutions for such potentials were discussed in generality in [33–35]. After

fixing all invariances, they are characterised by a single IR constant, λh, the value of

the dilaton at the horizon. The plot relating the temperature T to λh contains important

information about the thermodynamics of such black holes. Small values of λh denote large

black-holes whereas larger values of λh correspond to smaller black holes (smaller horizon

size and entropy). In all plots of this paper, dilatonic black holes without tachyon hair are

denoted by red lines in the respective (λh, T )-diagrams, and we shall call the corresponding

function Tu(λh).

When xf = 0, λ can become arbitrarily large at zero temperature, implying that λh
can also be arbitrarily large for the finite temperature configurations. At finite temperature

there are two branches: large black holes which are stable and small black holes which are

unstable. If T ′u(λh) < 0 the black-hole thermodynamics is stable, otherwise it is unstable.

There is a minimum temperature above which such black holes exist as shown, for example,

by the black line in figure 22 (left or right).

When xf > 0, we have two possibilities. The first is that the potential Veff(λ) =

Vg(λ)−xfV0f (λ) has an extremum at λ→ λ∗(x) for all 0 < xf <
11
2 , with λ∗

(
xf → 11

2

)
→ 0

and λ∗(xf → 0) → ∞. The second is that such extremum only exists for x > x∗, where

x∗ < xc. We shall denote these potentials with a star subscript.

At finite temperature, and when the potential Veff has no extremum, the black hole

without the tachyon hair exists for all positive λh. For the potentials studied here, function

Tu(λh) is qualitatively similar to the YM case (xf → 0) [33–35]. As shown in figure 17

(top-left) and in figure 19 (left), there are two black hole branches, which exist above

some minimum temperature. The branch at low λh is thermodynamically stable, while the

large-λh branch is unstable.

When the extremum is present, 0 < λh < λ∗(x). The temperature of the black-hole

corresponding to λh = λ∗(x) is T = 0, while that of λh → 0 has T → ∞. There is no

minimum temperature here. For any temperature there is always at least one black-hole

solution. There are several possibilities that are shown as red lines in figures 7 (left), 9

(top), 10 (left) and 12 (left).

When xf is large, but still smaller than xc, the T = Tu(λh) relation is one-to-one but

contains a bump (a change of concavity) like in figure 9 (top). Then this is accompanied

by a crossover behavior, signaled by a bump in the trace of the stress tensor (ε− 3p)/T 4,

(aka interaction measure) as shown in figure 9 (bottom-right).

At low enough xf , the relation T = Tu(λh) is not always one-to-one, as can be seen in

figure 10 (left) or in figure 22. Then there are points where T ′u(λh) = 0. In such a case there

can be a first order transition between the stable branches of the black hole solutions. This

is a remnant of the deconfining transition at xf = 0 (pure YM). In figure 22 both left and

6The extremum may also exist only for xf above some fixed x∗, see the discussion further below.
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Τ0

m

Figure 1. Plot of the UV Mass parameter m, as a function of the IR scale τ0 in (1.6), for xf < xc.

The vertical solid blue line marks the end-point of the existence of regular solutions. The dashed

red line indicates the appearance of more than one regular solution with the same value of m.

right several curves in the (T, λh)-plane for different xf indicate the successive structure of

dilaton black holes (red lines). The black line corresponds to the pure YM (xf = 0) limit.

When x > xc we are in the conformal window. The only black holes that exist here are

those without tachyon hair. The relation T = Tu(λh) is monotonic and there is a continuous

transition to the black-hole phase at T = 0+, as in the AdS case in the Poincaré patch. The

thermodynamic functions, especially the interaction measure, show a crossover maximum

at a temperature that is moving towards the UV as xf → 11
2 .

1.3 Black holes with tachyon hair and zero quark mass

When τ 6= 0 we have black holes in the two scalar theory. The tachyon starts as ∼ r3

near the UV boundary as the source (quark mass) vanishes. In all plots of this paper,

such black holes (with both dilaton and tachyon hair) are denoted by blue lines in the

respective (λh, T )-diagrams, and we shall denote the corresponding functions by Tb(λh).

They are still one parameter solutions and can be parametrized again by the value λh of λ

at the horizon, which translates into the temperature. These black holes usually exist for

all xf ∈ ]0, xc[ and our discussion below focuses in this region.

Because the presence of the nontrivial tachyon perturbs and annuls the possible non-

trivial IR fixed point, for such black-holes, λh can take arbitrarily large values. This can

be seen from the blue lines in figures 7 (left), 9 (top), 10 (left) and 12 (left). For all such

black holes, the chiral condensate is determined by the regularity of the black hole solution.

It decreases as λh decreases, and at some point it vanishes. At this point, the blue line

in the (λh, T )-diagram merges with the red line corresponding to a λh that we call λend

throughout the paper. This can be seen in all the figures mentioned above.

The shape of the blue line can vary as a function of xf and the type of potential. There

are three typical examples of shapes:

• Simple lines that are monotonic as the one depicted in figure 12 (left). This is an

example of a monotonic blue branch where all such black-holes are thermodynamically

unstable. Moreover, they have a minimum temperature. In such a case, they can

never be thermodynamically dominant. At some temperature the vacuum thermal

– 8 –
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solution is dominated by a dilaton black hole on the red line, and the chiral restoration

transition is 1st order.

• Lines with two branches as the one depicted in figure 10 (left). Here the blue line has

two parts one (to the left) that is thermodynamically stable and another to the right

that is thermodynamically unstable. In such a case, the system is in the thermal

vacuum solution at low enough temperatures, then jumps with a 1st order transition

to the tachyon-hairy solution (the part of the blue line that is thick in figure 10 (left))

which still break chiral symmetry, and then eventually smoothly transits to the red

line at the point where the blue and red lines merge, via a chirally-restoring 2nd

order transition.7

• Lines with more than two branches as the one depicted in figure 11 (left). In this

example the blue line has four branches, two unstable and two stable. There are

in total three phase transitions here, first from the vacuum thermal solution to the

rightmost blue thick branch, then to the intermediate thick blue branch and finally a

2nd order chirally restoring transition to the red branch at the point they touch. In

this case there are two 1st order transitions between three chirally breaking phases,

and a 2nd order one to the chirally symmetric phase.

A concrete overall view of the xf dependence is presented in figure 2, in which T (λh)

is plotted for potentials of type II with SB normalisation (definitions specified later) for

various xf . One sees clearly how the pure (black) YM curve is approached for xf → 0.

The thick curves represent stable phases; when a thick curve ends, the system makes a 1st

order transition to the low T phase. When thick curves change from red to blue curves, a

2nd order transition to a chirally broken phase takes place. For a more accurate picture of

small xf , see figure 22.

1.4 The phase structure of different V-QCD models

There are three main ingredients that characterize a priori different QCD models which,

however, have the same phase structure and qualitative behavior at zero temperature:

• The asymptotics of the tachyon solution in the IR. This is controlled by the behavior

of the function a(λ) in the tachyon potential in (1.4). When a(λ) is constant, the

tachyon diverges exponentially in the IR, and we call such potentials of type I. When

a(λ) diverges as λ
2
3 in the IR (λ large) then the tachyon diverges as a square root in

the IR, and we call such potentials of type II.

• For any potential, the UV constant factor W0 of V0f (λ) in (1.4), defined in (2.13)

can vary in finite range, which in appropriate units is ]0, 24
11 ], as in (2.21). We pick

for each type of potential three indicative values of L2
0W0 that in general might

7It may also happen that the thermodynamically stable branch is only metastable, in which case the

system jumps directly to the black hole branch without tachyon hair, and chiral symmetry is thus restored

at this 1st order transition. The more complicated branch structure discussed in the next bullet may

similarly contain metastable branches.
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x f = 0.05
x f = 0.5

x f = 2

x f = 2.75

x f = 3.3

0.1 1 10 100 1000
Λh

0.01

0.1

1

10

T�L

Figure 2. T (λh)/Λ plotted for potentials of type II with SB normalisation (definitions specified

in text) for various xf marked on figure. Thick curves represent stable phases. For more details at

small xf , see figure 22.

give different physics, namely 0, 12
11 , and 24

11 .8 We also consider xf -dependent value,

specified in (2.23) that corresponds to the normalization of the UV degrees of freedom

of the free energy to the Stefan-Boltzmann limit of QCD.

• A final variation can be obtained on all of the above by using a glue potential Vg(λ)−
xfV0f (λ) in (1.4) that has

(a) an extremum for all xf in the appropriate range, xf ∈]0, 11
2 [.

(b) an extremum only in part of this range, x∗ < xf < 11
2 . We will denote the

potentials in this case by a star subscript.

According to the above options PotI∗(W0 = 0) denotes a potential in the type I class,

with W0 = 0 and an IR critical point that exists only down to a finite x∗.

Let us then summarize the phase structure of the model as xf and the temperature

are varied (at zero quark mass). In general one expects the phase diagram of figure 8, so

that for 0 < xf < xc there is the 1st order transition at finite temperature, which also

separates the chirally symmetric and broken phases. For xf > xc the low temperature and

high temperature configurations correspond to a tachyonless black holes, and, one expects

a continuous crossover between these two.

For the various potentials presented above, this phase diagram is indeed obtained in

the zeroth approximation, but for xf < xc there are additional details which depend on

the choice of potentials as follows.

• For potentials I the phase structure depends strongly on the choice for W0 (see

figure 18). For the lowest value W0 = 0, there is only one 1st order transition

8Notice that the exactly zero value of W0 is actually excluded, because it predicts wrong anomalous

dimensions for quark mass or the chiral condensate [26]. We anyhow consider it as the limiting case of the

allowed solutions. Moreover, W0 may exceed the upper limit of 24/11, if xf dependence is allowed.
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at9 T = Td for all 0 < xf < xc, except possibly for xf very close to xc, where

solving the phase diagram numerically becomes demanding. As W0 is increased, a

complicated structure appears near xf = xc, where we have two 1st order transitions

between chirally broken phases, and the restoration of chiral symmetry at a 2nd order

transition at even higher temperature. At even higher W0 the 1st order transitions

combine again into a single one, but the separate 2nd order transition continues to

exist for xf close to xc. At low xf , there is also a surprising change as W0 increases.

The chiral symmetry breaking phases disappear, but there is a 1st order transition

between two chirally symmetric black hole phases at a finite temperature instead.

• For potentials II the dependence on W0 is milder (see figures 13–16). At high W0, for

low xf up to some value xχ, there is only the 1st order transition at10 T = Td. When

xχ < xf < xc, the chiral symmetry restoration takes again place at a 2nd order

transition at Tχ such that Tχ > Td. For decreasing W0, xχ increases, and finally

disappears by joining with xc.

• For the potentials I∗, the phase structure is the standard one for high xf , i.e., a 2nd

order transition and a 1st order one with critical temperatures Tχ > Td within a range

xχ < xf < xc, with the former separating the chirally symmetric and broken phases

(see figure 19). For lower xf there is only one 1st order transition. For xf . 2, in the

region where the effective potential does not admit an extremum, chiral symmetry

is intact at all temperatures. We find a single 1st order transition between chirally

symmetric thermal gas and black hole phases.

• For potentials II∗, the phase structure is simple (see figure 17): there is a single 1st

order transition for all xf ∈]0, xc[. In particular, the system is in a chirally broken

phase at low temperatures, even in the region of low xf where the effective potential

does not have an extremum.

2 Defining V-QCD

2.1 Gravity action of the model

The action of V-QCD is [26]

S = M3N2
c

∫
d5xL ≡ 1

16πG5

∫
d5xL, (2.1)

where11

L =

[√
−g
(
R− 4

3

(∂λ)2

λ2
+ Vg(λ)

)
− Vf (λ, τ)

√
det (gab + κ(λ, τ)∂aτ ∂bτ)

]
=
√
−g
[
R+

[
−4

3
gµν∂µφ∂νφ+ Vg(λ)

]
− Vf (λ, τ)

√
1 + grrκ(λ(r))τ ′(r)2

]
. (2.2)

9Td = Th in figure 18.
10Tχ = Tend of figures 13–16 when it is in the stable brach.
11Notice that for notational simplicity we have absorbed a factor of xf , which is visible in eq. (1.3), into

Vf (λ, τ). See also eq. (2.10) below.
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The metric Ansatz is

ds2 = b2(r)

[
−f(r)dt2 + dx2 +

dr2

f(r)

]
, b(r) = eA(r) ∼

r→0

LUV

r
, (2.3)

and the two scalar functions, 1/λ sourcing F 2 and τ sourcing 〈q̄q〉, are

λ = λ(r) = eφ(r), τ = τ(r). (2.4)

In the second form
√
−g has been factored out of the DBI action. The Gibbons-Hawking

counter term would be

SGH = −
∫
d4x
√
−γ
[
2K +

6

LUV
+
LUV

2
R(γ)

]
, (2.5)

with, for a hypersurface r =const,

K =

√
f

2b

(
8
b′(r)

b
+
f ′(r)

f

)
. (2.6)

Notice also that we have set the gauge fields AL,R, which are dual to the left and right

handed fermion currents, to zero, and neglected the Wess-Zumino terms. These terms do

not affect the thermodynamics of the models.

The background solution of the dilaton λ(r) and the warp factor A(r) are identified

as the ’t Hooft coupling and the logarithm of the energy scale of the dual field theory,

respectively [30–32]. As a matter of convention, we shall fix the normalisation of λ(r) so

that its relation to the perturbative QCD coupling is

λ(r) =
g2(b(r))

8π2
. (2.7)

The results of the model are independent of this normalisation, changing λ → λ/λ0 one

simply has to change the potentials by V (λ) → V (λ0λ). The convention of [26], for

example, is obtained by shifting by λ0 = 1/(8π2).

Important ingredients of the model are the relation of the bulk fields at r to the QCD

beta and quark mass anomalous dimension functions evaluated for a coupling at scale b(r).

Motivated by the connection to field theory, one defines

β =
dλ

db/b
= λ′(A) = −b0λ2 − b1λ3 − b2λ4 . . . , γ = τ ′(A). (2.8)

Matching with the perturbative expansion of the QCD beta function gives

b0 =
1

3
(11− 2xf ), b1 =

1

6
(34− 13xf ). (2.9)

The action contains the gluonic potential Vg(λ) and the fermionic potential Vf (λ, τ),

which will be specified to the form

Vf (λ, τ) = xfVf0(λ)e−a(λ)τ2 . (2.10)

The detailed form of these and the functions κ(λ), a(λ) will be discussed in the follow-

ing subsections.
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2.2 Construction of the potentials

The potentials can be constructed in stages. First one fixes the potentials Vg(λ) and

Vf0(λ) up to order λ2 in the UV, using the two scheme independent coefficients of the

beta function. This analysis is simplified by the fact that the tachyon decouples in the

UV. Next one fixes the UV behavior of the functions a(λ) and κ(λ), which parametrize

the tachyon dependence of the action using the similarly scheme independent UV running

properties of the quark mass and the condensate. Finally, one fixes the large λ behavior

of the potentials by requiring that the model reproduces known features of QCD in the

IR, such as confinement, linear Regge trajectories, and reasonable zero-temperature phase

structure. We shall discuss the various steps in detail below (see also [26]).

