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Abstract: We perform a frequentist analysis of q2-dependent B → K∗(→ Kπ)ℓ+ℓ−

angular observables at large recoil, aiming at bridging the gap between current theoretical

analyses and the actual experimental measurements. We focus on the most appropriate set

of observables to measure and on the role of the q2-binning. We highlight the importance

of the observables Pi exhibiting a limited sensitivity to soft form factors for the search for

New Physics contributions. We compute predictions for these binned observables in the

Standard Model, and we compare them with their experimental determination extracted

from recent LHCb data. Analysing b → s and b → sℓ+ℓ− transitions within four different

New Physics scenarios, we identify several New Physics benchmark points which can be

discriminated through the measurement of Pi observables with a fine q2-binning. We

emphasise the importance (and risks) of using observables with (un)suppressed dependence

on soft form factors for the search of New Physics, which we illustrate by the different size

of hadronic uncertainties attached to two related observables (P1 and S3). We illustrate

how the q2-dependent angular observables measured in several bins can help to unravel New

Physics contributions to B → K∗(→ Kπ)ℓ+ℓ−, and show the extraordinary constraining

power that the clean observables will have in the near future. We provide semi-numerical

expressions for these observables as functions of the relevant Wilson coefficients at the low

scale.
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1 Introduction

The set of rare B-meson decays mediated by the b → s transition has been thoroughly stud-

ied for many years both from the theoretical and experimental sides. Recently, this set has

been complemented by increasingly precise experimental measurements of q2-dependent

angular observables in the decay B → K∗(→ Kπ)ℓ+ℓ− [1–5]. This has triggered extensive

theoretical work studying the constraining power of radiative and semileptonic B decays

on New Physics in the framework of the weak effective Hamiltonian [6–14]. These con-

straints apply mostly to the Wilson coefficients C(′)
7 , C(′)

9 and C(′)
10 related to the magnetic

and semileptonic operators O7, O9, O10 and the corresponding chirality-flipped operators
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(which are highly suppressed in the Standard Model). In addition, the tight experimental

bounds set in the last few months on the differential decay rate of Bs → µ+µ− [15–18],

pushed it close to its small Standard Model (SM) prediction [19, 20] — the theoretical

and experimental values are actually brought even closer by the Bs mixing correction

O(∆Γs) to Bs branching ratios measured at LHCb, discussed in refs. [21, 22] and applied

to Bs → µ+µ− in ref. [23]. This puts strong constraints on C(′)
10 , as well as on the coef-

ficients C(′)
S and C(′)

P of scalar and pseudoscalar operators, specially when combined with

B → Kℓ+ℓ− data [24, 25].

Small experimental errors and a good control over hadronic uncertainties on the theory

side are the key ingredients for these constraints to be efficient. At present, the branching

ratio of the inclusive radiative decay B → Xsγ, and the CP asymmetry of B → K∗γ

constitute the strongest constraints on the C7-C′
7 plane. However, the complementarity

of constraints among different observables can be exploited to reduce considerably the

parameter space. In this respect, the inclusion of the isospin asymmetry of B → K∗γ,

together with the forward-backward asymmetry AFB and the longitudinal polarization

fraction FL in B → K∗ℓ+ℓ− integrated over the dilepton invariant mass q2 between 1 and

6GeV2 already impose additional nontrivial constraints on the C7-C′
7 plane, as well as on

C(′)
9 and C(′)

10 [6, 7].

This complementarity can be exploited further by considering the q2-dependence of

angular B → K∗ℓ+ℓ− observables. Indeed, increasingly precise measurements of these

observables integrated in smaller bins are being presented, due in part to the important

statistics obtained from the large data sets collected at the LHCb experiment. This in turn

allows for more complete angular analyses providing more observables [4]. The prospects

for the near future are very good, aiming towards a complete angular analysis with a fine

q2-binning.

At this point, it becomes crucial to handle theoretical uncertainties as accurately as

possible. The lack of huge deviations in B physics up to now forces us to be precise and

conservative in our theoretical predictions. Before claiming any discrepancy, indication

or discovery of New Physics, one must be sure that a description in terms of observables

with little dependence on the specific choice of hadronic parameters has been used. While

the uncertainties related to the form factors constitute a dominant part of the theoretical

error, there is a wide spread of quoted uncertainties for B → K∗ form factors in the recent

literature, ranging from a ∼ 10% to a ∼ 40% error for the same form factor [26, 27].

The size of this error does not depend only on the particular theoretical method used to

compute the form factor, but also on the delicate estimation of errors associated to the

assumptions built in each procedure. For example, the values A0(0) = 0.33 ± 0.03 and

V (0) = 0.31± 0.04 given in ref. [26] should be compared to the values A0(0) = 0.29± 0.10

and V (0) = 0.36±0.17 as quoted in ref. [27]. Even central values have shifted significantly,

see for instance the value V (0) = 0.41±0.05 from ref. [28] before its update of ref. [26] (also

consistent with ref. [29]). Without attempting to discuss the related conceptual issues in

any further depth, it is clear that the impact of such discrepancies between different groups

concerning hadronic uncertainties can be reduced greatly if one selects quantities that show
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a suppressed dependence on the soft form factors, such as the observables Pi or A
i
T defined

in refs. [30–32]. These observables can be considered as being theoretically clean in the

kinematic range of interest here.

The construction of theoretically clean observables in B → K∗ℓ+ℓ− has been the

subject of theoretical work for some time [30–35]. Based on the symmetries of the B →
K∗ℓ+ℓ− angular distribution discussed in ref. [33], a complete characterization of the full

distribution in terms of a minimal basis of clean observables has recently been proposed [32].

The conclusion is that, a complete description of the differential decay rate in the limit of

massless leptons and in the absence of scalar contributions can be achieved through a set of 6

clean observables P1,2,3,4,5,6 complemented by two observables with a significant sensitivity

to form factors, e.g., the differential decay rate and the forward-backward asymmetry AFB

(or equivalently FL).
1 In a short term, these clean observables (Pi) should play a leading

role in detecting deviations from the SM in a safe way, relegating less clean observables

such as 〈AFB〉, 〈FL〉 or 〈S3〉 to a secondary role of useful cross-checks.

Measurements of the transverse asymmetry A
(2)
T have been already provided by the

CDF collaboration [2]. However, there has recently been some reluctance from the exper-

imental side to extract such clean observables because their theoretical predictions have

been mostly presented as functions of q2, while the experimental results are obtained inte-

grated in q2-bins. This issue becomes relevant when a coefficient in the angular distribution

is expressed as a product of various observables. For example, in ref. [4], the authors prefer

to fit for FL and S3 instead of FL and A
(2)
T (where S3 ∼ (1−FL)A

(2)
T ), arguing that a rapid

variation of both FL and A
(2)
T with q2 could result in a biased estimate of A

(2)
T when aver-

aging over large q2-bins. This is a perfectly correct statement if one wishes to compare the

experimental measurements with (differential) q2-dependent observables such as A
(2)
T (q2).

Actually, in the specific case of A
(2)
T (for the SM case as well as for particular NP values of

the Wilson coefficients involved), we observed a very good agreement between the observ-

able integrated naively over the low-q2 bins (i.e.,
∫

bin dq
2A

(2)
T ) and its value derived from

the binned observables as they are being measured (denoted 〈A(2)
T 〉bin and defined in the

next section), showing that the bias is small in this particular case. Though encouraging,

this remark will not prevent us from trying to simplify the comparison between theory and

experiment by providing theoretical predictions for the exact integrated quantities as mea-

sured in experiments. These kind of integrated observables have been already discussed in

the context of other transverse asymmetries in refs. [11, 35].

In the present paper we address precisely how to analyse efficiently the LHCb mea-

surements on B → K∗ℓ+ℓ− at large recoil by choosing a set of clean observables integrated

over q2-bins. We begin by building a set of integrated observables that correspond in the

limit of small binning to the observables in ref. [32], with the aim of making contact with

experimentally measurable quantities. In sections 2 and 3, we present Standard Model pre-

dictions for these integrated observables, providing the results for different choices of the

1Mass and scalar effects can be taken into account by including 4 extra clean observables (see ref. [32]).

The explicit form of the symmetries in the presence of mass terms and scalar operators can be found in the

same paper.
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q2-binning. In section 4 we perform a model-independent analysis setting constraints on the

Wilson coefficients C(′)
7 , C(′)

9 and C(′)
10 , using data from radiative B decays and including the

forward-backward asymmetry and the longitudinal polarization fraction of B → K∗ℓ+ℓ−,

both integrated in the full low-q2 bin [1, 6]GeV2. This updates the analysis of refs. [6, 7]

(and related analyses) with several improvements. We use these results to identify a num-

ber of New Physics “benchmark points” that are allowed at the 95.5% confidence level

by all the constraints considered. In section 5 we discuss the potential complementarity

of q2-dependent observables in B → K∗ℓ+ℓ− by analyzing our set of clean observables

within the NP scenarios specified by the benchmark points. This analysis indicates the

scenarios that are more likely to be affected predominantly by the binned observables in

B → K∗ℓ+ℓ−.

In section 6 we open up a parenthesis to discuss the impact of hadronic uncertainties

on the different observables, and the resulting model-independent constraints that follow

from different choices of observables. We demonstrate the advantages of using a complete

set of clean observables as the one introduced in section 2 and ref. [32].