2.2.1 The potentials from the beta function in the UV

In the UV, since the tachyon vanishes much faster than the dilaton, we can first set it to

zero. Then the dilaton profile can be linked to the effective potential Veff(λ) = Vg(λ) −
xfVf0(λ) [26] by using Einstein’s equations [30–32]. Defining β = dλ/d ln b = −b0λ2−b1λ3,

to order λ2,

Vg − xfV0f =
12

L2
UV

exp

[
−8

9

∫ λ

0
dλ

β

λ2

](
1− β2

9λ2

)
(2.11)

=
12

L2
UV

[
1 +

8

9
b0λ+

(
23

81
b20 +

4

9
b1

)
λ2

]
(2.12)

= V0 − xfW0 + (V1 − xfW1)λ+ (V2 − xfW2)λ2, (2.13)

where we expanded

Vg = V0 + V1λ+ V2λ
2 +O(λ3), Vf0 = W0 +W1λ+W2λ

2 +O(λ3), (2.14)

and where we have introduced an xf dependent AdS radius

LUV = L(xf ). (2.15)

Applying equation (2.12) for xf = 0 we have for the gluonic potential

Vg =
12

L2
0

(
1 +

8

9
bYM
0 λ+

23(bYM
0 )2 + 36bYM

1

81
λ2

)
(2.16)

=
12

L2
0

(
1 +

88

27
λ+

4619

729
λ2

)
, (2.17)

where bYM
i are the values of bi for xf = 0 and L0 = L(xf = 0). In practice, one usually

sets the (dimensionful) quantity L0 = 1.
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By using equations (2.12) and (2.13) one can now solve for the coefficients of the

fermionic potential:

xfL2
0W0 = 12

(
1− L

2
0

L2
UV

)
, (2.18)

xfL2
0W1 =

32

3

(
bYM
0 − b0

L2
0

L2
UV

)
=

12 · 8
27

[
11− (11− 2xf )

L2
0

L2
UV

]
, (2.19)

xfL2
0W2 =

12

81

[
23(bYM

0 )2 + 36bYM
1 − (23b20 + 36b1)

L2
0

L2
UV

]
(2.20)

=
12

729

[
4619− (4619− 1714xf + 92x2

f )
L2

0

L2
UV

]
.

These equations still involve one free parameter, which can be taken to be either W0 or

LUV. We shall study two ways to fix this parameter. First, we can take W0 to be constant.

In this case [26]

0 ≤ L2
0W0 ≤

24

11
, (2.21)

and the xf -dependent AdS radius is given by

LUV =
L0√

1− 1
12 L

2
0W0 · xf

. (2.22)

Second, we can make a special xf -dependent choice, which (as we shall show later) auto-

matically normalises the free energy at large T to Stefan-Boltzmann:

LUV = L0

(
1 +

7

4
xf

)1/3

. (2.23)

Further, we have to fix the λ dependence of the functions a(λ) and κ(λ) in the

tachyon part

xfVf0(λ)e−a(λ)τ2
√

1 + grrκ(λ(r))τ̇2, (2.24)

of the action, where grr = f/b2. The leading logarithmic term to the UV expansion of the

tachyon should be (remember that the energy dimension of τ is −1)

τ(r)/LUV = mr (− ln Λr)
− γ0
b0 = mr (− ln Λr)

− 3
2b0 (2.25)

to satisfy the scheme independent UV running of the quark mass. Here γ0 = 3/2 is the

leading coefficient of the anomalous dimension of the quark mass in QCD, γ(λ) = γ0λ+· · · .
By using the tachyon equation of motion one sees that this requires that for small λ,

κ(λ)

a(λ)
=

2

3
L2

UV

[
1−

(
8

9
b0 + 1

)
λ+ λ2 + · · ·

]
. (2.26)
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2.2.2 Large λ behavior of the potentials

To specify the full potential Vg(λ) − xfVf0(λ)e−a(λ)τ2 we have to continue the small λ

expansions to large λ. The guideline is quark confinement and chiral symmetry breaking

at small xf and the appearance of an infrared fixed point at some xf = xc (see [26]). Since

there is no unique path to the result, we present the final forms of the potentials we use

and motivate them.

We use the gluonic potential

Vg(λ) =
12

L2
0

[
1 +

88λ

27
+

4619λ2

729

√
1 + ln(1 + λ)

(1 + λ)2/3

]
(2.27)

which is constructed from the expansion (2.16) by simply multiplying the λ2 term by the

confinement factor √
1 + ln(1 + λ)

(1 + λ)2/3
. (2.28)

Then Vg has the proper large-λ behavior [30–32] but the small-λ behavior is left intact.

One could add scale factors of type λ/λ0 containing more parameters.

For the fermionic potential Vf0 in

Vf (λ, τ) = xfVf0(λ)e−a(λ)τ2 (2.29)

we consider two different choices. The first one is obtained directly using (2.18)–(2.20)

Vf0 =
12

L2
UVxf

[
L2

UV

L2
0

− 1 +
8

27

(
11
L2

UV

L2
0

− 11 + 2xf

)
λ (2.30)

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714xf − 92x2
f

)
λ2

]
.

Here one could as well use the parameter W0 which is related to LUV by

L2
0

L2
UV

= 1−
xfL2

0W0

12
. (2.31)

For this choice the effective potential

Veff(λ) = Vg(λ)− xfVf0(λ) (2.32)

has a single maximum at finite positive λ = λ∗ for all 0 < xf < 11/2, indicating a (possible)

infra-red fixed point.

The second choice is obtained introducing the confinement factor (2.28) also for the

fermionic potential, i.e.,

Vf0 =
12

L2
UVxf

[
L2

UV

L2
0

− 1 +
8

27

(
11
L2

UV

L2
0

− 11 + 2xf

)
λ (2.33)

+
1

729

(
4619

L2
UV

L2
0

− 4619 + 1714xf − 92x2
f

)
λ2

√
1 + ln(1 + λ)

(1 + λ)2/3

]
.
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Now the effective potential has a maximum only at large xf . To see this concretely, consider

again the case (2.23). The asymptotic large-λ behavior of Vg−xfVf0 now is λ4/3
√

lnλ times

the function
18476

243
− 4

4619(1 + 7
4 xf )2/3 − 4619 + 1714xf − 92x2

f

243(1 + 7
4 xf )2/3

. (2.34)

This function is positive for small xf , negative at large xf (< 11/2) and has a zero at

xf = 3.26817. Thus there is a (possible) fixed point λ∗ only for 3.26817 < xf < 11/2.

Let us then discuss the IR behavior of the potentials a and κ which appear in the

tachyon DBI action. For the function κ we will consider the large-λ asymptotics

κ(λ) ∼
λ→∞

λ−4/3 . (2.35)

This is motivated by the fact that in the action the combination κ(λ)/b2 has the same

asymptotics as 1/b2s at large λ, where bs = bλ2/3 is the metric factor b in the string frame.

To ensure that the fractional exponent limit at large λ does not spoil analyticity at small

λ, we replace λ4/3 by (1 + #λ)4/3 in the expression for κ(λ).

More precisely, two qualitatively different, acceptable choices for the IR asymptotics

of a (and κ) were identified in [26]. These are produced by the following two choices. The

first choice has

a(λ) =
3

2

1

L2
UV

, κ(λ) =
1

[1 + 3
4 (8

9 b0 + 1)λ]4/3
=

1(
1 +

115−16xf
36 λ

)4/3
, (2.36)

and leads to tachyon growing exponentially at large r,

τ(r) ∼
r→∞

τ0e
Cr (2.37)

where C is a known constant (see appendix B) and τ0 parametrises the solutions. The

second choice is given by

κ(λ) =
1

(1 + λ)4/3
, a(λ) = κ(λ)

3

2L2
UV

[
1 +

(
8

9
b0 + 1

)
λ+ λ2

]
(2.38)

and for them the leading divergence is

τ(r) ∼
r→∞

C
√
r − r1, (2.39)

where the constant C is again known and now r1 parametrises the solutions. To select

this solution, it is required that the last term in the square brackets in (2.38) grows faster

than λ4/3.

Finally, let us summarize our choices for acceptable potentials. We always keep Vg
fixed to the expression (2.27) and choose Vf0, a, and κ as follows:

• Potentials I : We take Vf0 as in equation (2.30), so that the fixed point λ∗ exists for

all 0 < xf < 11/2. For a and κ we use the choice of equations (2.36), which lead to

exponentially diverging tachyon in the IR.
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• Potentials II : We take again Vf0 from equation (2.30), but use the other choice (2.38)

for a and κ. Then the tachyon diverges as τ ∼
√
r in the IR.

• Potentials I∗: We use now the fermionic potential Vf0 of equation (2.33), which

contains the confinement factor. Thus the extremum exists only within the interval

3.26817 < xf < 11/2. For a and κ we use the choice of equations (2.36), which lead

to exponentially diverging tachyon in the IR.

• Potentials II∗: We use Vf0 with the confinement factor, but use the other choice (2.38)

for a and κ. Then the fixed point exist only for large xf , and the tachyon diverges

as τ ∼
√
r in the IR.

To fully pin down the potentials, we also need to specify the value of W0 (or LUV)

which is used. We choose four reference values:

• W0 = 0 (and constant). This is the lower bound of W0. Actually, exactly zero W0 is

not acceptable because the anomalous dimensions of the quark mass and the chiral

condensate do not sum up to zero. This case is nevertheless interesting as it is the

limit of acceptable solutions.

• W0 = 12/11. This is the standard choice studied in [26].

• W0 = 24/11. For constant W0, this is the largest possible value, for which LUV →∞
as xf → 11/2.

• W0 (and LUV) fixed such that the free energy automatically matches with the stan-

dard Stefan-Boltzmann result at high temperature with the correct number of degrees

of freedom (see eq. (2.23) and the discussion in section 3.4 below).

An ongoing work [70] studies the meson spectra in this model. As it turns out, the

potentials I and I∗ admit linear “Regge” trajectories, so that the quadratic masses are

asymptotically linear in the excitation number, m2
n ∼ n, independently of the other quan-

tum numbers. Potentials II and II∗, however, have linear trajectories only in the glueball

sector, while the other trajectories are quadratic, m2
n ∼ n2. As linear trajectories are

expected in QCD, this observation favors potentials I and I∗.

2.2.3 IR fixed point and the BF bound for the tachyon

Now that the potentials are defined, one can check that they satisfy an important require-

ment: they permit the determination of the bulk tachyon mass and, equating this with

the Breitenlohner-Freedman (BF) instability bound, the determination of the start of the

conformal window. Take τ(r) = 0 (there is no chiral symmetry breaking in the conformal

window) and note that at small λ, Vg(λ) − xfVf0(λ) > 0. However, Vf0(λ) grows faster

and the conformal window starts at the value λ∗ defined by the vanishing derivative

V ′g(λ∗)− xfV ′f0(λ∗) = 0. (2.40)
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PotI PotI∗ PotII PotII∗

W0 = 0 4.10209 4.33334 4.17825 4.38493

W0 = 12/11 3.99591 4.33334 4.07968 4.38493

W0 = 24/11 3.71607 4.33334 3.80086 4.38493

W0 SB 3.59172 4.33334 3.70008 4.38493

Table 1. The critical values xc for the various potentials. Notice that for the types I∗ and II∗, xc
is independent of W0.

Given λ∗ one defines an IR AdS radius

12

L2
IR

= Vg(λ∗)− xfVf0(λ∗), LUV > LIR. (2.41)

The tachyon mass at λ∗ in units of LIR becomes

−m2
IRL2

IR =
24a(λ∗)

κ(λ∗)[Vg(λ∗)− xfVf0(λ∗)]
. (2.42)

Gravity solutions with τ = 0 are stable when m2
IRL2

IR > −4; the conformal window thus

starts when (2.42), as a function of xf , has the value 4.

Eq. (2.42) can be evaluated for the two choices of a, κ above. For the choice (2.36)

(types I and I∗) the equation becomes

36[1 + 1
36 (115− 16xf )λ∗]

4/3

L2
UV[Vg(λ∗)− xfVf0(λ∗)]

= 4 . (2.43)

For the choice (2.38) (types II and II∗), the xc-equation (2.42) has the form

36[1 + 1
27 (115− 16xf )λ∗ + λ∗2]

L2
UV[Vg(λ∗)− xfVf0(λ∗)]

= 4 . (2.44)

The values of xc can then be calculated by inserting the potential Vg − xfVf0 and the

chosen value for W0 in these equations. The critical values for the potentials listed above

are given in table 1.

The xf -dependence of the tachyon mass for all the potential choices suggested above

is shown in figure 3. The critical value xc is the rightmost point where the curve intersects

the horizontal dashed line where the BF bound is saturated. For potentials I∗ and II∗ (solid

magenta curves) the fixed point only exists for x∗ < xf < 11/2 with x∗ ' 3.27. In this

case the tachyon mass diverges as x approaches x∗ from above.

From (2.43) and (2.44) one sees, using the asymptotics of the potentials (see eq. (4.3)

below), that −m2
IRL2

IR ∼ 1/
√

ln(1/xf ) for type I and −m2
IRL2

IR ∼ 1/xf for type II as

xf → 0. They thus behave completely differently in this limit, for type I the mass vanishes,

for type II it grows without bounds. In particular, for potentials I and for low xf the

(absolute value of the squared) tachyon mass dives below the BF bound. This means

that the existence of a solution with a nontrivial tachyon profile and zero quark mass is

– 18 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
3

1 2 3 4 5

x f

4

5

6

-mIR

2
{IR
2

1 2 3 4 5

x f

4

5

6

-mIR

2
{IR
2

Figure 3. The squared tachyon mass at the IR fixed point, see eqs.(2.43) and (2.44). Left :

potentials I; Right : potentials II. The blue curves give the masses for constant W0. The dashed,

solid and dotdashed curves have W0 = 0, 12/11, and 24/11, respectively. The dotted red curves

have W0 fixed according to the Stefan-Boltzmann normalization of the free energy in the UV.

The solid magenta (uppermost) curves are for potentials I∗ and II∗, for which the tachyon mass is

independent of W0. The black dotted horizontal line marks the BF bound.

not guaranteed [26], which means that chiral symmetry could remain intact even at low

temperatures. However, in most of the cases, such a solution anyhow exists all the way

down to xf = 0, and the expected picture with chiral symmetry breaking is obtained. We

shall discuss this issue in more detail below.

3 V-QCD at finite temperature: equations and their solution

The V-QCD action has two kinds of vacua at finite temperature, either with identically

vanishing tachyon or with nontrivial tachyon profile. The tachyonless black hole solutions

can be constructed in the same way as in the Yang-Mills case [33–35]. Below most of the

discussion will in principle assume the presence of the tachyon, but the construction for

the solutions without the tachyon can be obtained simply by setting τ = 0 everywhere.

3.1 Equations and numerical solution

The goal now is to find numerical solutions of the Einstein’s equations for the metric

functions b(r) = eA(r), f(r) and the scalars λ(r), τ(r), satisfying

f(rh) = 0, f(0) = 1, b(r) ∼
r→0

LUV

r
, (3.1)

where rh marks the location of the horizon.

Due to the singular behavior of the solutions near the UV boundary (r → 0), it proves

to be convenient to use A = ln b as a coordinate instead of r in the numerical solution.

Carrying out this transformation, one finds that the combination

q(A) = eA
dr

dA
= − 1

W
(3.2)

appears naturally. This is just a rewriting of the superpotential

W = − ḃ

b2
= −e−AdA

dr
. (3.3)
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The equations of motion then become

12− 6
q′

q
+

4

3

λ′2

λ2
+ 3

f ′

f
=
q2

f

(
Vg − Vf

√
1 + fκτ ′2/q2

)
, (3.4)

12− 4

3

λ′2

λ2
+ 3

f ′

f
=
q2

f

(
Vg −

Vf√
1 + fκτ ′2/q2

)
, (3.5)

4− q′

q
+
f ′′

f ′
= 0, (3.6)

τ ′′ +

(
4− q

′

q
+
f ′

f
+λ′

∂ lnκ

∂λ
+λ′

∂ lnVf
∂λ

)
τ ′ = −fκ

q2

(
4 +

f ′

2f
+
λ′

2

∂ lnκ

∂λ
+ λ′

∂ lnVf
∂λ

)
τ ′3

+
∂ lnVf
∂τ

τ ′2 +
q2

fκ

∂ lnVf
∂τ

, (3.7)

λ′′

λ
+
f ′

f

λ′

λ
+ 4

λ′

λ
− λ′2

λ2
− q′

q

λ′

λ
= −3

8

q2λ

f

(
∂Vg
∂λ
−
∂Vf
∂λ

√
1+

f

q2
κτ ′2 − f

2q2

Vf
dκ
dλτ
′2√

1+ f
q2
κτ ′2

)
.