We then address the model-independent constraints from q2-dependent observables in

section 7. We extract the experimental values for the three clean observables (P1, P2 and

P3) that can be related to the measurements provided in ref. [4]. Our determinations are

affected by uncertainties that could be considerably improved, since we lack the exper-

imental information concerning the correlation between the LHCb measurements, which

is essential to assess uncertainties in a proper and accurate way. The constraints from

q2-dependent observables are studied in section 8. First we consider the constraints from

the measured AFB and FL in the two q2-bins [2, 4.3], [4.3, 8.68]GeV2, then we turn to the

constraints imposed by the clean observables P1,2,3 in the same bins. In section 9, we

compare briefly our study with other similar works.

After concluding in section 10, we include in appendix A the expression of the coeffi-

cient J8 in term of observables and in appendix B a collection of the relevant formulas used

to derive the New Physics constraints. In particular we provide the explicit expressions

of the clean integrated observables used throughout the paper, for the different choices of

q2-binning. In appendix C we describe the statistical approach used in the fits.

As a summary of the most important findings, we anticipate the following conclusions

of this work:

• Three (P1,2,3) out of the six clean observables describing the massless distribution

can already be extracted from current measurements, as shown in section 7. While

P3 sets no relevant constraints yet, P1 and P2 are complementary to other radiative

and semileptonic observables. Combining the measurements of P2 in two different

bins leads to a mild tension with respect to the SM, compatible at 95.5%C.L. but

pointing towards a negative contribution to the Wilson coefficient C7.

• The explicit form of the coefficients of the massless angular distribution in terms of

the basis of observables is given in eq. (2.13). The expressions turn out to be very

simple and exhibit two important features:
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– A more natural basis devised to extract information from the distribution in a

clean way emerges in the massless case, with a slight redefinition of the observ-

ables P4,5,6 → P ′
4,5,6, which are also clean and defined in eqs. (2.14)–(2.16) (in

the SM P4,5,6 ∼ P ′
4,5,6 to a very good approximation).

– The clean observables in the natural basis (P1,2,3, P
′
4,5,6) can be related to form-

factor sensitive observables Si through the following simple rule:

S3,6,9

FT
→ P1,2,3 ,

S4,5,7√
FTFL

→ P ′
4,5,6 , (1.1)

where the exact relationships are given in eqs. (2.4) and (2.17).

• The “flipped-sign solution” for C7 is in general disfavoured by present data at the

95.5% confidence level depending on the NP scenario considered. The isospin asym-

metry in B → K∗γ plays an important role (independent of Wilson coefficients other

than C(′)
7 ), as well as the forward-backward asymmetry in B → K∗ℓℓ. This confirms

the result of refs. [6, 7].

• We show explicitly the strong impact of the different computations available in the

literature for the soft form factors on the theoretical uncertainties for observables like

AFB, FL and S3, and the robustness of the clean observables Pi. While the impact

on the theoretical error in FL is evident, the problem for observables like S3 is more

subtle. In the case of S3 the theoretical uncertainty in the SM is protected by its tiny

central value, but away from the SM point the impact can be substantial, preventing

this observable from discriminating NP scenarios. None of these problems affect the

clean observables Pi or A
i
T .

2 Integrated observables in q2-bins

The differential decay rate of the process B̄d → K̄∗(→ Kπ)ℓ+ℓ− can be written as:

d4Γ

dq2 dcos θK dcos θl dφ
=

9

32π

[

J1s sin
2 θK + J1c cos

2 θK + (J2s sin
2 θK + J2c cos

2 θK) cos 2θl

+J3 sin
2 θK sin2 θl cos 2φ+ J4 sin 2θK sin 2θl cosφ+ J5 sin 2θK sin θl cosφ

+(J6s sin
2 θK + J6c cos

2 θK) cos θl + J7 sin 2θK sin θl sinφ+ J8 sin 2θK sin 2θl sinφ

+J9 sin
2 θK sin2 θl sin 2φ

]

, (2.1)

where the kinematical variables φ, θℓ, θK , q2 are defined as in refs. [26, 32, 35]. The decay

rate Γ̄ of the CP-conjugated process Bd → K∗(→ Kπ)ℓ+ℓ− is obtained from eq. (2.1) by

replacing J1,2,3,4,7 → J̄1,2,3,4,7 and J5,6,8,9 → −J̄5,6,8,9, where J̄ is equal to J with all weak

phases conjugated. This corresponds to the same definition of θℓ for both B and B̄ (see

for example [26, 36]). In this paper we assume that all the observables are CP-averaged,

and so are always functions of Ji + J̄i. Therefore, Ji → Ji + J̄i and Γ → Γ + Γ̄ should

be understood in all the formulas below, and in particular all the observables O(J) are

assumed to be O(J + J̄).
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In order to cope with limited statistics, one can write down integrated distributions,

such as the uniangular distributions, which depend on a subset of coefficients Ji. This is

the way observables such as FL, AFB or A
(2)
T have been measured traditionally. A more

recent approach deals with “folded” distributions, with the double advantage of increasing

the statistics and focusing on a restricted set of angular coefficients. For example, in ref. [4],

the identification of φ ↔ φ + π has been used to produce a “folded” angle φ̂ ∈ [0, π] in

terms of which a (folded) differential rate dΓ̂(φ̂) = dΓ(φ) + dΓ(φ− π) becomes

d4Γ̂

dq2 dcos θK dcos θl dφ̂
=

9

16π

[

J1c cos
2θK + J1s(1−cos2θK) + J2c cos

2θK(2 cos2θℓ−1)

+J2s(1−cos2θK)(2 cos2θℓ−1)+J3(1−cos2θK)(1−cos2θℓ) cos 2φ̂

+J6s(1−cos2θK) cos θℓ+J9(1−cos2θK)(1−cos2θℓ) sin 2φ̂
]

. (2.2)

In the following we will neglect scalar and lepton mass effects. A detailed analysis of the

impact of neglecting lepton masses can be found in ref. [37]. Concerning scalar contribu-

tions, two observables called S1 and S2 were designed in ref. [32] to explore the measurable

impact of scalar effects. However, the strong constraint from the Bs → µ+µ− branching

ratio already makes these effects negligible. Still it will be interesting to include these

corrections once enough statistics is collected.

In this approximation, this distribution can be written as a function of the observables

in ref. [32] as follows:

d4Γ

dq2 dcos θK dcos θl dφ̂
=

9

16π

[

FL cos2 θK+
3

4
FT (1−cos2 θK)−FL cos2 θK(2 cos2 θℓ−1)

+
1

4
FT (1−cos2 θK)(2 cos2 θℓ−1)+

1

2
P1FT (1−cos2 θK)(1−cos2 θℓ) cos 2φ̂

+2P2FT (1−cos2 θK) cos θℓ−P3FT (1−cos2 θK)(1−cos2 θℓ) sin 2φ̂

]

dΓ

dq2
, (2.3)

where P1, P2 and P3 are theoretically clean observables [32] that in terms of form factor

dependent observables2 are given as

P1FT = 2S3 , P2FT = S6s/2 , P3FT = −S9 , (2.4)

or alternatively,3

P2FT = −2AFB/3 , P3FT = −Aim . (2.5)

The quantity FT is defined as FT ≡ 1−FL. The observable P1 is better know by its original

name, A
(2)
T [30].

2The observables Si are defined as Si = (Ji + J̄i)/(Γ̄ + Γ) [26], while Aim = S9 [31].
3Note that the cos θℓ term in eq. (2.3) has opposite sign with respect to ref. [4] because of the different

definition of the angle θℓ: θ
us
ℓ = π − θLHCb

ℓ for the B̄ decay.
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Experimentally, one can fit separately each of the following five independent coefficients

that appear in the folded distribution in eq. (2.3):

c0(q
2) =

dΓ

dq2
, c1(q

2) = P1FT
dΓ

dq2
, c2(q

2) = P2FT
dΓ

dq2
,

c3(q
2) = P3FT

dΓ

dq2
, c4(q

2) = FT
dΓ

dq2
.

(2.6)

For each q2 one can then in principle extract the theoretically clean observables P1 ≡
A

(2)
T , P2 and P3, as well as the transverse polarization fraction and the differential decay

rate. However, in practice the q2-dependence is discretised in a number of bins, and the

coefficients ci(q
2) thus extracted are quantities integrated over particular q2-intervals:

〈ci〉bin =

∫

bin dq
2ci(q

2)
∫

bin dq
2

. (2.7)

One could hope to be able to extract also corresponding integrated theoretically clean

observables such as

〈A(2)
T 〉(naive)bin =

∫

bin dq
2A

(2)
T (q2)

∫

bin dq
2

, (2.8)

but due to the experimental procedure used, such a determination is achievable asymptot-

ically only, as the bin size goes to zero. The actual theoretically clean quantities that can

be extracted from experiment and on which we will focus from now on, must be composed

of the integrated quantities in eq. (2.7):

〈P1〉bin ≡ 〈A(2)
T 〉bin =

∫

bin dq
2c1(q

2)
∫

bin dq
2c4(q2)

=
〈c1〉bin
〈c4〉bin

, (2.9)

〈P2〉bin =

∫

bin dq
2c2(q

2)
∫

bin dq
2c4(q2)

=
〈c2〉bin
〈c4〉bin

, (2.10)

〈P3〉bin =

∫

bin dq
2c3(q

2)
∫

bin dq
2c4(q2)

=
〈c3〉bin
〈c4〉bin

. (2.11)

Other observables are accessible to the current LHCb data set by means of similar par-

tial angular analyses. Three observables related to P4, P5 and P6 (see ref. [32]) could be

extracted by the LHCb collaboration in the near future. This means that, without actu-

ally performing a full angular analysis, the LHCb collaboration could be able to provide

measurements of the complete set of 8 observables that describe the full distribution in

the massless approximation (six of them being theoretically clean [32]). Therefore, we will

work here under the assumption that integrated versions (exactly as in eq. (2.7)) of the

observables c0,1,2,3,4 and J4,5,7 are available experimentally. Any measurable observable

must be a combination of the 〈ci〉bin in eq. (2.7), and of the observables:

〈J4,5,7〉bin =

∫

bin dq
2J4,5,7(q

2)
∫

bin dq
2

. (2.12)
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The coefficients of the angular distribution can be written in terms of the basis of

observables (see ref. [32]), and in terms of the coefficients ci of eq. (2.6) as follows:
4

J1s =
3

4
FT

dΓ

dq2
=

3

4
c4 , J2s =

1

4
FT

dΓ

dq2
=

1

4
c4

J1c = FL
dΓ

dq2
= c0 − c4 , J2c = −FL

dΓ

dq2
= c4 − c0 ,

J3 =
1

2
P1FT

dΓ

dq2
=

1

2
c1 , J6s = 2P2FT

dΓ

dq2
= 2c2 ,

J4 =
1

2
P ′
4

√

FTFL
dΓ

dq2
=

1

2
P ′
4

√

c4(c0 − c4) , J9 = −P3FT
dΓ

dq2
= −c3 ,

J5 = P ′
5

√

FTFL
dΓ

dq2
= P ′

5

√

c4(c0 − c4) ,

J7 = −P ′
6

√

FTFL
dΓ

dq2
= −P ′

6

√

c4(c0 − c4) , (2.13)

where the primed observables are defined as:

P ′
4 ≡ P4

√

1− P1 =
J4√

−J2cJ2s
(2.14)

P ′
5 ≡ P5

√

1 + P1 =
J5

2
√
−J2cJ2s

(2.15)

P ′
6 ≡ P6

√

1− P1 = − J7

2
√
−J2cJ2s

(2.16)

The case of the coefficient J8 is discussed separately in detail in appendix A. These observ-

ables P ′
4,5,6 are clean and coincide to a good approximation with P4,5,6 in the SM (due to

the fact that P1 ≃ 0 in the SM). The whole analysis can be performed directly in terms

of the observables P4,5,6 ; however, from the experimental point of view, fitting the primed

observables is simpler and more efficient.

These observables can be related to the observables S4,5,7 of ref. [26]:

P ′
4 = 2

S4√
FTFL

, P ′
5 =

S5√
FTFL

, P ′
6 = − S7√

FTFL

. (2.17)

There is therefore no particular advantage for the experimental extraction of the observables

Si instead of the P ′
i , while from the theory point of view the P ′

i are under better control

and suffer from smaller uncertainties.

We want now to construct the theoretically clean integrated observables that corre-

spond to those in ref. [32] (or variations thereof). For P1,2,3 the answer is precisely 〈P1〉bin,
〈P2〉bin and 〈P3〉bin defined in eqs. (2.9)–(2.11). In analogy with eqs. (2.9)–(2.11), integrated

4A generalization of this parameterization including scalars and lepton masses can be found in ref. [32].

An alternative parametrization including lepton masses is given in ref. [37].
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versions of the observables P ′
4,5,6 can be defined:

〈P ′
4〉bin =

2
∫

bin dq
2J4(q

2)
√

∫

bin dq
2c4(q2)

∫

bin dq
2(c0(q2)−c4(q2))

=
2〈J4〉bin

√

〈c4〉bin
(

〈c0〉bin−〈c4〉bin
)

, (2.18)

〈P ′
5〉bin =

∫

bin dq
2J5(q

2)
√

∫

bin dq
2c4(q2)

∫

bin dq
2(c0(q2)−c4(q2))

=
〈J5〉bin

√

〈c4〉bin
(

〈c0〉bin−〈c4〉bin
)

, (2.19)

〈P ′
6〉bin =

−
∫

bin dq
2J7(q

2)
√

∫

bin dq
2c4(q2)

∫

bin dq
2(c0(q2)−c4(q2))

=
−〈J7〉bin

√

〈c4〉bin
(

〈c0〉bin−〈c4〉bin
)

. (2.20)

Finally, integrated versions of the longitudinal polarization fraction FL and the forward-

backward asymmetry AFB can be defined in terms of the coefficients ci in the following way:

〈AFB〉bin = −3

2

∫

bin dq
2c2(q

2)
∫

bin dq
2c0(q2)

= −3

2

〈c2〉bin
〈c0〉bin

, (2.21)

〈FL〉bin =

∫

bin dq
2(c0(q

2)− c4(q
2))

∫

bin dq
2c0(q2)

=
〈c0〉bin − 〈c4〉bin

〈c0〉bin
. (2.22)

In the following sections we will study these integrated observables in detail.

3 SM predictions for integrated observables

We can provide SM predictions for the set of integrated observables 〈Pi〉 as well as 〈AFB〉
and 〈FL〉. In tables 1 and 2 we show the predictions in the q2-bins [1,2], [2,4.3], and

[4.3,6] (GeV2) — following the binning used by the experimental collaborations up to now

(except for the first bin) — as well as the predictions for the integrated low-q2 observables,

in the region [1,6]GeV2. The first error accounts for all parametric uncertainties, while

the second error corresponds to an estimate of Λ/mb corrections, as described below. In

figures 1, 2 and 3 we show the corresponding SM predictions for the observables in the case

of one and three bins (corresponding to the predictions in tables 1 and 2), as well as for

five bins with a width of 1GeV2.

The SM predictions are obtained as follows. The observables integrated over each

bin are defined in terms of the coefficients ci(q
2) in eqs. (2.9)–(2.11), (2.18)–(2.20), (2.21)

and (2.22). The coefficients ci(q
2) are simple functions of transversity amplitudes (see

for example ref. [32]). The transversity amplitudes can be written in terms of Wilson

coefficients and B → K∗ form factors following refs. [38, 39]. Concerning the Wilson

coefficients, the form factors, and the treatment of uncertainties, we proceed as in refs. [6,

7, 32], with a slight revision in the treatment of form factors:

Wilson coefficients. The SM Wilson coefficients are evaluated at the matching scale

µ0 = 2MW , and evolved down to the hadronic scale µb = 4.8GeV following refs. [40–

44]. The running of quark masses and couplings proceeds analogously. The SM Wilson

coefficients at the scale µb are shown in table 3.
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q2 (GeV2) [ 1 , 2 ] [ 2 , 4.3 ] [ 4.3 , 6 ] [ 1 , 6 ]

〈P1〉 0.008+0.009+0.051
−0.005−0.053 −0.051+0.010+0.048

−0.009−0.050 −0.100+0.001+0.049
−0.001−0.053 −0.055+0.009+0.049

−0.008−0.052

〈P2〉 0.395+0.020+0.011
−0.021−0.012 0.227+0.055+0.014

−0.083−0.016 −0.254+0.063+0.034
−0.068−0.035 0.080+0.054+0.020

−0.073−0.021

〈P3〉 −0.003+0.001+0.025
−0.002−0.028 −0.004+0.001+0.023

−0.003−0.025 −0.002+0.001+0.022
−0.002−0.024 −0.003+0.001+0.023

−0.002−0.025

〈P ′

4〉 −0.160+0.036+0.024
−0.027−0.025 0.570+0.067+0.000

−0.054−0.002 0.944+0.025+0.000
−0.025−0.004 0.553+0.060+0.004

−0.050−0.008

〈P ′

5〉 0.369+0.044+0.000
−0.061−0.002 −0.343+0.089+0.043

−0.108−0.046 −0.774+0.061+0.087
−0.059−0.093 −0.353+0.081+0.050

−0.095−0.053

〈P ′

6〉 −0.095+0.025+0.012
−0.042−0.011 −0.092+0.029+0.026

−0.045−0.024 −0.074+0.027+0.051
−0.038−0.046 −0.085+0.027+0.033

−0.041−0.029

Table 1. SM predictions for the clean observables 〈Pi〉.

q2 (GeV2) [ 1 , 2 ] [ 2 , 4.3 ] [ 4.3 , 6 ] [ 1 , 6 ]

〈AFB〉 −0.214+0.111+0.003
−0.144−0.002 −0.079+0.053+0.004

−0.065−0.003 0.112+0.086+0.017
−0.065−0.016 −0.034+0.035+0.009

−0.033−0.008

〈FL〉 0.638+0.185+0.007
−0.236−0.006 0.769+0.129+0.006

−0.194−0.006 0.706+0.151+0.004
−0.201−0.004 0.719+0.149+0.006

−0.208−0.006

Table 2. SM predictions for 〈AFB〉 and 〈FL〉.

Form factors. There are seven B → K∗ form factors: V (q2), A0,1,2(q
2) and T1,2,3(q

2).

Their determination involves the computation at q2 = 0 and the parameterization of the

q2-dependence. At q2 = 0, these form factors can be obtained from light-cone sum rules

with B-meson distribution amplitudes (see ref. [27]). Concerning their dependence on q2,

ref. [27] provides a conservative and convenient parameterization (the prospects for these

form factors from lattice QCD have been discussed in detail in ref. [34]). The soft form

factors ξ‖,⊥ are defined in terms of the full form factors following ref. [39]. The soft form

factor ξ⊥(0) at q
2 = 0 is obtained directly from V (0) as given in ref. [27]. The form factor

ξ‖(0) is defined as a combination of the form factors A1(0) and A2(0), and in the large-recoil

limit and at leading order in αs it is proportional to A0(0). We use A0(0) to fix ξ‖(q
2) at

q2 = 0 to a good accuracy, and set its q2-dependence to reproduce its exact expression in

terms of A1(q
2) and A2(q

2) using the parameterization of ref. [27]. The numerical inputs

used are collected in table 3.