(3.8)

Here the prime denotes differentiation with respect to A. Near the UV boundary r = 0,

A = ln b = ln
LUV

r
→ +∞. (3.9)

The range of A thus is Ah < A < +∞, where Ah is the horizon,

f(Ah) = 0. (3.10)

Numerical integration starts by solving q′, λ′, f ′′, τ ′′ from the four first ones in terms

of lower derivatives; the fifth equation, the equation for λ, will be used as a check and

constraint. For brevity we introduce two square root factors:

R1 =

√
1 +

fκ

q2
τ ′2, (3.11)

and

R2 =

√
12 +

3f ′

f
− q2

f

(
Vg −

Vf
R1

)
. (3.12)

The equations to be solved numerically then are

q′ = q

[
4 +

f ′

f
− q2

6f

(
2Vg − VfR1 −

Vf
R1

)]
, (3.13)

λ′ = −
√

3

2
λR2, (3.14)

f ′′ = f ′
[
f ′

f
− q2

6f

(
2Vg − VfR1 −

Vf
R1

)]
= f ′

(
q′

q
− 4

)
, (3.15)

τ ′′ = − q
2

6f

(
2Vg − VfR1 −

Vf
R1

)
τ ′ − fκ

q2

(
4 +

f ′

2f

)
τ ′3 (3.16)

+

√
3

2

(
τ ′ +

fκ

2q2
τ ′3
)
λ∂λκ

κ
R2 +

√
3

2

(
τ ′ +

fκ

q2
τ ′3
)
λ∂λVf
Vf

R2 +

(
q2

fκ
+ τ ′2

)
∂τVf
Vf

.
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In the λ equation the minus branch has to be chosen as λ(A) is a monotonically decreasing

function of A. The derivatives are with respect to A. The equations are autonomous in

the sense that there is no explicit A dependence. Numerical integration then proceeds

as follows:

1. Let us fix the horizon at A = Ah = −ε, where ε is a sufficiently small number,

e.g., ε = 10−6. the values of the functions at A = 0, which is taken as the ini-

tial value of numerical integration, are computed by using the expansions (B.19)–

(B.22) in appendix B. These numbers can now be obtained by inserting the values

of λh, τh, f
′
h. Among these the horizon values of the scalars, λh, τh, remain as pa-

rameters, f ′h can be given an arbitrary positive value, +1, say. One then finds a

solution q1(A), f1(A), λ1(A), τ1(A) valid from A = 0 to some large upper limit A+

by using NDSolve of Mathematica. The spatial coordinate r(A) can then, if needed,

be computed by similarly integrating the differential equation

r′(A) = e−Aq(A) (3.17)

with the initial condition r(A =∞) = 0.

2. The so obtained first-level solution f1(A) is scaled to one in the UV (A → ∞) by

writing f2(A) = f1(A)/f1(A+). Simultaneously q2(A) = q1(A)/
√
f1(A+), which is

needed since eq. (3.4) demands that q2/f be invariant. Finally, λ2 = λ1, τ2 = τ1.

3. The final scaling is performed to guarantee that all solutions use the same unit of

energy or, equivalently, have the same integration constant in the integral of the

definition (2.8) of the beta function. This implies

A− Â0 = ln(b)− Â0 =
1

b0λ(A)
+
b1
b22

ln(b0λ(A)) +

(
b2
b20
− b21
b30

)
λ(A) +O(λ2), (3.18)

where Â0 is the integration constant. By inserting the UV expansions of A and λ

from appendix A, we identify Â0 = ln(LUVΛ). We wish to scale Λ to one12, and

therefore define

A0 = Â0 − lnLUV = ln Λ , (3.19)

and shift solutions by A0. In practice, one implements this by determining, for a

given numerical solution (the O(λ2) term is optional),

A0 = lim
A→∞

[
A− lnLUV −

1

b0λ2(A)
− b1
b20

ln(b0λ2(A))−
(
b2
b20
− b21
b30

)
λ2(A)

]
(3.20)

and then performing the scaling

λ3(A) = λ2(A+A0) (3.21)

12After this, all quantities are expressed in units of Λ; omitting the factor LUV would give a unit of

energy depending on xf
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etc. for all the functions at level 2. The set q3(A), f3(A), λ3(A), τ3(A), parametrised

by the values of λh, τh, is the final numerical solution. Note that the horizon has

now been shifted to

Ah = −A0 − ε ≈ −A0; (3.22)

at level 2 it was defined by f2(−ε) = 0.

3.2 Physical quantities

The set of functions q(A), f(A), λ(A), τ(A) (leaving out the index 3) can now be converted

to various physical quantities:

The temperature is

T = − 1

4π
f ′(rh) = − eA

4πq(A)
f ′(Ah)|A0=Ah =

e−A0

−4πq(−A0)
f ′(−A0), (3.23)

and the value of b at the horizon is

bh = e−A0 . (3.24)

The quark mass mq is defined by the UV expansion of the tachyon:

τ(r) = LUVmq(− ln Λr)
− 9

22−4xf r (3.25)

so that, using the relation (3.18),

mq = lim
A→∞

L−1
UV τ(A) exp

[
1

b0λ(A)
+

(
b1
b20
− 9

22− 4xf

)
ln(b0λ(A))

]
. (3.26)

In practice, the extrapolation to A =∞ can be carried out by measuring m̃q(A), as defined

by the right hand side of eq. (3.26), at two large values of A and then linearly extrapolating

to λ = 0:

mq =
m̃q(A1)λ(A2)− m̃q(A2)λ(A1)

λ(A2)− λ(A1)
. (3.27)

Linear extrapolation is chosen, because the leading neglected terms in the expansion of

eq. (3.26) are (up to logarithmic corrections) linear in λ.

3.3 Fixing quark mass

The above is for fixed λh, τh. The really demanding task is to find the field configurations

at fixed mq. For this one needs the curves τh(λh,mq). The quark mass is determined by

the UV behavior of the tachyon: τ(r)/LUV ' mq(− ln r)−γ0/b0r. To fix mq at fixed λh we

have to solve the equations of motion at various τh and find that value of τh which leads

to the desired UV behavior of τ(r).
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Figure 4. Explicit bulk configurations. Left : UV large-A region. Right : near horizon region. For

this configuration T = 0.3839, bh = 0.7200, mq = 0.05422.

3.3.1 Zero quark mass

In particular, we are interested in mq = 0. This case splits in two parts: either τ(r) = 0

identically (chiral symmetry holds) or τ(r) nonzero (chiral symmetry broken).

If τ = 0, solutions with mq = 0 are obtained simply by setting τh = 0 above. The

solution is then controlled by the effective potential Vg(λ) − xfVf0(λ). For classes I and

II, this increases monotonically from λ = 0, but since Vf0 grows faster, the derivative

decreases and becomes finally zero at some λ = λ∗(xf ) (see eq. (2.40)). The extremum of

the potential marks the location of the IR fixed point, which is screened by the horizon

at finite temperature. Indeed, the tachyonless black holes have 0 < λh < λ∗, and for

λh very close to λ∗ we obtain configurations where the dilaton is approximately constant,

λ ' λh ' λ∗ for a long range of the coordinate before the horizon is reached in the deep IR.

For classes I∗ and II∗, the effective potential Vg(λ) − xfVf0(λ) does not have an ex-

tremum for xf below x∗ ' 3.27. In this case the fixed point is absent, and the tachyonless

black hole solutions are qualitatively similar to Yang-Mills (xf → 0) [30–32]. In particular

λh can take any value.

For non-zero τ(r), the discussion of mq = 0 configurations has to take into account the

existence of Efimov zeroes, oscillatory behavior when approaching r = 0, which was dis-

cussed above in the introduction. We discuss here the standard picture which is seen in most

cases for xf < xc. A rough description of more complicated cases is given in appendix C.

The situation is summarised in figure 5. For large τh > 0, τ(r) decreases monotonically

from τh towards r = 0 and ends with positive mq. We evaluate mq using (3.27) with two

large values of A (corresponding to a small UV cutoff ε in the r-coordinate). When τh is

decreased, ultimately an (approximate) mq = 0 configuration (τ0(r,mq = 0) in figure 5)

with monotonically decreasing τ(r) is obtained.

This defines the curve τh0(λh) in figure 6. One finds that these solutions are possible

only if λh is larger than a fixed positive value, which we call λend. Decreasing τh further,

τ(r) first develops a zero so that mq < 0. Continuing even further we find a second location

where mq = 0 vanishes. This is a configuration with one tachyon node (τ1(r,mq = 0) in

figure 5). The pattern continues with an ever increasing number of nodes, until one ends up
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Figure 5. Left : schematic presentation of the curves τh(λh,mq = 0), i.e., those values of the

horizon value τh of the tachyon which lead to configurations with mq = 0, at that particular λh.

Choosing τh on the curve τhi leads to a τ(r) without a linear term and with i zeros at some r. The

zero mass solutions with vanishing tachyon live on the line 0 < λh < λ∗. The plus and minus signs

indicate the sign of the quark mass in each region limited by the curves τh0, τh1,. . . Right : schematic

presentation of the r dependence of the bulk tachyon for low node numbers. Tachyon solutions for

top to bottom are: a generic solution with mq > 0 and no nodes (“0 node”), the standard solution

with zero quark mass (τ0), the solution with zero quark mass and one node (τ1), and a generic

solution with mq < 0 and one node (“1 node”). See the text for a more detailed explanation.

with the curve τhc(λh), below which a solution with the standard UV boundary does not

exist. Numerically, the curves τh0(λh) and τh1(λh) can be separated, but already τh2(λh)

would require so much effort that we have not embarked on computing it. As we approach

the conformal window, the curves τh0, τh1, . . . get closer and closer to τhc and finally vanish

for xf ≥ xc.
We expect that increasing the number of nodes increases the free energy so that to

study equilibrium states it is enough to compute τh0(λh,mq = 0). This was checked at

zero temperature in [26] numerically for potentials I, and analytically in the limit xf → xc
as well as in the limit of large number of tachyon nodes.

3.3.2 Nonzero quark mass

For nonzero quark mass the special solution with identically vanishing tachyon profile is

missing. However, there are solutions of various types for τh > 0, as suggested by figure 5.

We shall here restrict to the “standard” solutions which have monotonic tachyon, i.e., the

region above τh0 in figure 5 (left). Below this curve there can be Efimov type solutions

where the tachyon has nodes. As for mq = 0, we expect that these solutions have higher

free energies than the standard one. In the region of standard solutions, the dependence

of quark mass is smooth (see figure 6). We have found numerically that for fixed λh
the correspondence between mq and τh is one-to-one. Therefore mq can be kept fixed by

following a set of well-defined curves on the (λh, τh)-plane, some of which are sketched in

figure 6.

It is also interesting to notice how the mq = 0 solution is obtained from the ones

having finite quark masses as mq → 0. What happens for nonzero quark mass is shown in

figure 6 for a concrete computation. If 0 < λh < λend (and λh fixed), the curve τh(λh,mq)

– 24 –



J
H
E
P
0
1
(
2
0
1
3
)
0
9
3

Λh

Τh0HΛh, mq = 0L

mq = 5 = 0.5

= 0.01

PotI, W0 =

12

11
, x f = 3

ΤhIΛh, mqM

Λend

0.2 0.5 1.0 2.0 5.0

0.2

0.4

0.6

0.8

1.0

Figure 6. The curves τh(λh,mq) for values of mq marked in the figure, computed for Potential I

with W0 = 12/11. Here λend = 0.5221 and λ∗ = 0.6467.

approaches zero as mq → 0, indicating that τ(r) approaches the chiral symmetry conserving

solution (τ(r) ≡ 0) uniformly. If λh > λend, τh(λh,mq) approaches τh0(λh) instead, which

implies that τ(r) converges to the standard chiral symmetry breaking solution τ0(r).

3.4 Thermodynamics

We now want to compute minus free energy density or pressure p(T,mq;xf ) of the gravity

dual, assuming that all the quarks have the same mass mq. In particular, we are inter-

ested in mq = 0. The chemical potential is zero, there is an equal number of quarks and

antiquarks. The equilibrium phase has the largest pressure.

The basic strategy is to compute the temperature and entropy density from the

formulas

T = − 1

4π
f ′(rh), s =

1

4G5
b3(rh), (3.28)

where f and b are obtained by solving Einstein’s equations. The pressure is then obtained

by integrating s(T ) = p′(T ). The key technical issues are keeping track of the quark mass

and specifying the integration constant in the pressure integral.

The general structure of temperature (for a case containing a fixed point) is shown in

figure 7, to be consulted in association with figures 5 and 6. For mq = 0 two branches

separate. Firstly, for 0 < λh < λ∗ there is the temperature computed for chirally symmetric

vanishing tachyon solutions. We shall use the notation Tu(λh) ≡ T (λh, τh = 0) for this

temperature below.

The chiral symmetry breaking solution exists for λend < λh < ∞ and as λh → λend,

the corresponding temperature curve ends precisely on the curve which has identically

vanishing tachyon. The temperature curve is computed by using the zero node zero mass

curve τh0(λh) in figure 5. We shall use the notation Tb(λh) ≡ T (λh, τh0(λh,mq = 0)) for

this temperature. If we computed the temperature for the one node solution τh1(λh), we

would get a curve which lies significantly below the zero node curve in figure 7 and again

ends on the zero tachyon curve. These solutions will have a higher free energy and we can

thus neglect them.
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Figure 7. The temperature as a function of λh for solutions for Pot II at xf = 3 and W0 = 12/11,

both for zero (Left) and very small mass (Right). The asymptotic limits (3.29) and (3.30) are also

shown for mq = 10−5, in the range of the figure the UV limit is not yet accurate. The maximum

value λ∗ of λ for the τ = 0 curve is defined in (2.40). See also figure 2.

Whenever the quark mass is nonzero, the tachyon cannot be vanishing and that branch

disappears. However, as seen from figures 6 and 7, the small-mass curve very closely

approximates the zero tachyon curve, also at small λh.

Analytic approximations are often useful. In the UV f(r)→ 1− r4/r4
h so that

πT (λh) =
1

rh
= e1/(b0λh)(b0λh)b1/b

2
0 =

b(λh)

LUV
. (3.29)

Similarly, in the IR (see (B.10) in appendix B),

T (λh) ∼
(

2

3
lnλh

)1/2

, b(λh) ∼ 1

λ
2/3
h

(
2

3
lnλh

)1/4

. (3.30)

For a numerical check, see figure 7. The interesting physics takes place in the region

connecting these two limits.

The function b(λh) decreases monotonically while the function T (λh) decreases in the

UV but starts increasing in the IR. The physics of the UV increase is obvious, this is

the weak coupling limit which naturally corresponds to large T of a thermal fluid. The

(extremely slow) increase in the IR is a quantitative fact but does not correspond to a

stable phase. This is simplest seen by computing the sound velocity

c2
s =

dp

dε
=

s

Ts′(T )
=

b(λh)

3T (−b′(λh))

(
− dT
dλh

)
. (3.31)

A stable phase has c2
s > 0 (equivalently, has a positive specific heat) and this requires

T ′(λh) < 0. Thus only the UV decreasing part can correspond to a stable phase, the

IR part is the unstable small black hole region, small since s ∼ b3(λh) → 0 there. It is,

nevertheless, crucially important for the phase structure.
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To compute the pressure, we have to integrate the entropy density (3.28) over T .