In the present paper we take the form factors of ref. [27] for two reasons. The first

one is to be consistent with the analysis of ref. [32]. The second is to be conservative in

the treatment of hadronic uncertainties, showing at the same time that clean observables

are mostly insensitive to this choice. The use of the value for V (0) from ref. [26] would

shift the central values of AFB and FL in the whole low-q2 region, while only a mild effect

around q2 ≃ 6GeV2 would be seen in some of the Pi observables. These form factors have

much larger uncertainties than those of refs. [26, 28], and translate into large error bars in

AFB, FL and other form factor dependent observables.

This difference in the size of the uncertainties can be partly explained by the approaches

taken to apply light-cone sum rules in refs. [26, 28] and [27]. In refs. [26, 28], the sum rules

are written using the light-meson distribution amplitudes up to twist 4 and including

O(αs) corrections. In ref. [27], the sum rules are written for the B-meson distribution

– 10 –



J
H
E
P
0
1
(
2
0
1
3
)
0
4
8

µb = 4.8GeV µ0 = 2MW [45]

mB = 5.27950GeV [46] mK∗ = 0.89594GeV [46]

mBs
= 5.3663GeV [46] mµ = 0.105658367GeV [46]

sin2 θW = 0.2313 [46]

MW = 80.399± 0.023GeV [46] MZ = 91.1876GeV [46]

αem(MZ) = 1/128.940 [45] αs(MZ) = 0.1184± 0.0007 [46]

mpole
t = 173.3± 1.1GeV [47] m1S

b = 4.68± 0.03GeV [48]

mMS
c (mc) = 1.27± 0.09GeV [46] mMS

s (2GeV) = 0.101± 0.029GeV [46]

λCKM = 0.22543± 0.0008 [49] ACKM = 0.805± 0.020 [49]

ρ̄ = 0.144± 0.025 [49] η̄ = 0.342± 0.016 [49]

B(B → Xceν̄) = 0.1061± 0.00017 [45] C = 0.58± 0.016 [45]

λ2 = 0.12GeV2 [45]

Λh = 0.5GeV [50] fB = 0.190± 0.004GeV [51]

fK∗,|| = 0.220± 0.005GeV [26] fK∗,⊥(2GeV) = 0.163(8)GeV [26]

V (0) = 0.36+0.23
−0.12 [27] A0(0) = 0.29+0.10

−0.07 [27]

a1,||,⊥(2GeV) = 0.03± 0.03 [26] a2,||,⊥(2GeV) = 0.08± 0.06 [26]

λB(µh) = 0.51± 0.12GeV [26]

fBs
= 0.227± 0.004GeV [51] τBs

= 1.497± 0.015 ps [46]

C1(µb) C2(µb) C3(µb) C4(µb) C5(µb) C6(µb) Ceff
7 (µb) Ceff

8 (µb) C9(µb) C10(µb)

−0.2632 1.0111 −0.0055 −0.0806 0.0004 0.0009 −0.2923 −0.1663 4.0749 −4.3085

Table 3. Input parameters used in the analysis and Wilson coefficients at µb.

amplitudes up to twist 3 — they include the (significant) soft-gluon emission from charm

loops not considered in refs. [26, 28], but neglect the radiative corrections included in these

references, as well as 1/mb HQET corrections. Therefore the two analyses are only partially

comparable, which explains why the quoted uncertainties differ in size. But one should

also emphasise that beyond the approach taken, the hadronic inputs, i.e., the models used

for the distribution amplitudes, play a crucial role concerning the uncertainties quoted for

the form factors: in the case of light mesons [26, 28], the shapes are constrained by results

coming from other light-cone sum rules, whereas in the case of the B meson [27], a large

range of variation for the shape models is allowed. At any rate, the discrepancy between

refs. [26, 28] and ref. [27] is a clear indication that the theoretical uncertainties attached

to these observables (i.e., AFB, FL) in the literature should be considered with a healthy

dose of skepticism, and are strongly dependent on the choice of the B → K∗ form factors.

Fortunately, it will be seen in section 6 that the error bars for the clean observables Pi

are not affected by this variation of the form factor uncertainties and remain under good

theoretical control.

Uncertainties. We consider five main sources of uncertainties: the renormalization scale

µb, the quark mass ratio m̂c ≡ mc/mb, the form factors, the factor that determines the

– 11 –



J
H
E
P
0
1
(
2
0
1
3
)
0
4
8

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.0

0.2

0.4

1 2 3 4 5 6

-0.2

-0.1

0.0

0.1

0.2

1 2 3 4 5 6

-0.2

-0.1

0.0

0.1

0.2

1 2 3 4 5 6

-0.2

-0.1

0.0

0.1

0.2
〈P

1
〉

〈P
1
〉

〈P
1
〉

〈P
2
〉

〈P
2
〉

〈P
2
〉

〈P
3
〉

〈P
3
〉

〈P
3
〉

q2 (GeV2)q2 (GeV2)q2 (GeV2)

q2 (GeV2)q2 (GeV2)q2 (GeV2)

q2 (GeV2)q2 (GeV2)q2 (GeV2)

Figure 1. Binned Standard Model predictions for the clean observables 〈P1,2,3〉, for a single bin

[1, 6]GeV2 (left column), three bins [1, 2], [2, 4.3], [4.3, 6]GeV2 (central column), and five bins

of width 1GeV2 each (right column). The red (dark gray) error bar correspond to the Λ/mb

corrections, the yellow one (light gray) to the other sources of uncertainties. If one of the two bands

is missing, it means the associated uncertainty is negligible compared to the dominant one.

relative size of the hard-scattering term with respect to the form factor contribution to the

amplitude (defined in eq. (55) of ref. [38]) and the Λ/mb power corrections.

We follow the usual procedure consisting in varying the renormalization scale from µb/2

to 2µb. For m̂c we take m̂c = 0.29±0.02 (see refs. [38, 52]). Concerning the form factors: we

express all the observables as a function of A0(q
2) and V (q2). The q2-parameterization of

these form factors (that of ref. [27]) depends on the normalisation parameters A0(0), V (0)

as well as bV1 and bA0
1 (encoding the q2-dependence of the form factor in the so-called z-

parametrisation). We vary simultaneously V (0) and bV1 , and independently, A0(0) and bA0
1 ,
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Figure 2. Binned Standard Model predictions for the clean observables 〈P ′

4,5,6〉, with the same

conventions as in figure 1.

within the errors quoted in table 3 and ref. [27]. The two errors are added in quadrature.

Concerning the parameter describing the relative weight of the hard-scattering contribution

compared to the form-factor one in ref. [38], its error is estimated at the level of a 25%,

where its reduction with respect to ref. [32] (where it was 30%) is due to the updated value

of fB [51]. Finally, for Λ/mb corrections, we follow the statistical procedure outlined in

ref. [33] to produce upper and lower 1σ ranges consistent with a generic 10% contribution of

power corrections to the amplitudes. All individual uncertainties are considered separately

and their impact on each observable is monitored to produce asymmetric upper and lower

errors. All upper and lower uncertainties, excluding Λ/mb corrections, are added separately

in quadrature to produce the first asymmetric error bars shown in tables 1 and 2, and the

yellow bands in figures 1, 2 and 3. The second error bars in tables 1 and 2 correspond to
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Figure 3. Binned Standard Model predictions for the observables 〈AFB〉 and 〈FL〉, with the same

conventions as in figure 1.

the Λ/mb corrections. In figures 1, 2 and 3, both uncertainties are added linearly to give

the larger red error bands.

As can be seen from the plots, some observables appear to be almost insensitive to

power corrections. This merely indicates that the hadronic uncertainties are much more

important than power corrections for these observables.

While the observables Pi are almost insensitive to the choice of form factors, the

uncertainties of other observables vary substantially if the form factors of refs. [26, 28]

are used instead. For example, in table 2 we quote the following prediction for FL:

〈FL〉[1,6] = 0.719+0.149+0.006
−0.208−0.006, while if we take the form factors of ref. [26] we obtain

〈FL〉[1,6] = 0.809+0.045+0.008
−0.032−0.002 (see figure 1 of ref. [53]).

It could be wrongly concluded that FL has a small error in comparison with the pre-

dictions for the Pi, if one compares the percentage over the central value of the observable.

However, the percentage with respect to the central value is not a sensible measure to

compare the size of the errors. In the case of FL, defined in the range [0,1], the size of the

error should be compared with 1. Otherwise, taking instead the observable FT = 1 − FL

(which has a central value 5 times smaller) one would judge the error as 5 times larger,

while the two observables are effectively the same. For the observables Pi, defined in the

range [−1, 1] (this is also true approximately for P ′
4,5,6), the same argument applies, and

therefore the error percentage should be evaluated over 2 and not the central value. In

practice one is concerned with the discriminating power between SM and NP points, which
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Observable Experiment SM prediction

BR(B → Xsγ) (3.55± 0.26) · 10−4 [55] (3.15± 0.23) · 10−4 [45]

SK∗γ −0.16± 0.22 [55] −0.03± 0.01 [6]

AI(B → K∗γ) 0.052± 0.026 [55] 0.041± 0.025 [6]

BR(B → Xsµ
+µ−)[1,6] (1.60± 0.50) · 10−6 [56] (1.59± 0.11) · 10−6 [56]

〈AFB〉[1,6] −0.13+0.068
−0.078 ⋆ −0.034± 0.035 †

〈FL〉[1,6] 0.622+0.059
−0.057 ⋆ 0.719± 0.179 †

BR(Bs → µ+µ−) < 4.5 · 10−9 (at 95.5%C.L.) [16] (3.32± 0.17) · 10−9 [12]

Table 4. Experimental numbers and Standard Model predictions of the observables used in the

analysis of section 4. ⋆ indicates our own average of the data. † indicates our SM prediction. (See

also ref. [19] concerning the Bs → µ+µ− branching ratio.)

gives further support to this argument: since one expects general (unconstrained) NP to

give contributions in the whole range of the observable, the size of the error (as a measure

of uncertainty of the position of the SM point) should be compared to the full range.

If this prescription is adopted, the relative errors of the Pi are 2.5%, 3.5%, 1.2%, 3%,

5%, 2.5% for i = 1 . . . 6, while for FL is 18%. These are the results obtained using the

form factors in ref. [27]. If instead ref. [26] is used for the form factors, the errors of the Pi

barely change, while the relative error for FL goes down to 5%. This can be seen in figure 1

of ref. [53]. This is one of the benefits of the clean observables: there is no need to rely

on complicated estimations of errors in the light-cone sum-rules procedure, as explained

above.

The sensitivity to form factor uncertainties of observables such as S3 is more subtle

and will be discussed in section 6.

4 Model-independent constraints without q2-binned observables

In this section we revisit the model-independent constraints on the Wilson coefficients C7,
C′
7, C

(′)
9 and C(′)

10 from well controlled observables, excluding all B → K∗ℓ+ℓ− observables

except for 〈AFB〉[1,6] and 〈FL〉[1,6]. This analysis follows closely the study of ref. [6, 7]

(see also refs. [9, 11, 12, 26, 54]). The aim is to reevaluate the constraints on the Wilson

coefficients taking into account the following updates:

• Updated averages for 〈AFB〉exp[1,6] and 〈FL〉exp[1,6] including the new measurements in

ref. [4] by the LHCb collaboration:

〈AFB〉LHCb
[1,6] = −0.18+0.06+0.01

−0.06−0.02 (4.1)

〈FL〉LHCb
[1,6] = 0.66+0.06+0.04

−0.06−0.03 (4.2)

The experimental averages for these two observables are collected in table 4.
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• Updated theoretical predictions for 〈AFB〉[1,6] and 〈FL〉[1,6] including subleading cor-

rections of order |VubVus|/|VtbVts|, as well as a recent update for fB [51]:

fB = 190± 4MeV (4.3)

• Analysis of the constraints using a consistent (frequentist) statistical approach de-

tailed in appendix C.

These results will be used in the following sections to study the impact of the inclusion of

binned observables, in view of (a) recent measurements at LHCb and (b) the impressive

prospects for the near future measurements of q2-dependent B → K∗ℓ+ℓ− observables by

the same collaboration.

We consider the following observables: BR(B → Xsγ), SK∗γ , AI(B → K∗γ), BR(B →
Xsµ

+µ−), 〈AFB〉[1,6] and 〈FL〉[1,6]. The experimental situation is summarised in table 4,

together with the SM predictions. As discussed in refs. [6, 7], these observables can be

classified as class-I (dependence only on C(′)
7 ), class-II (dependence only on C(′)

7 , C(′)
9 , C(′)

10 )

and class-III (depending on all these plus other operators, e.g., scalar operators). The

analysis is divided into four NP scenarios:

• Scenario A: New Physics in C7 and C′
7 only, real values only.

• Scenario B : New Physics in C7, C′
7, C9, C10 only, real values only.

• Scenario B’ : New Physics in C7, C′
7, C′

9, C′
10 only, real values only.

• Scenario C : New Physics in C7, C′
7, C

(′)
9 , C(′)

10 , real values only.

The constraints from BR(B → Xsγ), SK∗γ , AI(B → K∗γ) and BR(B → Xsµ
+µ−)

are implemented using the formulas presented in sections 2.3 and 2.5 of ref. [6]. The

constraints are set on the shift of the Wilson coefficients with respect to their SM value at

the hadronic scale µb. Concerning 〈AFB〉[1,6] and 〈FL〉[1,6], we provide the corresponding

coefficients for the semi-numerical expressions of the integrated observables in appendix B,

with an update of 〈AFB〉[1,6] and 〈FL〉[1,6] following the definition of the binned quantities

described in section 2.

Inside the framework defined in ref. [6], the three observables BR(B → Xsγ), SK∗γ and

AI(B → K∗γ) (class-I observables) are insensitive to New Physics contributions to Wilson

coefficients other than the electromagnetic operators C(′)
7 . Therefore, the constraints from

these (class-I) observables are common to all NP scenarios and affect only C7 and C′
7. The

joint 68.3% and 95.5%C.L. constraints on C7 and C′
7 are shown in the left panel of figure 4,

together with the individual constraint from each observable. We find that the isospin

asymmetry in K∗γ disfavours the “flipped-sign” solution for C7, and helps reducing the

significance of the regions where |C′
7| ≃ CSM

7 , C7 ≃ 0. We recall that our scenarios assume

the coefficients of the chromomagnetic operators O(′)
8 to be equal to their SM values.

We then consider the impact of adding the class-III observables (BR(B → Xsµ
+µ−),

〈AFB〉[1,6] and 〈FL〉[1,6]) in the different NP scenarios in turn. Within Scenario A, we obtain

the joint 68.3% and 95.5%C.L. constraints in the C7-C′
7 plane shown in the right panel of
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Figure 4. 68.3% (dark) and 95.5% (light) C.L. constraints on δC7(µb), δC′

7(µb). Left: Class-I

observables — BR(B → Xsγ) (purple), SK∗γ (green) and AI(B → K∗γ) (yellow/orange). Right:

Scenario A (class-I and class-III) — BR(B → Xsµ
+µ−) (yellow), 〈AFB〉[1,6] (orange) and 〈FL〉[1,6]

(gray). The combined constraints are shown in red. The cross indicates the position of the bench-

mark point a. The origin (0, 0) corresponds to the SM point.

Point δC7(µb) δC′
7(µb) δC9(µb) δC10(µb) δC′

9(µb) δC′
10(µb)

a −0.04 −0.1 0 0 0 0

b1 −0.03 −0.09 −1.5 −1 0 0

b2 0.3 −0.4 1 6 0 0

b3 0.45 0.45 −9 2 0 0

b4 0.9 0.1 −9 8 0 0

b′ −0.05 −0.15 0 0 3 1.5

c 0.4 −0.45 −7 5 3 5

Table 5. NP benchmark points used in the analysis of section 5.

figure 4. In this case, the B → K∗µ+µ− forward-backward asymmetry disfavours strongly

the two regions with large δC′
7 allowed at the 95.5%C.L. by class-I observables. This plot

features also the benchmark point a, defined in table 5 and used in the next section to study

the power of q2-dependent B → K∗ℓ+ℓ− observables to discriminate among NP scenarios.

The joint constraints within Scenario B are shown in figure 5. Also shown is the con-

straint from Bs → µ+µ−, which is a direct constraint on C10. We see that at the 95.5%C.L.,

there are four allowed regions in space of Wilson coefficients. The four benchmark points

b1-b4 are also indicated, one in each of the four allowed regions. Finally, in figures 6

and 7 we show the constraints within Scenarios B’ and C, together with the corresponding

benchmark points b′ and c′. The Bs → µ+µ− branching ratio constrains C′
10 directly in

Scenario B’, but only |C10 − C′
10| in Scenario C. We plot the constraint based on ref. [12],
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Figure 5. 68.3% (light red) and 95.5% (dark red) C.L. contours for δC(′)
7 (µb), δC9(µb), δC10(µb)

in Scenario B. The crosses indicate benchmark points b1 (green), b2 (blue), b3 (purple) and b4

(orange). The blue band corresponds to the Bs → µ+µ− constraint.

including the O(∆Γs) correction needed to connect theory and experiment [21–23]. (Using

the value from ref. [19] would result in a slightly tighter constraint. Since there is only

an experimental bound on this branching ratio, and since the status of the theoretical

prediction is unclear, we refrain from including this piece of information in our combined

constraints on the Wilson coefficients.)

As a final comment, we note that the “flipped-sign” solution for C7 is in general dis-

favoured, but not very significantly. In fact, in Scenario B, due to the loosening of the

constraint from 〈AFB〉[1,6] when C9, C10 are allowed not to vanish, this flipped-sign solution

reappears inside the 95.5%C.L. region. More precise constraints from AI(B → K∗γ) and

〈AFB〉[1,6] should help to settle this question.

5 Complementarity of observables for NP studies

The complementarity of the different angular observables in the identification of possible

NP effects is manifest even if we deal exclusively with observables integrated over the whole

[1, 6]GeV2 ranges. For example, New Physics contributing predominantly to C10 will most

likely push substantially 〈P4〉[1,6] below its SM value5 (see ref. [32]). However, this will be

5To be specific, since this discussion is for illustrative purposes only, we focus on the New Physics

scenarios and the observables P4,5,6 of ref. [32]. Below we will study specific benchmark points and the

primed observables P ′

4,5,6.
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Scenario B’. The cross is benchmark point b′. The Bs → µ+µ− constraint is indicated as a blue

band.

essentially indistinguishable from a NP contribution to C′
10, which has a very similar effect

on P4. This ambiguity can be resolved looking at the measured value of 〈P1〉[1,6], because
a New Physics contribution to C′

10 can enhance this observable considerably above its SM

prediction, while C10 has a negligible effect.

Another example would correspond to a moderate enhancement of 〈P1〉[1,6]. Assuming

no significant deviation is seen in 〈P4〉[1,6], this could signal a non-SM value of C′
9 or C7, C′

7

(in the island around the SM point in the C7-C′
7 plane). The former case will not give

any substantial deviation in 〈P5〉[1,6], while the latter tends to increase 〈P5〉[1,6] above its

SM value. Comparing 〈P1〉[1,6], 〈P4〉[1,6] and 〈P5〉[1,6] would thus help to distinguish among

these scenarios.