Taking λh as a variable, we have integrals over the two branches in figure 7:

pb(T ) =
1

4G5

∫ ∞
λh(T )

dλh(−T ′b(λh)) b3b(λh) + pb(∞), (3.32)

pu(T ) =
1

4G5

∫ λ∗

λh(T )
dλh(−T ′u(λh)) b3u(λh) + pu(λ∗), (3.33)

where b, u refer to the chiral symmetry broken (τh = τh0(λh,mq = 0)) and chirally sym-

metric (or unbroken, τ = 0) phases. The continuity of pressure at Tend = T (λend) leads to

a rather remarkable consistency check of the entire scheme: it demands

1

4G5

∫ λ∗

λend

dλh(−T ′u(λh)) b3u(λh)− 1

4G5

∫ ∞
λend

dλh(−T ′b(λh)) b3b(λh) = pb(∞)−pu(λ∗). (3.34)

However, the difference on the r.h.s. is nothing but the difference between the free energies

of the broken and symmetric phases at T = 0:

pb(∞)− pu(λ∗) = −Fb(T = 0) + Fu(T = 0). (3.35)

This difference was computed in [26] from the T = 0 solutions, with no black hole. Here

they are computed in (3.34) from the black hole solutions and we have checked numerically

that the results agree within the numerical precision.

The computation of the free energy now proceeds as follows, first for the simple struc-

ture of T (λh) in figure 7:

• Start by integrating (3.32) from some large value of λh down to λend, choosing

pb(∞) = 0. Since T ′(λh) > 0 in figure 7, this leads to a negative pressure. This

is not the stable phase, the physical stable phase is not described by this metric. The

stable phase with the largest pressure is the thermal gas phase with p = 0.

• At λend move to the chirally symmetric τ = 0 branch and fix the constant pu(λ∗) by

demanding continuity of pressure. Since now T ′(λh) < 0, p starts increasing. At first

p is still negative and the stable phase is the thermal gas phase with p = 0.

• At some λh ≡ λc pressure passes through 0. This defines a transition temperature

Th since from now on the black hole metric has the largest pressure. Since τ = 0 this

black hole phase is chirally symmetric.

• The latent heat of the transition is

L

T 4
h

=
s(Th)

T 3
h

=
1

4G5

(
b(λh)

Th

)3

< N2
c

4π2

45

(
1 +

7

4
xf

)
, (3.36)

where the maximum value is obtained taking normalisation from (3.39) and using

the UV approximation (A.19). Counting degrees of freedom one has N2
f Goldstone

bosons in the low T phase (for which we do not have a T dependent gravity dual)

and 2N2
c + 7

2 NcNf degrees of freedom in the high T phase. These are equal at xf = 4

and if latent heat is naively assumed to be proportional to the jump in the number

of degrees of freedom, one might rather expect L to decrease when xf increases.
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• Asymptotically, for large T , λh → 0 we have πT = 1/rh = b(λh)/LUV so that

4G5p = (πLUV)3

∫ ∞
λh

dx(−T ′(x))T 3(x) =
1

4
(πLUV)3T 4. (3.37)

If one for large T assumes that the system becomes a gas of non-interacting bosons

and fermions one should have

p

T 4
=

(
1 +

7

4
xf

)
π2

45
N2
c . (3.38)

This is obtained from (3.33) if

1

4G5
=

4

45π

1 + 7
4 xf

L3
UV

N2
c , (3.39)

which can be used to normalise the pressure.

• The above was for the simple T (λh) in figure 7. Depending on the potentials, more

complex structures can appear, as analysed in the following section.

• To present results for p/T 4 we choose to normalise it so that it approaches at large

T the ideal gas Stefan-Boltzmann pressure according to (3.38). However, we have no

dynamical argument for fixing the xf dependence of LUV in (3.39). We shall present

the phase diagrams for two choices, for the automatically SB-normalised case (see

eq. (3.39))

LUV =

(
1 +

7

4
xf

)1/3

, W0 =
12

xf

[
1− 1

(1 + 7
4 xf )2/3

]
, (3.40)

and for the W0 fixed case

LUV =
1√

1− 1
12 W0xf

, W0 = 0,
12

11
,

24

11
(3.41)

In the former case one simply has

1

4G5
=

4

45π
N2
c (3.42)

and in the latter case13

1

4G5
=

4

45π

1 + 7
4 xf

(1− 1
12 xfW0)2/3

N2
c ; (3.43)

the factor N2
c is furthermore often implied, i.e., results for p/(N2

c T
4) are given.

13Notice that in this case the glue part of the V-QCD action will also depend on xf through the normal-

ization factor 1/4G5.
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Figure 8. Qualitative behavior of the transition temperature between the low and high T phases

of V-QCD matter.

Tend

Th

0.020 0.025 0.030 0.035

T

L

-5

5

10

15

p�T4

20 �
Ε - 3 p

T4

Tcrossover

Tend

Th

100 � Β(Λh(Ts))
0.1 10 1000 10

5
10

7

T

L

-10

10

20

30

40

50

p�T4

Figure 9. Examples of the Tend, Th and Tcrossover transitions in potential II with Stefan-Boltzmann

-normalization of LUV and with xf = 3 (see also figure 13). Upper : The temperature T (λh) . The

curving of Tu(λh) at λh ∼ 0.2, T ∼ 2 is related to the crossover. The inset shows the minimum

of Tb(λh), which causes pb to be positive between Th and Tend. For comparison, we also plot

T (λh) for IHQCD with xf = 0. Lower left : p/T 4 in a close-up around the region of the Th and

Tend -transitions. Lower right : an overview of the pressure in the same case, also showing the

interaction measure, the peak of which determines the position of Tcrossover. The black curve shows

the vacuum beta function, scaled to fit, as a function of temperature in the symmetric phase, so that

β(T ) = β(λu(T )), where λu(T ) is the inverse function of Tu(λh). The walking maximum of the beta

function clearly coincides with the plateau related to Tcrossover, confirming that the p/T 4 ∼ constant

phase below Tcrossover is indeed the quasi-conformal phase related to walking dynamics.
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Figure 10. An example of the Ts transition in potential I with W0 = 24/11 and with xf = 0.3 Left :

the local maximum and minimum which generate the 1st order Ts -transition. Right : p(T )/T 4 in

the region around which the 1st order Ts transition takes place, extending to smaller T in order to

show the relation to the Th and Tend transitions.

4 Results for the phase structure

4.1 Phase transitions

Let us first review what one qualitatively expects for the phase structure of V-QCD when

the number of (massless) fermions is changed [71]. This is shown in figure 8, where the

transition temperature between a low T and a high T phase is plotted as a function of xf .

A few reminders are in order. In the absence of quarks, YM has a ZNc center symmetry

that is central in the definition of the confined and deconfined phases. The relevant order

parameter is the Polyakov loop that transforms nontrivially under ZNc . If its expectation

value is zero, we are in the confined phase, while the expectation value becomes non-zero

in the deconfined phase.

This expectation value is simple to calculate holographically, [72]. It corresponds to

a string world-sheet along the time circle, and hanging down straight in the holographic

(radial) direction. The important difference is where it ends. At zero temperature, this

worldsheet extends to r → ∞ and is the world-sheet of a free quark. Standard renormal-

ization subtracts its contribution completely and therefore the Polyakov loop vev is zero

(to leading order in 1/Nc) in the zero temperature phase.

In a regular black-hole phase, the worldsheet terminates at the horizon and after

subtraction the Polyakov loop expectation value is non-zero. This is in agreement with the

identification of black-hole phases generically as deconfined phases.

In the presence of massless quarks, the center symmetry is not a symmetry any more,

and the Polyakov loop is not an order parameter. However at large Nc, there is alternative

order parameter for a deconfined phase, namely the Nc dependence of the free energy, F .

In the confined phases F ∼ O(1) while in deconfined phases, F ∼ O(N2
c ). Again, with

this criterion, the vacuum solutions (without horizons) are “confining” (F ∼ O(1)) while

any black hole solution with regular horizon is “deconfined” (F ∼ O(N2
c )). It is therefore

natural to use this criterion in our analysis in order to define deconfined phases.

The true symmetry in the case of massless quarks is chiral symmetry. This always

has an order parameter, the chiral condensate, that distinguishes chirally symmetric from

chirally broken phases.
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Given the remarks above, we summarize what we would expect.

• For xf = 0 one has the Yang-Mills 1st order phase transition between a confined and

deconfined phase. In the high T deconfined phase, the ZNc symmetry is broken.

• For a somewhat higher xf one expects that there still is a 1st order transition. How-

ever, now this transition will involve chiral symmetry breaking/restoration.

• For xf approaching xc one expects the transition temperature to decrease rapidly as

follows from Miransky scaling.

• For xf in the conformal window, xc < xf < 11/2, both the low and high T phases are

conformal ones, which can be separated by a crossover. The only transition happens

at T = 0+ like in the AdS black hole in Poincaré coordinates.

The models we consider contain the full fermion backreaction and therefore predict a

somewhat more detailed phase structure. New phase transitions of different orders can take

place, lines can split in two, etc. The behavior in the conformal window (xc < xf < 11/2)

is nonetheless always simple: there are no transitions, but a crossover between the low and

high temperature conformal phases. Therefore we concentrate first on the phase structure

in the region below the conformal transition (xf < xc).

While the details of the phase structure depend on the choice of potential, the various

phase transitions encountered appear in certain systematic ways. We will define a consistent

notation, and describe the classes of transitions, assuming the system is heated up and we

go from low temperatures to high temperatures.

To motivate the notation, we first list the various transitions and the corresponding

temperatures.

• Th is the analogue of the QCD hadronisation transition if it is the chiral restoration

transition (chirally symmetric → chirally broken).

• Tend is the end point of the curve Tb(λh) = T (λh, τh0(λh,mq = 0)), which contains

the black holes with tachyon hair. For values of λh smaller than at this endpoint, the

black-holes have no tachyon hair.

• Tcrossover marks the position of a crossover. This crossover is defined by the position

of the peak in the equation-of-state ((ε− 3p)/T 4) as a function of temperature.

• Ts takes place at small xf within the chirally symmetric phase when one can jump

from one decreasing branch of Tu(λh) (no tachyon hair) to another.

• Finally T12 involves the splitting of one 1st order line to two.

With this notation we may now describe in detail the various types of transitions and

crossovers we have found, and show examples of each case. In the figures we denote the

stable phases with thick lines and meta- and unstable phases with thin lines.
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• The 1st order hadronisation transition at Th, happens either between the chirally

broken → a chirally symmetric phase (see figure 7) or from a chirally broken → a

chirally broken phases (see figure 9).14 As described above, our normalization for

pressure is such that the pressure of the (T = 0) hadron gas phase is zero. In the

holographic setup, this transition is between that of the black hole phases, whose

pressure remains positive down to the lowest temperature, and the hadron gas phase.

The transition takes place at the temperature Th where the pressure of the BH phase

reaches zero. Whether this phase is chirally symmetric or non-symmetric depends on

the potential choices and xf . For an example, see figure 13.

• The 2nd order chirally broken→ chirally symmetric transition at Tend = T (λend, 0) =

T (λend, τh0(λend,mq = 0)), see figures 7 or 9. Since the chiral symmetry breaking

solution starts to exist only above some λend, the system makes at that point a

transition to the chirally symmetric phase. However, this transition may be absent in

the thermodynamic limit: if pb(λh) is everywhere negative, the transition is between

two thermodynamically metastable phases, and the relevant saddle point is never

dominant. We denote the temperature of the transition by Tend. Since this transition

takes place at one single value λh = λend, both pressure and entropy density are

continuous (b(λh) does not jump). Therefore, only p′′(T ) or c2
s are discontinuous,

and the transition is of second order.

• The high-T chirally symmetric → chirally symmetric crossover at Tcrossover, see fig-

ure 9. This is a crossover which is expected on general grounds when xf is near but

below xc. It reflects the change of the dynamics from the walking region, where the

QCD coupling constant evolves slowly, to the region in the deep UV where it runs.

In this sense, above the crossover it is the nontrivial fixed point theory that controls

the thermodynamics, while below the crossover it is the YM-like theory that controls

the dynamics.

The thermodynamics behaves as follows: At first p/T 4 stabilizes to some intermediate

value, before eventually increasing very slowly toward the Stefan-Boltzmann limit.

For the potentials studied here, this creates a clear, although very broad, peak in

the interaction measure, and the position of that peak can be used to define the

temperature Tcrossover at which there is a crossover. The peak of the interaction

measure is also observed at low values of xf . In this region, however, Tcrossover is

typically relatively close to Th. Note also that for SU(Nc) YM theory, Nf = 0 the

interaction measure starts decreasing immediately at Th [73], Tcrossover ' Th.

• The 1st order high-T chirally symmetric → chirally symmetric transition at Ts, see

figure 10: With some choices of potential, at low xf , Tu(λh) in the chirally symmetric

(unbroken) part of the solution develops a local maximum and minimum. There are

then two values of λh between which both the pressure and the temperature of the

14There is also the special case of potentials I∗ at low xf where the transition analogous to Th takes place

from a chirally symmetric thermal gas to chirally symmetric black hole phase (see figure 19).
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Figure 11. An example of the T12 transition in potential I with W0 = 12/11 and with xf = 3.5.

Left : the overall structure of T (λh), with an inset showing the maximum and minimum in more

detail. Right : a close-up of p(T )/T 4 in the region where the T12 -transition happens, with an inset

showing further detail.

solution match, and there is a 1st order transition between these two branches of the

chirally symmetric solution. Interestingly, Ts approaches the temperature of the YM

transition in IHQCD as xf → 0 (see the discussion in section 4.8).

• The 1st order chirally broken → chirally broken transition at T12, see figure 11.

This happens in the chirally non-symmetric phase, with potential I and W0 = 12/11,

T (λh) which develops a local minimum and maximum at large xf . This again induces

a 1st order transition, which we denote by T12. In this case the single 1st order

transition at Th splits into two 1st order transitions as xf increases above some

critical value. Above this value, the transition with higher (lower) temperature is

identified as T12 (Th).

4.2 Class-II potentials

Let us then discuss the details of the phase structure for the various potentials and choices

of W0 defined in section 2.2.2.

We take Class-II first since it leads systematically to a simple phase structure. We

observe two possibilities: First, for xf up to some value xχ < xc the 1st order deconfinement

and chiral transition temperatures coincide, Td = Tχ, from this value up to xc one has

Tχ > Td and the higher chiral transition is of 2nd order. Second, Td = Tχ all the way up

to xc and xχ is absent.

For this choice of potentials the tachyon diverges ∼
√
r − r1 at large r. The part Vf0(λ)

of the fermionic potential is given by eq. (2.30) and a(λ) and κ(λ) are given in (2.38). Notice

that the deconfinement temperature Td always equals the temperature of the “standard” 1st

order transition Th in the holographic framework. The temperature of the chiral symmetry

restoration Tχ can be either Tend or Th depending on the order of the transitions, see

examples below.

The result for the SB-normalised case is shown in figure 13. For 0 < xf < xχ ' 2.46

we find that Tend < Th, but Tend is in the metastable branch of the solution. Thus the
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Figure 12. An example of a configuration where all but the crossover and hadronisation transitions

Tcrossover, Th, are in the thermodynamically unstable region, in the initial stages of the approach

to the IHQCD limit. The potential is II with W0 = 12/11 and with xf = 0.4 Left : the temperature

T (λh). Note that everything to the right of the Th transition is in the unstable phase. Right :

p(T )/T 4 in the region where the Th transition and the unstable Tend and Ts -transitions happen.

deconfinement and chirality transitions coincide here, Td = Tχ = Th. In other words, if one

could sufficiently supercool the system below Th in the high-T chirally symmetric phase,

the symmetry breaking transition could take place at Tend < Th. In the thermodynamic

limit there is no supercooling and only Th is seen.