The discriminating power of the observables is substantially increased when we con-

sider, not only different angular observables, but also their q2-dependence. A New Physics

contribution to C′
10 (in the scenario considered above) will generally increase 〈P1〉[1,6], but

its effect on 〈P4〉[1,6] and 〈P5〉[1,6] could be washed out by simultaneous contributions to C9
and C10. However, if this enhancement of 〈P1〉[1,6] is also present in the region ∼ 4–6GeV2

(for instance with 〈P1〉[4.3,6] shifted upwards with respect to the SM), the NP effect cannot

be misinterpreted as a non-SM value of C(′)
7 or C′

9, because these would only enhance P1 in

the region ∼ 1–3GeV2.

These considerations apply equally well in terms of constraints when no deviation

from the SM is observed. In section 8 we will see explicitly how different observables
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Figure 8. Comparison of SM predictions for 〈P1〉, 〈P ′

4〉[1,6], 〈P ′

5〉[1,6] and the predictions within

benchmark points a, b1, b4 given in table 5.

constrain the NP contributions to the Wilson coefficients. It is already useful to build

an intuition on how different observables in different q2-bins are affected by shifts in the

different Wilson coefficients, in order to have a better idea of the most promising observables

in each case. Here we study briefly the effect of different New Physics scenarios on the

integrated observables studied in section 3. We focus on a set of “benchmark points”

consistent with BR(B → Xsγ), SK∗γ , AI(B → K∗γ), BR(B → Xsµ
+µ−), 〈AFB〉[1,6] and

〈FL〉[1,6], according to the analysis of section 4. These points are specified in table 5, and

also indicated in figures 4–7.

Each NP benchmark point gives a prediction for each observable in each q2-bin. In

figures 8, 9 and 10 we show the most significant cases, exemplifying the previous discussion.

In these figures, the gray rectangles correspond to the SM binned predictions, corresponding

to figures 1 and 2. The colored rectangles correspond to the NP scenarios represented by

each benchmark point collected in table 5. We can draw a few conclusions:

• 〈P1〉 in the region q2 . 3GeV2 is able to discriminate the points a, b1 and b4 from

the SM, but gives similar predictions for these scenarios. These scenarios could be

resolved by 〈P ′
4〉[1,6] and 〈P ′

5〉[1,6] (see figure 8).

• The points b2, b3 and b′ enhance the observables 〈P1〉 and 〈P ′
4〉 substantially, and

the impact on 〈P1〉 (〈P ′
4〉) is more important for q2 > 3GeV2 (q2 < 3GeV2) (see

figure 9).
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benchmark points b2, b3, b′ given in table 5.
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Figure 10. Comparison of SM predictions for 〈P1〉, 〈P2〉, 〈P ′

6〉 and the predictions within bench-

mark points b4, c given in table 5.

• 〈P1〉 and 〈P ′
4〉 do not allow one to discriminate among b2, b3 and b′, but 〈P2〉 and 〈P ′

5〉
exhibit distinctive behaviours for b2 and b3 (figure 9). For instance, a suppression of

〈P1〉 below ∼ −0.5 together with an enhancement of 〈P2〉[4,6] above ∼ 0 would favour

b2 and b3 with respect to b′. This conclusion could be verified by a suppression of

〈P2〉[1,3] below its SM value and an enhancement of 〈P ′
5〉[4,6].

• A similar situation occurs with the points b4 and c. The observable 〈P2〉[5,6] could
favour these scenarios, but cannot distinguish among them. However, 〈P1〉[1,2] and
〈P1〉[5,6] can discriminate these scenarios, as well as 〈P ′

6〉[1,6] if the experimental values

are accurate enough (see figure 10).

A full set of predictions for all benchmark points in comparison with the SM predictions

can be found in figures 8 and 9 of ref. [57].

6 The benefit of using clean observables

In this section we discuss the advantages of using clean observables in analyses of B →
K∗ℓ+ℓ− as opposed to other observables such as S3 or Aim. For definiteness we focus on

P1 and S3, but it should be kept in mind that the conclusions are more general.

As discussed extensively in refs. [30–33], clean observables are constructed in such a

way that at LO and at large recoil, an exact cancellation of the form-factor dependence
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Figure 11. Predictions in the SM and in the case of NP at the benchmark point b2 for P1 (left)

and S3 (right). The yellow boxes are the SM predictions integrated in five 1GeV2 bins. The blue

curve corresponds to the central values for the NP scenario. The green band is the total uncertainty

considering the form factors of refs. [26, 28], while the gray band is the total uncertainty obtained

using the form factors of ref. [27]. In the case of P1 the gray band is barely visible.

occurs. This indicates that clean observables should be stable under variation of hadronic

uncertainties, as opposed to other observables, such as FL, AFB, S3, etc. This is relevant

because of the spread of published errors in the determination of form factors from light-

cone sum rules (see refs. [27, 28] and the introduction).

If the form factors of ref. [27] are used in the evaluation of FL, for example, the error

bars get enlarged by a factor of three. On the contrary, this enlargement does not happen

in the case of P1, which is practically insensitive to these uncertainties. In the case of S3, an

accidental circumstance makes its SM uncertainty smaller than what one would infer from

the fact that S3 ∼ P1FT (that is, a similar percentual enhancement of the errors as FL).

The fact that P1 ∼ 0 in the SM, makes S3 almost insensitive to the error in FL only near

the SM point. This makes the situation with S3 a bit more subtle. The important point

here is that in the presence of New Physics, an enhancement of P1 produces an enlargement

of the error bars in the theoretical prediction for S3 automatically, which makes S3 almost

unable of discriminating between NP models where P1 does not vanish.

In figure 11 we show the SM predictions and the predictions for benchmark point b2

(see table 5) for P1 and S3 calculated with both choices of form factors (refs. [27] and [28]).

We find that:

• The SM prediction for P1 is insensitive to the choice of form factors.

• The SM prediction for S3 shows a moderate dependence on the choice of form factors,

and hadronic uncertainties are enlarged up to a 50% when using the form factors of

ref. [27] compared to those in ref. [28].

• The NP prediction for P1 is insensitive to the choice of form factors.

• The NP prediction for S3 is very sensitive to the choice of form factors. Indeed, the

hadronic uncertainties increase from a factor 2 to a factor 3 when using the form

factors of ref. [27].
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The conclusion is that, in New Physics analyses of B → K∗ℓ+ℓ−, when using the ob-

servable S3, one is obliged to take into account hadronic uncertainties at each point in

the NP parameter space, and these uncertainties can be substantial. On the other hand,

the observable P1 is not affected by this disease, and it is therefore a much more robust

observable. Moreover, from figure 11 we can see that P1 has the potentiality to exclude

completely a NP scenario given by benchmark point b2, while S3 can barely distinguish

this point from the SM case at more than 2σ. We expect the same results to hold in other

regions of the NP parameter space. The conclusion does not change when we consider the

binned observables. For example, the corresponding predictions at benchmark point b2 for

〈P1〉 and 〈S3〉 in the bin [1, 6]GeV2 are

〈P1〉b2[1,6] = −0.82± 0.10 , 〈S3〉b2[1,6] = −0.16± 0.08 . (6.1)

We would like to emphasise that similar conclusions are expected for other form fac-

tor dependent observables. For example, the observable Aim ∼ S9 ∼ P3FT will also be

protected from large hadronic uncertainties near the SM point, since P3 ∼ 0 in the SM.

However, complex NP can enhance considerably P3 while being consistent with other data

(see ref. [32]). In these NP scenarios, Aim is expected to suffer from a similar problem as

the one described for S3 (a problem that does not affect P3). Furthermore, such problems

may also happen also in the case of CP conjugated observables such as A9 and A3.

In view of this situation, one should be particularly careful with a rather usual hy-

pothesis consisting in assigning the same hadronic uncertainty on observables in any NP

scenario as in the SM case. This might be a good approximation in the case of clean

observables (see for instance the left-hand side of figure 11, where the uncertainty on P1

is indeed similar from the SM case to the NP scenario considered), but it can be very

misleading for other quantities, sensitive to form factors (as illustrated on the right-hand

side of figure 11, where the uncertainty on S3 is significantly enlarged from the SM value

to the NP scenario considered).

7 Extracting clean observables from existing experimental measurements

As pointed out in section 6, there is a clear advantage in using the clean observables P1,2,3

rather than S3, Aim and AFB (or FL) to put constraints on the Wilson coefficients. However,

this can be achieved if the experimental fits are performed consistently considering these

observables (see ref. [32]). In its latest experimental analysis of q2-dependent observables

in B → K∗ℓ+ℓ−, the LHCb collaboration [4] has preferred to fit directly the coefficients

of the angular distributions, providing only observables proportional to the Ji coefficients

(in particular 〈S3〉 and 〈Aim〉). We have collected for reference the relevant experimental

results for these observables in table 6.

Of course, we can compute the clean observables from the measurements provided us-

ing the formulas of sections 3 and 4 of ref. [32], or equivalently from eqs. (2.4). If this is

done without knowing the correlation matrix (which is not provided by the experimental

collaborations yet), one obtains errors much larger that the real uncertainties. It is still
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[2, 4.3] [4.3, 8.68] [1, 6]

〈AFB〉 −0.20+0.08+0.01
−0.07−0.03 0.16+0.05+0.01

−0.05−0.01 −0.18+0.06+0.01
−0.06−0.02

〈FL〉 0.74+0.09+0.02
−0.08−0.04 0.57+0.05+0.04

−0.05−0.03 0.66+0.06+0.04
−0.06−0.03

〈Aim〉 −0.02+0.10+0.05
−0.06−0.01 0.02+0.07+0.01

−0.07−0.01 0.07+0.07+0.02
−0.07−0.01

〈S3〉 −0.05+0.18+0.05
−0.12−0.01 0.18+0.13+0.01

−0.13−0.01 0.10+0.15+0.02
−0.16−0.01

Table 6. LHCb experimental results for binned observables (from ref. [4]).