Above xf ' 2.46, the second order Tend moves above Th and becomes stable, as seen

in the bottom right plot of figure 13. Therefore, we first have a 1st order Th transition

from the thermal gas solution to a chirally breaking black-hole phase, and then a 2nd order

transition from the chirally broken low-T phase to the chirally symmetric high-T phase.

In other words, Tχ > Td with a 2nd order chiral and 1st order deconfinement transition.

For a more detailed view of the thermodynamics in this region at xf = 3, the reader is

guided to the left panel of figure 24 where the chiral condensate as well as the energy and

the pressure are plotted as functions of T . The chirally symmetric crossover transition

Tcrossover is for all xf , the highest temperature transition.

For xf → xc both Tend and Th are expected to approach zero as specified by Miransky

scaling. Numerical results are compatible with this.

When xf → 0 one would expect that the Th transition smoothly approaches the

transition temperature of large Nc hot Yang-Mills theory. Note, however, that strictly

speaking the limit of YM theory demands Nf = 0 and falls outside the Veneziano limit

Nf → ∞ of QCD. Thus it is not surprising that nontrivial metastable structures appear

at xf → 0. What happens is that the curve T = Tu(λh) of the chirally symmetric phase

suddenly at xf ∼ 0.2 develops a local minimum similar to the one shown in red in figure 10.

Further evolution of this minimum is shown in figure 22. Associated with this there is a

first order Ts transition in the metastable branch. It is so slightly below Th that it is not

visibly separated in the bottom left plot of figure 13. As discussed in section 4.8, both

Th and Ts approach the transition temperature of YM as xf → 0. Tend crosses above all

of the other transitions for low xf , but it is also in the metastable branch, see figure 12

for details.
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Figure 13. Upper : the phase diagram for potential II, W0 Stefan-Boltzmann normalized, xc = 3.70.

The dashed boxes show the regions detailed in the bottom two plots. In the bottom left plot Ts <∼ Th
at xf <∼ 0.2 is not visibly separated. For discussion, see text.

The phase diagram for potential II at W0 = 24/11 is shown in figure 14. The phase

structure is qualitatively similar to the SB-normalized case. For xf < xχ ' 3.19 the

stable Th transition is the only one in the thermodynamic limit, with Tend < Th in the

metastable branch of the solution. Thus again Td = Tχ. Above xf ' 3.19, the second

order Tend moves above Th and becomes stable, see bottom right plot of figure 14. Thus

we again have Tχ > Td with a 2nd order chiral and 1st order deconfinement transition.

The chirally symmetric crossover transition Tcrossover is for all xf the highest temperature

stable transition, except between xf ∼ 1 to xf ∼ 2.7, where the interaction measure does

not have a maximum and the crossover therefore does not exist.

Now Ts which appears in the metastable branch slightly below Th in figure 10 (bottom-

left) visibly separates from Th. Again Ts and Th approach the temperature of the YM-

transition in the xf → 0 -limit, as discussed in section 4.8. Tend crosses above the Th
transition for xf < 0.34, but it is also in the metastable branch, see figure 12 for details.

The phase diagram for potential II at W0 = 12/11 is shown in figure 15. The main

difference with respect to the previous cases is that Tend < Th for all values of xf , so the

region with Tχ > Td does not exist. Notice that Tend is close to Th for xf → xc as seen

from figure 15 (left). Because the region with small xc − xf is numerically challenging,

we do not have reliable data for xf & 3.8. However, nontrivial structure apart from the

Miransky scaling, such as rapid changes in the ratios of the various temperatures, are

not expected in this region (see discussion below in section 4.8). The chirally symmetric
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Figure 14. Upper : the phase diagram for potential II, W0 = 24/11, xc = 3.80. The dashed boxes

show the regions detailed in the bottom two plots. For discussion, see text.

crossover transition Tcrossover is the highest temperature stable transition where it exists.

The next stable transition is everywhere Th, and as already pointed out, Tend is in the

metastable branch of the solution. Details of further metastable structure at small xf are

shown in the right hand plot. At xf ∼ 0.25, the first order Ts transition appears in the

metastable branch slightly below Th, see figure 10. This transition develops into the YM

transition in the xf → 0 -limit. Tend crosses above the Th transition, but it is also in the

metastable branch, see figure 12 for details.

The phase diagram for potential II at W0 = 0 is shown in figure 16. For all points

shown, Tend is below Th and in the metastable branch. The crossover exists when xf & 3.6

and again between xf = 0 to ∼ 0.7. The close-up of the small xf -region in the right

hand plot shows the crossover and the hadronisation transition Th, with the Tend and

Ts transitions in the metastable branch. As a new feature the crossover also becomes

metastable for 0.5 . xf . 0.7.

Finally, let us comment on the xf dependence of the transition temperature(s). For

SB normalised W0 or W0 = 24/11 (figures 13 and 14), Th and Tend decrease with increasing

xf , in qualitative agreement with estimates based on field theory [74–77]. Decreasing W0

to 12/11 (figure 15), however, the xf dependence becomes almost flat, and for W0 = 0

(figure 16) the temperatures increase with xf up to xf ' 3.5. Rather similar behavior

with varying W0 will be found for potentials I below, where the xf -dependence is partially

disturbed by the additional structure appearing at low xf .
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Figure 15. Left : the phase diagram for potential II at W0 = 12/11, xc = 4.08. The dashed box

shows the region detailed in the other plot. For discussion, see text.
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Figure 16. Left : the phase diagram for potential II at W0 = 0, xc = 4.18. The dashed box

shows the region detailed in the other plot. For discussion, see text. Tcrossover continues into the

conformal window.

4.3 Class-II∗ potentials

In this section, we consider the phase diagram corresponding to the potential II∗. Recall

that the star subscript refers to the fact that the potential V (λ) = Vg(λ) − xfV0f (λ) has

an extremum only for x∗ < xf , while for the cases discussed earlier such extremum exists

for all values of xf ; see section 2.2.2 for detailed definitions.

The resulting (xf , T ) -phase diagram is shown in figure 17, the top panel shows how

the phase diagram is derived at xf = 2.5. Starting at large T one is in the tachyonless

black hole phase (thick red curve). At Th ≈ 0.8Λ pressure goes to zero and the ground

state is the thermal gas phase with p = 0. If one could supercool further one would at Tend

meet the chirally broken tachyonic black hole phase. It has a higher free energy than the

stable broken phase and therefore is unstable.

The main features are that the crossover exists only for small values of xf , xf . 2 where

it nearly coincides with Th, and again at larger values xf & 3.5, where it is clearly separated

from Th. The second order endpoint Tend remains in the unstable phase for xf ≤ xc. Below

the conformal window, for values 2 . xf . 4 both Th and Tend increase. They reach

their maximum and finally start to decrease (as predicted by the Miransky scaling) only

around xf = 4, very near the boundary of the conformal window. This suggests that the

modification of the potential has the tendency to “squeeze” the walking region.
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Figure 17. Phase diagram for potential II∗ with W0 SB normalised (bottom). The top panel

shows T = T (λh) and p/T 4 at xf = 2.5. Tcrossover reappears at about xf = 4 at a temperature

well above the range shown here, and continues into the conformal window.

4.4 Class-I potentials

For class I potentials figure 18 shows phase diagrams for W0 = 0, 12/11, 24/11 and for

the SB-normalised case. Recall that for these potentials the tachyon diverges exponen-

tially in the IR. The choices of a and κ are given in eqs. (2.36). We also remind that

transitions between stable phases are plotted as thick lines. Transitions plotted as thin

lines can be seen only if the system is, e.g., supercooled, so that they are not there in the

thermodynamic limit.

One can observe several characteristic features for varying W0:

• The first observation is the striking structure near xf = 0 which is observed at large

W0, i.e., for W0 = 24/11 or SB normalized. The temperatures Th and Tend drop

rapidly with decreasing xf near xf = 0 and reach zero at a finite value of xf . Below

this critical value, all phases are chirally symmetric.

This behavior is related to the tachyon mass at the IR fixed point, shown in figure 3.

For PotI (the absolute value of) the squared tachyon mass is below the BF bound for

low values of xf . Therefore it is not guaranteed that a solution with zero quark mass

and nontrivial tachyon profile exists (at any temperature) in this region. For large W0

it actually turns out that the solution with mq = 0 and nontrivial tachyon profile does

not exist for very low xf , which explains the absence of chiral symmetry breaking.

This implies that this potential is not describing a QCD-like theory. However, the

applicability of PotI can be rescued by a simple logarithmic modification of κ(λ), see

section 4.6 and figure 20.
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• The symmetric→ symmetric transition Ts becomes a stable transition when W0 =

24/11 or SB normalized. For comparison, for PotII it was always in a metastable

phase. This happens mostly in the region of very low xf where all phases are chirally

symmetric so that Th and Tend are absent. For W0 = 24/11 we observe a region with

0.25 . xf . 0.45 where these transitions are also present. In this case the order

of transitions is Ts > Tend > Th, and chiral symmetry is broken in the middle one.

For W0 SB normalized we find instead a region with 0.2 . xf . 0.5 where only the

crossover exists, so that the phase structure is similar to the conformal window.

• At large xf >∼ 3, W0 = 12/11, one observes the splitting of the 1st order line Th into

two 1st order lines T12 > Th. The order of the transitions is Tend > T12 > Th, chiral

symmetry is broken at the largest one, Tend. The holographic action therefore gives

two consecutive 1st order transitions within the chirally-broken phase. It is an open

issue what the nature of these transitions is. It is plausible that PotI at large W0 is

not related to QCD-like theories.

• The high temperature crossover exists over a larger and larger range when W0 in-

creases and ultimately appears at all xf . This is the same tendency seen also for

potentials in the II class.

4.5 Class-I∗ potentials

Finally, we present the phase diagram corresponding to the potential I∗ in figure 19. The

striking difference between the phase diagram of the potential I∗ in comparison with po-

tential II∗ considered earlier is that for small values of xf . 2 there are no solutions with

broken chiral symmetry, not even at low temperatures; all phase boundaries here are be-

tween chirally symmetric phases. There is Th, but now it describes a chirally symmetric

→ symmetric transition. To illustrate this we show explicitly T = T (λh) at xf = 1. It is

very structureless, and has no solutions with nonzero tachyon. Thus the (λf , T ) -diagram

is qualitatively similar to the Yang-Mills case [33–35]. Only above xf ∼ 2 and below xc is

chiral symmetry broken at low temperatures.

Otherwise the overall features are similar to those in the case of potential II∗. For small

values of xf , xf . 2, the crossover nearly coincides with Th . The second order endpoint,

Tend, is in the unstable branch for small values of xf , but enters into the stable branch at

x ∼ 4. Below the conformal window, for values 2 . xf . 4 both Th and Tend increase.

They start to decrease only at xf ∼ 4, very near the boundary of the conformal window.

We have also studied the potentials I∗ for the case of fixed W0 and found qualitatively

similar results for the phase structure for W0 = 12/11, 24/11. For W0 = 0 the problematic

region without chiral symmetry breaking is absent, and the phase diagram is similar to

PotII∗. This implies that, like Pot I, this type of potential is probably not applicable for

QCD-like theories when W0 is large.

4.6 PotI with logarithmic correction to κ(λ)

The function κ(λ) in the action (2.2) represents the effects of going from the string frame

(to which the derivation of the DBI action as the α′ → 0 limit of open strings leads)
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Figure 18. Phase diagrams for potential I. Top: W0 = 0; Middle ones: W0 = 12/11, 24/11;

Bottom: SB normalisation of W0. A blow-up of the small xf region is shown at right separately

for three top rows. The leftmost vertical line in the bottom three figures denotes the value of xf
below which chiral symmetry breaking solutions do not exist.

and the Einstein frame (where the gravity dual is formulated). Extending the conformal

transformation relating these to UV by λ→ 1+λ one has, in terms of the metric functions,15

κ(λ) =
1

(1 + λ)4/3
=
b2

b2s
. (4.1)

15Notice that we introduced additional constants in the formulas (2.36) and (2.38) in order to match with

the perturbative anomalous dimensions in QCD.
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Figure 19. Phase diagram for potential I∗ with SB normalisation of W0. The left panel shows

T = T (λh) at xf = 1: no tachyonic black hole!

where b and bs are the metric factors in the Einstein and string frames, respectively.

The potential (2.27) carries the factor λ4/3, but also the logarithmic factor (lnλ)1/2,

which plays a quantitatively important role: for (lnλ)P the excitation spectrum is m ∼
nP [30–32] and one wants the Regge-like spectrum, P = 1/2. Also numerically lnλ-effects

are important, see figure 7. To study these effects in κ we use the parametrisation

κ(λ) =
[1 + ln(1 + λ)]µ̄

[1 + 3
4 (8

9 b0 + 1 + µ̄)λ]4/3
. (4.2)

There are constraints on this parametrisation from the UV and IR. First, to maintain

the proper mass anomalous dimension equation (2.26) at small λ, µ̄ has to appear also in

the denominator as shown in (4.2). Secondly, for µ̄ = 0 the tachyon grows exponentially

in r according to eq. (2.37). The effect of µ̄ on this comes from the change b2/κ =√
lnλ/(lnλ)µ̄ ∼ r1−2µ̄ (in the IR r ∼

√
lnλ, see (B.4)). This effect propagates through the

computation of the r dependence which comes out to be τ(r) ∼ exp(Cr1−2µ̄), indicating

that µ̄ < 1/2.

The most interesting effect comes from evaluating the tachyon IR mass using (2.42).

The result is shown in figure 20, to be compared with figure 3. The difficulty with PotI was

that at small xf the curve in the left panel of figure 3 dropped below the BF bound. The

reason for this is easy to see analytically by studying the λ∗ →∞ limit of (2.42), which gives

−m2
IR`

2
IR ∼ (− lnxf )−1/2 in this case. For small xf , λ∗ approaches infinity and obviously

negative values of µ̄ increase the tachyon mass−m2
IR`

2
IR, so that−m2

IR`
2
IR ∼ (− lnxf )−µ̄−1/2

For µ̄ < −1/2 it even grows without bounds as for PotII in figure 3. This is seen in figure 20.

As a consequence, the phase diagram for PotI with log-modified κ does not suffer

from the problems at small xf described earlier for PotI. The phase diagram computed for

µ̄ = −1
2 is shown in figure 20 and, in fact, resembles qualitatively those for PotII. This

is very gratifying since PotI also leads to a Regge-like particle spectrum [70]. PotI with

log-modified κ(λ) (4.2) thus seems to be the gravity dual leading to the simplest thermo-

dynamics in figure 8 and the expected Regge-like hadron spectrum. It is interesting that

also PotII, a dual with spectrum of type m ∼ n, also leads to the simple thermodynamics

in figure 8.
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Figure 20. Left : the tachyon mass at λ∗ for PotI with log-modified κ(λ), evaluated using eqs. (2.42)

and (4.2) for µ̄ = 0, − 1
4 , −

1
2 . The µ̄ = 0 curve is the same as the red dotted curve in left panel of

figure 3. Right : the phase diagram for PotI with SB-normalised W0 with κ(λ) given by (4.2) with

µ̄ = − 1
2 . Tend intersects Th at xf = xχ = 0.72. Tcrossover is the same as in figure 18, bottom.

4.7 The conformal window

A detailed picture of thermodynamics in the conformal window is shown in figure 21. Here

p/T 4, i.e. the effective number of degrees of freedom, is plotted for some values of xf > xc.

At large T it is normalised so that it approaches the SB limit (3.38) for any xf . For T

approaching zero, p/T 4 approaches another constant, the value of which decreases when

xf approaches xc from above. For all xf , the vacuum phase has zero pressure, and at the

limit T → 0 there is a transition from the black hole to the thermal gas phase. When xf
approaches the upper end of the conformal window 11/2, the behavior of the curves can

be worked out analytically in perturbation theory [71] since the coupling then is small.

For the present potential the finite temperature transition between the low and high

temperature phases inside the conformal window is a smooth crossover. Figure 21 also

plots the interaction measure, the maximum of which defines the critical temperature for

this crossover. Note that even if the transition here is smooth crossover, the transition

can also be of 1st order in different theories [45]. What determines this behavior is the

overall magnitude of the beta function. For illustration, consider the beta function of large

Nf QCD, β = −b0λ2 − b1λ3 + . . . . The values of the coefficients behave as b0 ∼ O(1) �
|b1|, while the results of [45] suggest b0 ∼ O(10) ∼ |b1| for 1st order phase transition.

For the models we have considered here, we find that the nonperturbative beta function

extracted from the gravity solution is small over the entire range 0 ≤ λ ≤ λ∗ inside the

conformal window.

The large temperature values appearing in figure 21 may appear somewhat surprising.

However, they have a simple explanation. The region in which p/T 4 is nearly constant and

approaching its large T limit is the perturbative region λ small. The conformal window

is within 0 < λ < λ∗(xc) and the upper limit is always small, � 1, so that the conformal

window is perturbative, down to T = 0. From figure 2 one sees quantitatively how this

holds even somewhat below the conformal window. To 1-loop log T = exp(1/(b0λ)) and

clearly for b0 → 0 this grows fast. Somewhat more quantitatively, the beginning of the large

T region can be estimated by computing the value of T for which the 2-loop correction
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PotI. Note that in the conformal window always τ = 0 and the functions a(λ), κ(λ) do not affect

the result.

Figure 22. T (λh) for various small values of xf and for potential I, W0 = 24/11 (Left) or for

potential II, W0 = 12/11 (Right). The black curve is the IHQCD limit. The chirally unbroken

Tu(λh) ≡ T (λh, τ = 0) branch asymptotes to the IHQCD curve as xf → 0, for both potentials. The

chirally broken Tb(λh) ≡ T (λh, τh(λh,mq = 0)) branches behave very differently for PotI and PotII.

For PotI Tb is absent at such low xf and all phases are chirally symmetric (see also figure 18). For

PotII the curves Tb follow very closely Ts and, correspondingly, Th ≈ Ts (see figure 15).

term in the perturbative expansion of 1/λ(µ) equals the 1-loop term. One finds that

the 2-loop correction is smaller than the 1-loop term if T > (2 log T )|b1|/b
2
0 , |b1|/b20 =

3|13xf − 34|/(2(11 − 2xf )2). This is always true for T > 1 = Λ if xf < 3.6. However, for

xf > 3.6 this gives a lower limit of T which grows extremely fast when xf grows within the

conformal window. Tcrossover is somewhat below the solution of this equation. Numerical

values are in qualitative agreement with figure 21.

4.8 The limits xf → 0 and xf → xc

The V-QCD models at xf = 0 are equivalent to an IHQCD model with potential Vg. One

thus expects that the hadronisation transition Th will approach the 1st order deconfining

transition of SU(Nc) YM theory16 when xf → 0. However, for PotI and large W0 this

16Note that strictly speaking the limit of YM theory demands Nf = 0 and falls outside the Veneziano

limit Nf →∞ of QCD. This may explain the nontrivial structures observed at xf → 0.
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cannot be the case, since the hadronisation transition does not exist for very low xf , as we

pointed out above. Indeed we see from the phase diagrams of figure 18, that the symmetric

transition Ts, which only exists for xf <∼ 0.4, is the precursor of the YM transition in

this case.

Let us then discuss in detail what happens in the xf → 0 limit in the two cases and

at finite temperature. Since thermodynamics is determined by the set of T (λh) curves in

figure 7, one should study how this configuration behaves when xf → 0. The T (λh, τ = 0)

curve (shown in red in figure 7) exists only for λ < λ∗ and, according to the definition (2.40)

λ∗ →∞ when xf → 0. In more detail, the limit is given by

λ
2/3
∗ =

8

W0 + 20568
4619

1

xf

√
lnλ∗, V (λ∗) =

18476

729
λ

4/3
∗
√

lnλ∗. (4.3)

where the equation on the left determines λ∗ while the equality on the right expresses

V (λ∗) as a function of λ∗. Eq. (4.3) is valid both for potentials I and II. The red curves

of figure 7, therefore, stretch to the right when xf → 0. Quantitatively what happens

is shown in figure 22 and one sees that they approach the T (λh) curve of IHQCD when

xf → 0. This is as expected since only Vg remains in the limit. It is thus obvious that Ts
approaches the transition temperature of IHQCD as xf → 0 (but it may be a transition

between two metastable phases rather than a physical transition).

To find the relative behavior of Ts and Th one needs the asymptotic properties of the

curves Tb(λh) ≡ T (λh, τh(λh,mq = 0)) (shown in blue in figure 7) which only exist for

λ > λend. Here PotI and PotII behave in considerably different ways, as is already seen

from figures 15 and 18.

The crucial difference between PotI (at large W0) and PotII comes from the fact that

for PotI the value of λend (the endpoint of the blue Tb(λh) curves in figure 22) grows

rapidly when xf decreases, while for PotII λend remains almost constant. Since always

Tu(λend) = Tb(λend) and Tu(λh) decreases rapidly at large λh, also the temperature Tend

becomes small at small xf for PotI. This drives the whole curve Tb(λh) towards zero and

since Th is determined by integration along Tb(λh) also Th → 0. Finally λend ceases to exist

when xf goes below a critical value ∼ 0.25, the temperatures Tend and Th reach zero, and

the low temperature chiral symmetry breaking phase disappears.

For PotII Tb(λh) follows very closely TIHQCD above it (figure 22) and it is thus natural

that Th >∼ Ts and that they approach the same limit. Ts is actually metastable (figure 15).

One can also illustrate the connection of the behavior of λend to the BF bound of

the tachyon (figure 3) by analyzing the linearized tachyon equation motion as discussed in

appendix D.

In the limit of xf → xc one expects that all dimensionful quantities sensitive to the IR

vanish as specified by Miransky scaling (1.8). All our numerical results are compatible with

this, but conclusive numerical verification would require extensive further work. Analytic

arguments supporting the scaling, similar to those presented in section 10 of [26], can also

be constructed in the finite temperature case. We shall here, however, only briefly comment

on the scaling as well as the overall behavior of the solutions as xf → xc from below.
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Figure 23. The temperatures Tu(λh), Tb(λh) of the two black hole branches, unbroken and broken,

scaled to the temperature Tend for PotII, W0 SB normalized. The values of xf from top to bottom

are 2.5, 2.75, 3, 3.3, and 3.5. Compare to figures 9 and 13.

We start with the case of zero temperature which is simpler. For xf < xc the dominant

background is the one with nontrivial tachyon, and chiral symmetry is broken. As xf → xc
the solution comes closer and closer to the fixed point, and the near conformal region grows.

As it turns out, the pieces for λ > λ∗ and λ < λ∗ approach separately fixed solutions in

this limit, which do not talk to each other.17 Thus any observable which can be expressed

only in terms of either the UV or the IR solution approaches a fixed value in the xf → xc
limit. The ratio of the characteristic scales of the two pieces diverge as specified by the

Miransky scaling factor of eq. (1.8).

It is hard to find simple examples of such observables at zero temperature, but as

it turns out, at finite temperature there are plenty. However, the analysis of the limit

is more involved, since we have the additional parameter λh we can be either in the UV

(< λ∗) or in the IR (> λ∗) regions. The curve which determines the main features of the

thermodynamics is Tb(λh), which lies mostly in the IR region. Its endpoint λend is however

smaller than λ∗. When λh > λ∗ we expect that the background solution breaks into two

parts similarly as for T = 0 in the limit xf → xc, and the temperature is determined solely

by the IR piece.18 In the limit xf → xc we find19 that λend → λ∗ from below. Therefore

the whole Tb(λh) curve is in the IR region in the strict xf → xc limit, and it is plausible

that it takes a fixed shape.

This behavior is supported by the numerical study of figure 23, where we plot the

temperatures of the two black hole branches as functions of λh for PotII with W0 SB

17More precisely, keeping fixed the scale ΛIR defined by the IR expansions, the background approaches

pointwise a “IR” limiting solution which flows from the good IR singularity to the fixed point at λ = λ∗.

This solution which approaches λ∗ from the “wrong” side is possible due to the presence of the tachyon.

Keeping the UV scale ΛUV fixed instead, the “UV” limiting solution is the one that flows from the IR fixed

point at λ = λ∗ to the standard UV fixed point at λ = 0 with zero tachyon.
18There is a subtlety here as comparing temperatures at different λh requires fixing the units of energy,

which we do by calculating ΛUV. However for λh > λ∗ the UV part of the solution, and hence practically

the units of energy, become independent of λh in the limit xf → xc. Thus we could equally well define the

units in terms of the behavior of the IR piece of the solution near λ = λ∗.
19This is observed numerically, and can be understood by studying the violation of the BF bound in the

spirit of appendix D.
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Figure 24. Examples of equation of state with q̄q condensate. Left : type II SB-normalised

potentials at xf = 3 (compare figures 9 and 13). Note the scaling of σ by a factor 100. Right : type

I potentials with W0 = 12/11 and xf = 3.3 (compare figure 18, middle panel).

normalized. The xf -dependence of the curve Tb(λh) is, up to the overall normalization, so

small for λh � λ∗ that it cannot be resolved from the plot even at relatively low xf . 3.

The main effect with increasing xf is that the Tb(λh) curve is visible down to lower and

lower λh as λ∗ decreases slowly, while the shape of the curve remains fixed. The curve

Tu(λh) approaches a vertical line when scaled to Tend, reflecting the fact that λend → λ∗.

The values of all the critical temperatures (except Tcrossover), as well as all thermody-

namics up to the transitions, are determined by Tb(λh) as xf → xc. Therefore, we expect

that the thermodynamics “freezes” in this limit, in the sense that all ratios of the critical

temperatures approach fixed values. Moreover, the parts of the thermodynamical functions

which are determined by the IR solutions, are expected to have well defined limits. While

we have not proven these statements, they are strongly supported by the numerical study

of figure 23. Notice however, that our data only extends up to xf = 3.5 which is still

well below the critical value xc ' 3.70. Therefore we cannot exclude the possibility that

something drastic happens for xf even closer to xc.

5 The chiral condensate

In principle, it should be straightforward to extract the chiral condensate ∝ σ from the

tachyon solution in the UV

τ(r) ∼ σr3(− ln(Λr))3/(2b0), r → 0, (5.1)

as the quark mass is set to zero. However, in this model the task is actually very demanding

due to the logarithmic corrections (i.e., the running of the condensate) and the fact that

the numerical solutions have a tiny residual quark mass due to limited numerical precision.

These issues and their resolution are discussed in appendix E.

Examples of the correlation of σ with that of the free energy are shown figure 24. One

expects that σ jumps in a 1st order transition. The first case is thermodynamics for SB-

normalised type II potentials at xf = 3, also studied in figures 9 and 13. Cooling from large
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Figure 25. The condensate for the Pot I, W0 = 24
11 phase diagram in the right hand column of

figure 18 at xf = 0.3 in linear (Left) and log (Right) scale. Note the scaling of σ by a factor 1/250

in the left panel. The right panel shows all the three transitions in figure 18.

T chiral symmetry first breaks at the 2nd order transition Tend and the condensate starts

from zero and increases with further cooling. At Th the system experiences a 1st order

transition and σ jumps the amount shown in the figure. Below that σ remains constant in

the present models, which does not describe the thermodynamics of the low T phase. In

that the degrees of freedom are N2
f massless Goldstone bosons.

A second example is thermodynamics with condensate of Type I potentials with W0 =

12/11 and xf = 3.3. This case is special in that in it the 1st order line Th splits in

two 1st order transitions at Th, T12 if xf >∼ 2.8, as shown explicitly in figure 18, middle

panel. Again the highest temperature transition is a 2nd order one at Tend, at which the

condensate starts to grow when the system is cooled. The condensate grows up to the value

σ = 4.537Λ3. Then there is a 1st order transition at T12 with a jump in σ and latent heat:

∆σ

Λ3
= 0.508,

∆ε

T 4
12

= 2.29 (5.2)

and finally a very weak transition at Th with the value

∆ε

T 4
h

= 1.03 · 10−7. (5.3)

It is clear that the value of σ also jumps at the latter transition, but the size of the jump

is so small that we could not extract it reliably from the numerics.

As a third example, consider the case Pot I, W0 = 24
11 at xf = 0.3, which is very special

in that Th is very small and it is Ts which dominates, as is seen in the right hand column

of figure 18. The magnitudes vary so much that all the transitions can be presented only

on log scale, see figure 25.

At the 2nd order transitions the condensate goes to zero continuously as the temper-

ature approaches Tend from below. The curves in figures 24 and 25 seem to be compatible

with the standard expectation σ ∼
√
Tend − T . We study this more precisely in figure 26
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Figure 26. The condensate as a function of Tend − T in log-log scale. The dots are our data,

extracted from the background solutions, and the lines are fits having the form σ = C
√
Tend − T .

The choices of potentials are, from top to bottom: PotI with xf = 3.5 and W0 = 12/11 (red); PotI

with xf = 0.3 and W0 = 24/11 (blue); and PotII with xf = 3 and SB normalized W0 (magenta).

where we plot our data for the condensate for T close to Tend in the log-log scale for various

choices of the potentials. The data are compared to the lines σ = C
√
Tend − T , with the

coefficients C chosen such that the lines overlap with the tails of the data at small Tend−T .

It is convincing that 1/2 is indeed the correct exponent.

6 Nonzero quark mass and thermodynamics

We have so far mainly discussed the case of vanishing quark mass, for which chiral symmetry

may hold. Effects of nonzero quark mass have been mentioned in subsection 3.3.2 and

described in figures 6 and 7. They follow from the fact that tachyonfree black hole solutions

do not exist, as a reflection of the disappearance of chiral symmetry. However, numerically

the tachyonic small-mq solutions are very close to the zero mass tachyonfree solutions in

the UV at small λ, as is seen by comparing left and right panels of figure 7. Thus chiral

symmetry is always broken even in the high-T phase, but quantitative effects are small at

large T .

The effects of small nonzero mq are shown quantitatively in figure 27 and can be

summarised as follows:

• The main effect follows from the fact that for nonzero mq even the high T phase is

chirally broken. The curve marked mq = 0 is the same Th(xf ) as that in figure 13.

For this case the phase at T > Th is chirally symmetric and chiral symmetry is broken

when T decreases below Th. For nonzero mq also the phase at T > Th is chirally

broken and the effective order parameter of the transition is the jump in entropy or

energy density. There is also a jump in the condensate, but the condensate is nonzero

also for T > Th(xf ).

• For xf clearly below xc the effects of small mq on the phase diagram are small.

Particularly interesting is the pattern of approach towards mq = 0. The smaller mq,

the higher is the value of xf where the curves start deviating significantly.
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Figure 27. The behavior of Th(xf ) (in units of 1/LUV, over the xf range in the figure this unit

changes by about 30%) for mq = 0 and for small values of mq. For mq = 0 the dashed line shows

the true 2nd order chiral symmetry breaking transition. For nonzero mq the line shows the position

of one maximum of the interaction measure, a second one gives the usual Tcrossover (which is almost

independent of mq).