Observable Experiment SM prediction

〈P1〉[2,4.3] −0.19± 0.58 −0.051± 0.050

〈P1〉[4.3,8.68] 0.42± 0.31 −0.115± 0.060

〈P1〉[1,6] 0.29± 0.47 −0.055± 0.051

〈P2〉[2,4.3] 0.51± 0.27 0.227± 0.070

〈P2〉[4.3,8.68] −0.25± 0.08 −0.422± 0.074

〈P2〉[1,6] 0.35± 0.14 0.080± 0.067

〈P3〉[2,4.3] 0.08± 0.35 −0.004± 0.024

〈P3〉[4.3,8.68] −0.05± 0.16 −0.005± 0.027

〈P3〉[1,6] −0.21± 0.21 −0.003± 0.024

Table 7. Experimental values for the clean observables P1, P2 and P3 within different q2-bins,

extracted from the measurements of S3, Aim, AFB and FL, and their SM predictions.

worth exploring the current situation based on these observables while waiting for corre-

lated values. In addition, higher-statistics analyses from LHCb are expected to reduce the

experimental errors on these observables considerably very soon.

Attending to these considerations, experimental values for P1,2,3 can be derived from

the measurements of S3, Aim, AFB and FL in table 6 by means of eq. (2.4):

〈P1〉bin =
2〈S3〉bin

1−〈FL〉bin
, 〈P2〉bin = −2

3

〈AFB〉bin
(1−〈FL〉bin)

, 〈P3〉bin = − 〈Aim〉bin
(1−〈FL〉bin)

.

(7.1)

In table 7 we present the resulting experimental values for 〈P1〉, 〈P2〉, 〈P3〉 in the different

bins, together with their SM predictions. The experimental errors are calculated in the

following way. We first add in quadrature both errors in table 6, and symmetrise upper and

lower uncertainties. Assuming these errors are Gaussian, the errors for P1,2,3 are obtained

by the usual error propagation formula from eqs. (7.1).

8 Present and future constraints from q2-dependent B → K∗ℓ+ℓ− ob-

servables

The recent LHCb measurements for q2-dependent B → K∗ℓ+ℓ− observables [4] are divided

into four bins — if we restrict ourselves to the low-q2 region. These bins are [0.05, 2],
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[2, 4.3], [4.3, 8.68] and [1, 6]GeV2. These results yield a first glimpse of the future, where

precise measurements of the full angular distribution within fine q2-bins will be available.

The purpose of this section is to study the impact of the q2-dependent observables provided

in ref. [4] on the constraints on the Wilson coefficients, and to analyze what are the future

expectations concerning the constraints from these observables.

A brief discussion is in order concerning the results in ref. [4]. From the theory point

of view the first bin [0.05, 2] is very difficult to control, since the decay rate contains

contributions from light resonances below q2 ∼ 1GeV2. The third bin [4.3, 8.68] is also

more difficult to handle theoretically, as it gets near to the cc̄ resonance region. For this

first attempt, we choose to drop the first bin and to consider constraints from the two

others [2, 4.3], [4.3, 8.68]. We do not include [1, 6] as the results are likely to be strongly

correlated with the two smaller bins considered for this study (we remind that the averaged

experimental results in the bin [1, 6] have already been considered in section 4 in the case

of 〈AFB〉 and 〈FL〉).

8.1 Constraints from binned 〈AFB〉 and 〈FL〉

We first consider the observables 〈AFB〉[2,4.30], 〈AFB〉[4.30,8.68], 〈FL〉[2,4.30] and 〈FL〉[4.30,8.68].
The experimental numbers for these observables are given in table 6. We study separately

the constraints derived using the set of form factors of ref. [26] or the ones from ref. [27], the

later being the choice throughout this article. In this case the constraints are implemented

using eq. (B.1) in appendix B together with the coefficients in tables 8 and 9. The con-

straints in the first case (form factors form ref. [26]) can be implemented from appendix B

in ref. [57].

The individual 68.3%C.L. and combined 68.3% and 95.5%C.L. contours for these

observables in the C7-C′
7 plane (Scenario A) are shown in figure 12. We see that:

• The constraints from 〈AFB〉 are consistent with the SM at 95.5%C.L. Using the

form factors in ref. [26], some tension is caused by 〈AFB〉[2,4.30], while 〈AFB〉[4.30,8.68]
is compatible with the SM at 68.3%C.L. This tension disappears if the form factors

of ref. [27] are used in the SM predictions. In this case the 95.5%C.L. region widens

considerably.

• With form factors of ref. [26], the constraints from 〈FL〉 show a discrepancy with

the SM, which is just outside the 95.5%C.L. region. Indeed 〈FL〉[4.30,8.68] has a clear

tendency to avoid the SM point. This tension disappears completely if the form

factors of ref. [27] are used for the SM predictions.

• Committing oneself to form factors in ref. [26] and taking seriously these tensions

would require a NP that affects simultaneously AFB around q2 ∼ 3GeV2 and FL

around q2 ∼ 6GeV2. Predictions derived from form factors in ref. [27] are perfectly

consistent with the SM; this is the conservative conclusion.
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Figure 12. Individual 68.3%C.L. constraints in the δC7(µb)-δC′

7(µb) plane from 〈AFB〉[2,4.30] and
〈AFB〉[4.30,8.68] (left), and from 〈FL〉[2,4.30] and 〈FL〉[4.30,8.68] (right), taking form factors of ref. [26]

(up) or ref. [27] (down). The combined 68.3%C.L. (red filled) and 95.5%C.L. (red contour) regions

are also shown. The origin corresponds to the SM value.

8.2 Constraints from binned 〈P1〉, 〈P2〉 and 〈P3〉
We now consider the constraints from the observables 〈Pi〉[2,4.30], 〈Pi〉[4.30,8.68], 〈Pi〉[1,6] with
i = 1, 2, 3. The experimental values and SM predictions for these observables are collected

in table 7. The constraints are implemented using eq. (B.1) in appendix B together with

the coefficients in tables 10, 11 and 12.

The individual constraints from these observables in the C7-C′
7 plane (Scenario A) are

shown in figure 13. We see that:

• The constraints from 〈P1〉 are not very stringent yet. However there is a very mild

discrepancy of 〈P1〉[4.30,8.68] with respect to the SM, as well as the combined constraint

from the two bins. This result is not affected by form factor uncertainties.
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Figure 13. Left: individual 68.3%C.L. constraints in the δC7(µb)-δC′

7(µb) plane from the integrated

clean observables 〈P1〉[2,4.30] and 〈P1〉[4.30,8.68], together with the combined result. The red region

and contour correspond to the combined 68.3% and 95.5%C.L. regions. Right: same analysis for

〈P2〉bin. The origin corresponds to the SM point. Currently, 〈P3〉bin does not provide any constraint

on C7(µb) and C′

7(µb).

• The constraints from 〈P2〉 are already quite interesting. The two bins point towards

a negative value of δC7, and the SM point is just outside the 68.3%C.L. region.

Again, this result is not affected by form factor uncertainties. While the theoretical

prediction for 〈P2〉[4.30,8.68] can suffer from the proximity of the bin to the cc̄ resonance,

we point out that the same tendency to negative δC7 is hinted at by the observable

〈P2〉[1,6], indicating that this is not a feature introduced by the data above 6GeV2. An

enhancement of 〈P2〉 in the full low-q2 region would be consistent with NP scenarios b4

and c (see figure 10).

• The constraints from 〈P3〉 are inconclusive for the time being. This could be guessed

already from the NP analysis of section 5 (see figure 8 in ref. [57]). It is well known

that the CP-averaged version of 〈P3〉bin (the one we are considering here) is not very

sensitive to NP, and that the corresponding CP-asymmetry might be more interesting

when constraining NP (see for example ref. [12]). In this case we would suggest to

focus, instead of A9, on the corresponding clean CP-asymmetry, since A9 can be

affected by the problems discussed in section 6 concerning its sensitivity to form

factors.

We stress again that these constraints should be considered as conservative, since they

are based on the experimental numbers extracted in section 7 in absence of experimental

correlations. Therefore, the uncertainties of P1,2,3 that we quote in table 7 are most prob-

ably overestimated, and could be reduced significantly once experimental correlations are

available.
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Figure 14. Individual constraints in the δC7-δC′

7 plane from hypothetical measurements of the

observables 〈P1〉[2,4.3], 〈P2〉[2,4.3], 〈P ′

4〉[2,4.3] and 〈P ′

5〉[2,4.3], corresponding to central values equal to

the SM predictions and an experimental uncertainty σexp = 0.10. The combined 68.3% (dark red)

and 95.5% (light red) C.L. regions are also shown.

8.3 Future prospects

The experimental numbers in table 6 for the various observables, as measured by the LHCb

collaboration, contain uncertainties at the level of ∼ 0.10, and up to ∼ 0.20 for the observ-

able 〈S3〉. The numbers for 〈P1,2,3〉 extracted in the previous section from the measurements

in table 6 contain larger uncertainties, up to ∼ 0.5 (see table 7). As discussed above, these

errors are probably overestimated since they do not take into account the relevant correla-

tions among the observables. It is reasonable to expect that a direct extraction of 〈P1,2,3〉
from the data would give, with the present statistics, experimental uncertainties for these

observables in the ballpark ∼ 0.10–0.20, as is the case for the observables in table 6.