• The 2nd order transition at Tend becomes a continuous one. This is obvious from

figure 7, there is no discontinuity near Tend. However, a remnant of the genuine

transition is a maximum of interaction measure, also plotted in figure 27.

• At large xf the conformal window and Miransky scaling disappear. For mq = 0

the transition temperature Th vanishes when xc − xf → 0 as dictated by Miransky

scaling. The smallest nonzero mass destroys this effect and Th curves upwards towards

larger values.

• The effect of nonzero mass could also be seen by plotting the beta function for values

of xf within the conformal window. For mq = 0 only the tachyonless solutions matter

and they extend only up to λ∗ in figure 7. The beta function β(λ) only exists for

λ < λ∗ and β(λ∗) = 0 at the IR fixed point λ∗. For mq > 0 the beta function comes

close to λ∗ but continues past it to larger values of λ.

7 Outlook

In this paper, we have used bottom-up holography to study the thermodynamics of models

that are in the universality class of QCD with massless quarks in the Veneziano limit, (large

Nc and Nf but fixed xf = Nf/Nc).

The temperature dependence of the pressure p(T ) and the condensate σ(T ) = 〈q̄q〉(T )

was computed at various xf up to the loss of asymptotic freedom at xf = 11/2 with

a conformal window appearing at xc < xf < 11/2, xc ≈ 4. The singularities of these

quantities define the phase diagram of the system.

One expects that the system has two phases, a low temperature phase with broken

chiral symmetry and a chirally symmetric high T phase. The simplest alternative is that

these are separated by a 1st order transition at some T = T (xf ), see figure 8. In hologra-

phy, the high T phase is a metric with a black hole and a new feature appears: this phase
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can be either chirally symmetric (no tachyon) or chirally broken (nonzero tachyon). The

same doubling applies to the low T thermal gas phase. The phase structure can be cor-

respondingly more complicated. For given gluonic and fermionic potentials of the V-QCD

action the thermodynamics is fixed and calculable.

A typical prediction of the model is that there indeed is a 1st order line for xf from 0

up to some value ≤ xc. In holography this is a transition at some T = Th(xf ) between a

non-tachyonic black hole metric and a thermal gas metric with a tachyon. In field theory

language one would say that at this temperature there is deconfinement and chiral symme-

try breaking with coinciding deconfinement and chiral temperatures, Td = Tχ. However,

a new interesting feature is that at larger xf this 1st order line can split in two: first at

higher T chiral symmetry is broken in a 2nd order transition, then at a lower T there is a

1st order deconfinement transition (see, e.g., figure 13), Tχ > Td.

A particular feature of the phase diagram is that with xf approaching xc all transition

temperatures, as all mass scales, decrease as specified by Miransky scaling. Associated

with this approach is quasiconformality and walking. At very large T there is always a

weak coupling region into which one enters at Tcrossover. This increases when xf grows,

behaves regularly at xc and continues further into the conformal window increasing faster

and faster (see again figure 13).

Detailed predictions of the model depend on the gluonic and fermionic scalar poten-

tials. There are several physical constraints in deriving them, but they are not uniquely

determined. One crucial constraint is missing: in contrast to the application of this model

to hot SU(Nc) theory [33–35], there is no 4d lattice data in the large Nc, Nf limit. Thus

one is genuinely making predictions and we find that also phase diagrams deviating rather

drastically from the above baseline prediction follow from holography. Particularly striking

examples are shown in figure 18. In these, the chirally symmetric phase can extend all the

way down to zero temperature.

Although we do not expect this to happen in QCD, it may happen in other large N-

theories. The last diagram of figure 18 has a structure that is very reminiscent of the phase

diagram of high-Tc cuprates, although here we are at zero charge density. In particular

the intermediate dome-like structure with chiral symmetry breaking corresponds to the

superconducting dome [78] in the cuprate diagram.

One may also note that the models predict a very rich structure of metastable states.

There are many directions in which the model could be further sharpened and

developed:

• All the computations are numerically very demanding and much further work would

be useful. This holds, in particular, for the approach to the conformal window,

xf → xc, and for computations of the condensate.

• Effects of non-zero quark mass on the thermodynamics should be studied beyond the

discussion in section 6.

• The extension to xf1 flavors of mass m1, etc., is possible but requires a non-abelian

version of the Sen action. This is in principle possible to deal with, although we have

much less information from string theory on the details of such an action.
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• It would be very interesting to accumulate lattice Monte Carlo data in the Veneziano

limit. For pure SU(Nc) theory already Nc = 3 is very close to Nc = ∞ [73, 79].

One might thus see that, e.g., Nf = 4, 8, 12 at Nc = 3 would already give useful

information.

• A chemical potential for baryons should be included. This necessitates the inclusion

of a bulk U(1) baryon vector field Aµ. It would be particularly interesting to know

the fate of the Tχ > Td phase at large xf and µ.
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A UV expansions

The expansions near the standard UV boundary can be computed in a straightforward

manner. Let us fix the location of the boundary at r = 0. The blackening factor f is very

close to unity in the UV,

f(r) = 1 +O(r4) . (A.1)

Therefore the leading finite temperature and zero temperature expansions of the various

fields coincide. Moreover, as the tachyon vanishes at least linearly in r for r → 0, it can

be set to zero when solving for the leading behavior of the coupling λ and the warp factor

A. Hence the expansions take the form familiar from earlier works [30–35]. We reproduce

here the leading expansions of λ and A as well as the expansions of the non-normalizable

and normalizable tachyon expansions both in terms of r and A.

A.1 Fields λ and A

Setting the tachyon to zero, the equations of motion for λ and A involve the

effective potential

Veff(λ) = Vg(λ)− xfVf (λ, 0) =
12

L2
UV

[
1 + V1λ+ V2λ

2 + · · ·
]
. (A.2)
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Then the (leading) UV expansions of A and λ can be found by substituting suitable Ansätze

in the equations of motion. The result reads

A(r) = − ln
r

LUV
+

4

9 ln(rΛ)
(A.3)

+

1
162

[
95− 64V2

V 2
1

]
+ 1

81 ln [− ln(rΛ)]
[
−23 + 64V2

V 2
1

]
ln(rΛ)2

+O
(

1

ln(rΛ)3

)

V1λ(r) = − 8

9 ln(rΛ)
+

ln [− ln(rΛ)]
[

46
81 −

128V2
81V 2

1

]
ln(rΛ)2

+O
(

1

ln(rΛ)3

)
. (A.4)

Two combinations of the series coefficients of the effective potential appear here. As the

potential is matched with perturbative QCD, they become

V1 =
8

9
b0 =

88− 16xf
27

(A.5)

V2

V 2
1

=
23

64
+

9b1
16b20

=
1

64

(
23 +

54(34− 13xf )

(11− 2xf )2

)
(A.6)

where bi are the coefficients of the perturbative QCD beta function. Notice that these

coefficients are indeed the same for all potentials used in our study and in particular

independent of the choice of W0.

Let us also present the expansions in terms of A, as we use it as a coordinate in all

numerical calculations. The result after the conversion reads

ln r(A) = −A+ ln(LUV)− 4

9A
(A.7)

−
72 ln(LUVΛ)− 95 + 64V2

V 2
1

+
(

46− 128V2
V 2
1

)
lnA

162A2
+O

(
A−3

)
V1λ(A) =

8

9A
+

(
46− 128V2

V 2
1

)
lnA+ 72 ln(LUVΛ)

81A2
+O

(
A−3

)
. (A.8)

A.2 The tachyon

As the tachyon is decoupled near the UV boundary, its UV behavior can be studied by

inserting the expansions calculated above for λ and A into the tachyon EoM. We also

develop the potentials as series in the UV:

Veff(λ) = Vg(λ)− xfVf (λ, 0) =
12

L2
UV

[
1 + V1λ+ V2λ

2 + · · ·
]

(A.9)

xVf (λ) = W0 +W1λ+W2λ
2 + · · ·

κ(λ)

a(λ)
=

2L2
UV

3

[
1 + κ1λ+ κ2λ

2 + · · ·
]
. (A.10)

Here the leading coefficient of κ/a was already fixed in order to have the correct UV mass

of the tachyon [37]. It is enough to study the linear terms in the tachyon EoM, which
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become

τ ′′(r) +

[
− 3 +O

(
1

ln(rΛ)2

)]
τ ′(r)

r
(A.11)

+

[
3 +

8(κ1+ V1)

3V1 ln(rΛ)
+O

(
1

ln(rΛ)2

)]
τ(r)

r2
= 0 .

The general solution for r → 0 reads

1

LUV
τ(r) = mqr(− ln(rΛ))

4
3

+
4κ1
3V1

[
1 +O

(
1

ln(rΛ)

)]
(A.12)

+σr3(− ln(rΛ))
− 4

3
− 4κ1

3V1

[
1 +O

(
1

ln(rΛ)

)]
.

Here matching with the perturbative anomalous dimension of the quark mass in QCD gives

4

3
+

4κ1

3V1
= −γ0

b0
= − 9

22− 4xf
(A.13)

where γ0 is the leading coefficient of the anomalous dimension of the quark mass in QCD.

The result can be again written in terms of A, and it becomes

τ(A) = mq L2
UV e

−A (ln(A))
− γ0
b0

[
1 +O

(
A−1

)]
(A.14)

+σL4
UV e

−3A (ln(A))
γ0
b0

[
1 +O

(
A−1

)]
.

A.3 Finite temperature

The basic relations

f(r) = 1−
∫ r

0 dr/b3(r)∫ rh
0 dr/b3(r)

,
1

4πT
= b3h

∫ rh

0

dr

b3(r)
, (A.15)

can be evaluated in the UV by inserting from (A.3)

b = eA =
LUV

r

[
1 +

4

9 ln(Λr)
+

4

9 ln2(Λr)

(
b1
b20

ln(− ln(Λr)) +
11

9
− b1

2b20

)]
. (A.16)

Terms of the order of ln2(ln)/ ln3 are neglected; for these, see [80]. One finds 20∫ r

0

dr

b3(r)
=

r4

4L3
UV

[
1− 4

3 ln(Λr)
− 4

3 ln2(Λr)

(
b1
b20

ln(− ln(Λr)) +
7

12
− b1

2b20

)]
, (A.17)

T =
1

πrh

(
1 +

1

3 ln2(Λrh)

)
. (A.18)

For the quantity bh/T needed for the latent heat one has

bh
T

= πLUV

[
1 +

4

9 ln(Λrh)
+

4

9 ln2(Λrh)

(
b1
b20

ln(− ln(Λrh)) +
17

36
− b1

2b20

)]
. (A.19)

20Ref. [30–32], second paper, equation (D.3), has a different constant in the expansion of T . We have

checked the 1/3 here also numerically.
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B IR expansions

B.1 Zero temperature

Here we first discuss the expansions near the “good” IR singularity at zero temperature.

It is the particular solution which can be lifted to finite temperature. In the IR, the

tachyon potential in the DBI action is expected to be exponentially suppressed. Therefore

the tachyon is again decoupled, and the IR behavior of λ and A can be solved separately

from that of the tachyon. Moreover, the IR expansions of λ and A are exactly the same

as in IHQCD. We will anyhow repeat the discussion for the particular asymptotics of Vg
that matches well with the IR properties of QCD [30–32], which covers all potentials in

this article.

B.1.1 A and λ

Let us assume that the potential Vg has the asymptotic behavior

Vg(λ) = v0λ
4/3
√

lnλ

[
1 +

v1

lnλ
+

v2

ln2 λ
+ · · ·

]
. (B.1)

Then the asymptotic solution reads

A = − r
2

R2
+

1

2
ln
r

R
− lnR− 1

2
ln v0 +

5

4
ln 2 +

3

4
ln 3 +

23

24
+

4v1

3

+
R2
(
−173 + 512v2

1 + 1024v2

)
3456r2

+O
(
r−4
)

(B.2)

= − r
2

R2
+

1

4
ln

3r2

2R2
+A0 +

23

24
+

4v1

3

+
R2
(
−173 + 512v2

1 + 1024v2

)
3456r2

+O
(
r−4
)

(B.3)

lnλ =
3

2

r2

R2
− 23

16
− 2v1 −

R2
(
151 + 512v2

1 + 1024v2

)
2304r2

+O
(
r−4
)

(B.4)

where

eA0 =

√
24

R
√
v0
. (B.5)

The IR scale R = 1/ΛIR is an integration constant here.21 Recall that r does not appear

explicitly in the equations of motion, and therefore there is also an integration constant

related to r: we have the freedom of shifting any solution by r → r + δr. The solution

having the simple r-dependence of eqs. (B.2) and (B.3) corresponds to a special choice of

δr. It will have its UV boundary at an arbitrary value of r (rather than at r = 0). If δr is

fixed instead by requiring the UV boundary to lie at r = 0, a corresponding shift must be

added to the asymptotic formulas. For our choice of Vg,

v0 =
92
(
bYM
0

)2 − 144bYM
1

27L2
0

=
18476

243
(B.6)

v1 =
1

2
; v2 = −1

8
(B.7)

if we set L0 = 1.

21It is not independent of the scale Λ = ΛUV of the UV expansions, i.e., the complete solution from UV

to the IR will have fixed ΛUV/ΛIR.
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Using A as the coordinate, the result reads

r2

R2
= −A+

1

4
ln

(
− 3

2
A

)
+A0 +

23

24
+

4v1

3

−655 + 1152v1 + 512v2
1 + 1024v2

3456A
−

ln(−3
2 A) + 4A0

16A
+O

(
A−2

)
(B.8)

lnλ = −3

2
A+

3

8
ln

(
− 3

2
A

)
+

3

2
A0 −

7 + 16v1 + 3 ln(−3
2 A) + 12A0

32A
+O

(
A−2

)
(B.9)

Various other combinations may be useful. In thermodynamics one needs b = eA in

terms of λ; from (B.9) one can invert:

b =
(3

2

)3/4 4

R
√
v0

1

λ2/3

(2

3
lnλ)1/4

[
1 +O

(
1

lnλ

)]
(B.10)

For the pair of functions q(A) = eAr′(A), λ(A) used in numerics one can derive,

for A→ −∞,

q(A) = −R
2
eA(−A)−1/2

[
1 +

1

8A

(
ln

(
− 3

2
A

)
+ 4A0 +

9

2

)
+O

(
A−2

)]
(B.11)

λ(A) = e−
3
2

(A−A0)

(
− 3

2
A

)3/8[
1− 3

32A

(
ln

(
− 3

2
A

)
+ 4A0 + 5

)
+O

(
A−2

)]
. (B.12)

B.1.2 The tachyon

The IR expansion of the tachyon depends on the large-λ asymptotics of the potentials Vf ,

a, and κ. Recall that the tachyon potential Vf (λ, τ) needs to vanish in the IR [37] in order

to have correct kind of flavor anomalies. All power-law asymptotics for the potentials were

analyzed in [26], and two different acceptable cases were chosen as examples. They are:

I Asymptotics with

a(λ) ∼ λ0 ; κ(λ) ∼ λ4/3 ; Vf0(λ) ∼ λτ̂ (B.13)

where τ̂ < 10/3. This case includes the potentials I and I∗ of this article (for which

τ̂ = 2). The tachyon diverges exponentially for r →∞ (A→ −∞),

τ ∼ eCI
r
R ∼ eCI

√
−A (B.14)

where the coefficient reads for potentials I

CI =
81 35/6(115− 16xf )4/3(11− xf )

812944 21/6
. (B.15)

II Asymptotics with

a(λ) ∼ λσ̂ ; κ(λ) ∼ λ4/3 ; Vf0(λ) ∼ λτ̂ (B.16)
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where σ̂ > 0 and τ̂ can take any value. This case includes the potentials II and II∗
of this article (for which σ̂ = 2/3 and τ̂ = 2). The tachyon diverges for r → ∞
(A→ −∞) as

τ ∼ CII
√
r

R
∼ CII(−A)1/4 (B.17)

where the coefficient reads for potentials II

CII =
27 23/431/4

√
4619

. (B.18)

B.2 Finite temperature

We will work out the finite temperature IR expansions in A-coordinates. Instead of writing

down the explicit expansions as above, it is more convenient to state the relations between

the coefficients of the series expansions. We start by defining the series

f = εf ′h +O(ε2) , f ′(0) = f ′h + εf ′′h +O(ε2), (B.19)

q = qh + εq′h +O(ε2), (B.20)

λ = λh + ελ′h +O(ε2), (B.21)

τ = τh + ετ ′h +
1

2
ε2τ ′′h +O(ε3), (B.22)

where ε = A−Ah is the distance from the horizon, which lies at A = Ah, and all coefficients

are to be evaluated at the horizon. The key input here is f(Ah) = 0. Inserting to the

equations of motion one can solve for six of the nine coefficients listed above:

qh = −
√

3f ′h√
Vg − Vf

, (B.23)

f ′′h = −4f ′h +
q4
h

f ′h

[
1

16
λ2
h

(
∂λVg − ∂λVf

)2
+

(∂τVf )2

6Vfκh

]
, (B.24)

q′h =
q5
h

(f ′h)2

[
1

16
λ2
h

(
∂λVg − ∂λVf

)2
+

(∂τVf )2

6Vfκh

]
= qh

(
4 +

f ′′h
f ′h

)
, (B.25)

λ′h = −
3λ2

hq
2
h

8f ′h

(
∂λVg − ∂λVf

)
, (B.26)

τ ′h =
q2
h∂τ lnVf
f ′hκh

, (B.27)

τ ′′h =
9∂τVf (A+B + C) +D

12κ2
h V

3
f (Vf − Vg)3

, (B.28)

with the abbreviations

A = 6λ2
hκ
′
hV

3
f (∂λVg − ∂λVf ),

B = V 2
f [8∂2

τVf − 3λ2
h(∂λVg − ∂λVf )(κh(∂λVg − 3∂λVf ) + 2κ′hVg)],

C = −2Vf [6∂τVf + Vg(4∂
2
τVf + 3λ2

hκh∂λVf (∂λVg − ∂λVf ))],

D = 27λ2
hκh∂τ∂λVf V

2
f (Vg − Vf )(∂λVg − ∂λVf ). (B.29)
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Here Vg ≡ Vg(λh), Vf ≡ Vf (λh, τh), κ′h = dκ(λh)/dλ, κh = κ(λh). The so far unspecified

three coefficients λh, τh, and f ′h remain as free parameters. However f ′h will be fixed by

requiring the standard normalization of the blackening factor f → 1 in the UV. Therefore

the physically relevant parameters are λh and τh, which can be mapped to the temperature

and the quark mass after the full solution has been found.

C The quark mass and the Efimov solutions

As detailed in [26], the existence of the Efimov vacua is tightly linked to the tachyon mass

at the IR fixed point, plotted in figure 3. In particular, the existence of the full Efimov

tower of vacua with arbitrary number of tachyon nodes is guaranteed if the tachyon mass

violates the BF bound. The same holds at finite temperature: one can always tune λh and

τh such that the solution comes arbitrarily close to the fixed point. When the BF bound is

violated, the tachyon solution is oscillatory in the vicinity of the fixed point. Thus, when

approaching the fixed point the tachyon will achieve arbitrary many nodes, which signals

the presence of the full Efimov tower. In this case the dependence of the quark mass on

λh and τh is the “standard” one, i.e., qualitatively as in figure 5.

There are, however, some cases where either the fixed point is absent, which is the

case for potentials I∗ and II∗ at low xf , or the BF bound is not violated, which is the case,

interestingly, for potentials I at very low xf (as well as in the conformal window for all

potentials). In such cases the picture can be different from figure 5. We shall not give a

detailed description of all possible cases here, but rather discuss some of the main features

and give examples.

The curve τhc (which actually starts at λ∗) exists if and only if there is a fixed point.

If there is no fixed point, the solutions are expected to reach the standard UV boundary

for all values of λh and τh. For the curves τh0, τh1, . . . the situation is more complicated.

At least few of these curves may still exist even if there is no fixed point or if the BF

bound is satisfied at the fixed point. Their existence at asymptotically large λh is linked

to the existence of Efimov solutions at zero temperature: taking λh → ∞ with τh fixed

along the curves, the finite temperature Efimov configurations converge towards their zero

temperature counterparts. In particular, we expect that the chiral symmetry is broken

at zero temperature if and only if τh0 exists at asymptotically large λh. We have found

numerically that the curves are always absent in the conformal window, xf ≥ xc, so that

chiral symmetry is intact. This turns out to be the case also for potentials I at large W0

and low xf , but only in a part of the region where BF bound is satisfied at the fixed point.

See also the phase diagrams in figure 18 of section 4 which show that chiral symmetry is

intact at low xf . For potentials I∗ and at low xf , where no fixed point exists, the curves

are also absent, and chiral symmetry is unbroken. In this case the mq = 0 thermodynamics

is determined by the τ = 0 solution and is qualitatively similar to the Yang-Mills one (see

also figure 19). For potentials II∗ however, at least the leading solution τh0 can always be

found and chiral symmetry is thus broken at low temperatures (see figure 17).
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D Computation of λend

One can also illustrate the connection of the behavior of λend to the BF bound of the

tachyon (figure 3), assuming that we have chosen a set of potentials and value of xf such

that the IR fixed point exists. First we recall that λend can be defined as the endpoint

of the τh0(λh) curve which gives the (non-node) solution with nontrivial tachyon and zero

quark mass (figure 5). In particular, as λh approaches λend from above, τh tends to zero,

and we expect that the whole tachyon solution from the boundary to the horizon becomes

small, and the tachyon decouples from the other fields. Therefore, in order to define λend

it is enough to study the behavior of the tachyon based on the linearized tachyon EoM,

evaluated on a fixed background, obtained by setting the tachyon to zero.

The linearized tachyon equation has the form

τ ′′(r) + F1τ
′(r) + F2τ(r) = 0 (D.1)

where

F1 = 3A′(r) +
f ′(r)

f(r)
+ λ′(r)

∂ lnκ(λ)

∂λ
+ λ′(r)

∂ lnVf0(λ)

∂λ
, (D.2)

F2 =
2e2Aa(λ)

f(r)κ(λ)
.

Here A(r), λ(r), and f(r) are the solutions of the EoMs for τ ≡ 0, which are the same for

potentials I and II. The drastic difference between the potentials, as suggested by figure 3,

thus arises only through the appearances of a and κ in the coefficients (D.2). The regular

tachyon solution, which is finite in the IR, obeys

τ ′(rh)

τ(rh)
= − lim

r→rh

F2

F1
(D.3)

since the double-derivative term in (D.1) is negligible near the horizon.

Nodes of the regular solution to the linear tachyon equation can then be used to

determine λend. For small λh perturbative analysis applies and it is not difficult to see

that the solution is monotonic, without nodes. When λh increases the equation becomes

nontrivial and has to be studied numerically. Usually we observe, that beyond a critical

value of λh a tachyon node appears in the UV. The leading tachyon behavior in the UV is

controlled by the quark mass, which has to vanish at the critical value. We thus identify

the critical value as λend, which was defined as the endpoint of the curve where mq = 0.

Thus the regular solution to the linearized EoM has no nodes for λh < λend and one or

more nodes for λh > λend. It can also happen that λend does not exist, and the tachyon

nodes are absent for all λh.

Since λh can take values from zero to λ∗, we can construct backgrounds which get

arbitrarily close to the IR fixed point at λ = λ∗. If the BF bound for the tachyon is

violated at the fixed point, the tachyon must have nodes as λh → λ∗. We can conclude

that λend, and thus also the curve τh0, exist in this case. This makes sense, since when the

BF bound is violated, chiral symmetry breaking takes place also at zero temperature, which

means the the curve τh0 exist also at asymptotically large λh as discussed in appendix C.
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We can also say something about λend in the probe limit xf → 0. For PotII it seems

that it approaches a fixed value as seen from figure 22 (right). This value can be found

by solving the linearized tachyon EoM with a background evaluated at xf = 0 (i.e., the

IHQCD solution), and by checking if a special value of λh (identified as λend) can be found

where nodes emerge in the tachyon solution. Notice that λ∗ goes to ∞ in the probe limit

so that λh can take any value. Existence of the limiting value of λend as xf → 0 thus

requires that the tachyon has nodes in the limit λh →∞ after first taking the probe limit.

Since zero temperature solutions are obtained for λh →∞, it is plausible that the behavior

of figure 22 (right) is seen if and only if the probe limit system admits tachyon solutions

with nodes (in other words, chiral symmetry breaking) at zero temperature. Recall that

for PotI, for which the different behavior of figure 22 (left) is found, chiral symmetry is

unbroken at low xf .

E Computation of the condensate

In principle, the condensate for an mq = 0 system could be computed from the

UV expansion

τ(r)/LUV = σr3(− ln(Λr))3/(2b0), r → 0, (E.1)

with

A− ln (ΛLUV) =
1

b0λ(A)
+
b1
b20

ln(b0λ(A)) = − ln (Λr) , A→∞, (E.2)

where we dropped corrections of O(A−1). Using this one can define

ln σ̃(A) = ln τ(A)− lnLUV +
3

b0λ(A)
+

3b1
b20

ln(b0λ(A)) +
3

2b0
ln(b0λ(A)), (E.3)

which approaches lnσ for A→∞.

However, our solution for the tachyon, which is obtained numerically by shooting from

the IR, will have a linear term τ ∼ mqr with a tiny quark mass (typically mq ∼ 10−7),

because the IR boundary conditions cannot be fine tuned beyond the numerical accuracy

of the code. The linear term will dominate over the cubic one of eq. (E.2) in the deep

UV. In order to calculate the condensate, we need to separate the linear and cubic terms

from the numerically computed τ(A), and use the cubic solution in eq. (E.3). For σ̃(A)

to be a good approximation to the condensate σ, we need to have A ∼ hundreds. Direct

separation of the linear mq term in this region requires numerical accuracy on the level of

e−hundreds, which is practically impossible to achieve.

To illustrate the difficulty and its resolution, consider a concrete case. Let us take

Potential II, SB normalised, LUV = (1 + 7
4 xf )1/3, xf = 3. This system, when cooled,

has a 2nd order transition at Tend = 1.158Th, above a 1st order transition at Th. This is

concretely seen in figure 9. Since chiral symmetry is broken at Tend we expect that σ(T )

starts growing from zero at Tend and grows when the system is cooled towards Th. As an

example, we evaluate the condensate when T has been cooled to T = 0.95Tend = 1.1Th.

Numerical solution of Einstein’s equations required knowing the values of λh, τh leading

to a certain T with mq = 0. For this potential and T they were λh = 0.4017564, τh =
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τh0(λh,mq = 0) = 0.217984. The computed τ(A) is shown in figure 28. For A up to about

10 one discerns the required r3 ∼ e−3A behavior, but beyond that r ∼ e−A sets in and

extends up to the end point of the computation at A = 400. It is impossible to shoot from

the horizon and get mq = 0 more accurately; note that the tachyon has already decreased

to 10−14 from 0.22 at the horizon.

To impose τ(r) ∼ r3 one must shoot from the boundary, r = 0, A = ∞. In this limit

the evolution of τ decouples from the other bulk fields, of which only λ(A) is relevant since

f ≈ 1. We can thus integrate the tachyon equation from some large A(= 400) using the

λ(A) from Einstein’s equations and imposing as the initial condition τ(A) = e−3A, τ ′(A) =

−3e−3A with small enough normalisation.22 The result is plotted as the curve τUV(A) in

figure 28. One observes that in the range A = 2 . . . 10 the curve behaves accurately as

a constant×τIR(A) and the normalisation can thus be determined. In this way the true

τ(A;mq = 0) plotted in figure 28 is obtained.

Now that the accurate τ(A) is known, ln σ̃(A) can be plotted using eq. (E.3), see

figure 28. For the extrapolation it is even more convenient to plot as a function of λ(A),

see also figure 28. One obtains a nice linear behavior with the asymptotic value lnσ =

−5.1558, σ(T = 0.95Tend) = 0.005766.

If one used the original τ(A,mq = 0) at the largest value of A, A = 10, where the

r3 behavior was obtained, one would have σ̃ = 0.0106. This is too large by a factor 1.82,

not very far off, but actually slightly larger than the expected 10% error from neglecting

the O(A−1) corrections in eqs. (E.2) and (E.3) at this value of A. If we tried using the

τ(A,mq = 0) solution directly, reliable extraction of σ would thus require much higher

numerical precision, as already mentioned above.

After applying the procedure discussed above, the dominant error in the value of σ

arises actually from the matching of the two tachyon solutions that were obtained by

shooting from the UV and from the IR. The solutions are not exactly proportional for

0 . A . 10 due to nonlinearities in the tachyon EoM and coupling to other fields. The

error can be reduced by introducing a further subtraction trick that effectively reduces the

value of mq of the solution that was obtained by shooting form the IR, so that the matching

can be done for slightly higher values of A where the coupling effects are considerably

reduced.

We follow [26] and construct two solutions τ1,2 with small but different values mq1,q2.

Optimal choice is to take |mq| as small as possible and choose one solution with a positive

value and another with a negative one. Then we construct

τIR(A) =
1

1− mq1
mq2

(
τ1(A)− mq1

mq2
τ2(A)

)
(E.4)

where the ratio mq1/mq2 can be accurately determined as the ratio of the solutions τ1/τ2 at

22It is not important to have precisely correct UV boundary conditions, since corrections to the τ ∼ r3

solution will decay fast as the system is solved toward the IR. One should only make sure that the tachyon

is much less than one in the whole region of interest (A & 0) in order to suppress nonlinear effects, or

alternatively use explicitly linearized differential equation for the tachyon.
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ΤIRIA; mq tinyM

ΤUVHAL ΤIA; mq = 0M

PotII, SB, x f = 3, T = 1.1 Th = 0.95 Tend
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Figure 28. The tachyon computed for T = 0.95Tend = 1.1Th. The curve τIR(A,mq = tiny) is

obtained by integrating Einstein’s equations from the horizon and tuning mq = 0 as accurately as

possible. The curve τUV(A) is obtained by integrating the tachyon equation of motion from the UV

at A = 400 using the bulk field λ(A) from Einstein’s equation and imposing τ ∼ r3 in the UV. The

normalisation can be fixed by matching to τIR in the A = 2 . . . 10 range and a reliable τ(A,mq = 0)

for the true mq = 0 tachyon is obtained.
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Figure 29. Extrapolation of the value of lnσ to r = 0, A = ∞, λ = 0, for the potential and

temperature as in figure 28

large A (say A = 400).23 The point is that the constructed τIR has its mq several orders of

magnitude closer to zero than either of the solutions τ1,2. Moreover, the residual dependence

of σ on mq is drastically reduced: the linear corrections cancel in (E.4) (see [26]). The

improved value of σ can now be found by matching τIR with the solution τUV, which was

obtained by shooting from the UV, as discussed above.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.

23There is a small technicality involved in this procedure as the two solutions will in general have different

values of Λ. Changing Λ is equivalent with shifts of A in A-coordinates (see eq. (E.2)), so we can fix the

issue by shifting, say, the solution τ2 by a small ∆A, obtained by requiring that the corresponding solutions

λ1,2 for the coupling match at large A. Notice also that the resulting τIR is only useful in the UV region

A & 0.
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