We have also seen in section 8.2 that even with the enlarged uncertainties of table 7,

the constraints on C7, C′
7 from 〈P2〉 are nontrivial. These uncertainties will improve very

significantly in the near future in forthcoming analyses of larger data sets by the LHCb

collaboration.

In order to illustrate the very large impact that moderately precise measurements

of the clean observables will have on New Physics, we consider the constraints on C7,
C′
7 by hypothetical measurements of 〈P1〉[2,4.3], 〈P2〉[2,4.3], 〈P ′

4〉[2,4.3] and 〈P ′
5〉[2,4.3] with

central values at their SM points, and experimental uncertainties of σexp = 0.10. It is

important to emphasise that these errors are not only realistic but also achievable with the

current statistics. The result of this exercise is presented in figure 14, where the individual

constraints in the C7-C′
7 plane (corresponding to Scenario A) from these four observables are

shown together with the combined 68.3% and 95.5%C.L. regions. Clearly these observables
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will play a very important role in the future, with the potentiality of providing the first

unambiguous signal of New Physics in the flavour sector.

9 Comparison with other works

Several theoretical studies [6–12, 54] have exploited the recent measurements of b → sγ

and b → sℓ+ℓ−. We mention here briefly some differences of recent references with respect

to the present work where only low-q2 bins were considered. With that respect, one should

notice that these references use at most the B → K∗ℓ+ℓ− observables integrated over

[1,6]GeV2, but not the values on finer bins included here.

In ref. [54], a detailed discussion was provided concerning additional observables related

to the photon polarisation in b → sγ transitions, allowing one to constrain C7 and C′
7 more

precisely. The three processes of interest were B0 → K∗0(→ KSπ
0)γ, B → K1(→ Kππ)γ

and B0 → K∗0(→ K+π−)ℓ+ℓ− at low q2, showing the potential of an analysis combining

all four processes even in the case of complex Wilson coefficients (assuming that there are

only small contributions from the other operators for B0 → K∗0(→ K+π−)ℓ+ℓ− in this

energy region). In particular, the current constraints on C7(′) from B(B → Xsγ) and

SK∗γ were studied, either with real or complex values for these Wilson coefficients (and

SM values for the other operators). In the real case, a four-fold degeneracy is observed,

corresponding essentially to the regions obtained in our Scenario A without B → K∗γ

isospin asymmetry (see figure 4). These ambiguities (which are even more numerous in the

complex-valued cases) can in principle be lifted once more observables are measured from

all three processes, with different strengths and weaknesses depending on the NP scenario

considered.

In ref. [12] (which updates ref. [9]), branching ratios for the inclusive modes B →
Xsγ and B → Xsℓℓ (low and high-q2) and the inclusive CP asymmetry for b → sγ are

considered, as well as the branching ratio for B → Kℓℓ and Bs → µ+µ− and observables

for B → K∗µ+µ− (branching ratio, longitudinal polarization fraction, forward-backward

asymmetry, A9 and S3 both in low- and high-q2 regions). The constraints are put on

C7(′), C9(′), C10(′), CS(′), CP (′) with real or complex values, first in a frequentist framework,

then in a Bayesian approach, with a focus on some specific NP scenarios. Once again, a

good agreement with the SM is obtained. In addition, the possibility of a sign-flip in C7
alone is disfavoured due to the branching ratio of B → Xsγ as well as AFB. In the scenario

without right-handed currents and with real values of the coefficients of the SM operators,

the flipped sign solution C7,9,10 → −C7,9,10 remains allowed (since the B → K∗γ isospin

asymmetry was not included in the analysis). In this scenario, the constraints obtained on

the Wilson coefficients are similar to those that we obtain for scenario B, up to additional

solutions with C′
7 6= 0. The very large parameter space and the choice of different scenarios

prevents us from comparing our results in more detail, but we stress that the analysis in

ref. [12] includes form-factor sensitive observables like S3.

In ref. [11], the authors did not consider the inclusive modes B → Xsγ and B → Xsℓℓ.

On the other hand, they considered the branching ratio of the exclusive modes B → K∗γ,

B → Kℓℓ, Bs → µ+µ− as well as the available observables for B → K∗µ+µ− (branching
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ratio, longitudinal fraction, forward-backward asymmetry, transverse asymmetry A
(2)
T and

S3 both in low- and high-q2 regions). The constraints were analysed in the SM basis,

constraining only real values of C7, C9, C10, in a Bayesian framework. The inputs for the

hadronic form factors are taken from the light-cone sum rule analysis of ref. [28]. They

provide also predictions for the other transverse asymmetries A
(i)
T , as well as for the low-

recoil observables H
(i)
T introduced in ref. [35]. Obviously, as the list of inputs, scenarios

and statistical frameworks are rather different, we can only perform a limited comparison

with our benchmark points in different NP scenarios. In both analyses, the SM point is

favoured. A second solution, with flipped signs C7,9,10 → −C7,9,10 is allowed in ref. [11] as in

the previous references. The authors observe an update from prior to posterior p.d.f.’s of the

form factors, which can be interpreted as the fact that the data themselves constrain partly

the hadronic uncertainties, due to a slight tension between B → Kℓℓ and B → K∗ℓℓ. In

view of our discussion concerning theoretically clean and form-factor sensitive observables,

it would be interesting to perform a similar analysis separating the two sets of observables.

10 Conclusions

The decay mode B → K∗ℓ+ℓ−, with its large set of angular observables, is becoming a

more and more important process in constraining New Physics models. These constraints

are complementary to those from inclusive and exclusive radiative decays. With increas-

ingly precise experimental data on these modes and the prospects for the future from the

LHC, theoretical uncertainties must be kept under control. In this context, the use of

theoretically clean observables is not only convenient but also extremely recommendable,

or even mandatory. The sensitivity of different observables to hadronic uncertainties has

been addressed in section 6, and the conclusion is that clean observables such as P1 are far

more robust than other observables like FL or S3, translating into a better performance in

discriminating among different models.

A full description of the angular distribution of the B → K∗ℓ+ℓ− decay in terms

of a maximum set of clean observables was presented in ref. [32], where the observables

P1,2,3,4,5,6 where introduced. In this paper we have presented a simple and compact ex-

pression for the coefficients of the distribution in terms of these clean observables, and

given SM predictions for these observables integrated over a series of q2-bins, that can be

directly compared with experimental data. These predictions are collected in table 1 and

in figures 1 and 2. As an important point, we have seen that the first three clean observ-

ables P1,2,3 are already measured, and can be extracted form the latest measurements by

the LHCb collaboration [4]. The experimental numbers for these observables together with

their SM predictions are given in table 7. The uncertainties attached to these numbers are

certainly overestimated, as we did not have the required correlations among experimental

measurements (and thus treated them as uncorrelated).

We have also studied the model-independent constraints on the Wilson coefficients

C(′)
7 , C(′)

9 , C(′)
10 from radiative decays B → Xsγ and B → K∗γ, and semileptonic decays

B → Xsµ
+µ− and B → K∗µ+µ−. Excluding all B → K∗µ+µ− observables except for

the integrated observables 〈AFB〉[1,6] and 〈FL〉[1,6] leads to the set of constraints shown
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in figures 4–7. Identifying a set of benchmark New Physics points compatible with those

bounds, one can see that very large New Physics contributions to other observables in B →
K∗µ+µ− are allowed, specially in P1, P2, P

′
4 and P ′

5 (see figure 9). We have investigated

the present constraints imposed by P1, P2 and P3 on C7, C′
7, with already quite interesting

constraints from P2 suggesting a lower value of C7 than the SM value. We then showed

the powerful prospects that the set of clean observables P1,2,3 and P4′,5′,6′ will have in the

short term to discriminate possible New Physics contributions, illustrated in figure 14.

Considering the advantages provided by the use of the Pi observables at large recoil,

we hope that the present study will be a strong incentive for experimentalists to rephrase

their study of the low-q2 region in terms of these observables.
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A J8 in terms of Pi observables and the Q observable

In section 2 we have provided the explicit expressions for the coefficients of the distribution

in terms of the observables of the basis, neglecting mass terms and scalar contributions.6

In this case, one finds very simple and compact expressions for all these coefficients (see

eqs. (2.13)) with the exception of J8. The reason is that J8, in the absence of scalar

contributions, is not an independent quantity (exactly like J1s = 3J2s and J1c = −J2c in

the massless case) and deserves a separate discussion. The counting of degrees of freedom

and continuous symmetries in this case shows that there are only 8 degrees of freedom

parametrised by the observables Pi=1...6, FL and dΓ/dq2. This means that J8 can be

expressed in terms of these observables:

J8 = −
√

FTFL

1− P1

dΓ

dq2

{

(P2P6 − P3P4) + η

(

(P2P6 − P3P4)
2 + P5(P2P4 + P3P6)

√

1− P 2
1

+
1

4

(

1−
6

∑

i=4

P 2
i

)

(1− P 2
1 )− P 2

2 − P 2
3

)
1
2

}

(A.1)

This expression is found by solving J8 in terms of the other coefficients using the relation

in eq. (3.15) of ref. [33] together with eqs. (2.13). One can also replace P4,5,6 by P ′
4,5,6 using

eqs. (2.14)–(2.16).

We notice that in eq. (A.1), a discrete quantity η is left as a free parameter that can

take only two values ±1 in the massless case. This parameter is indeed an observable,

and its SM prediction is ηSM = +1 as can be seen by substituting the SM values for the

observables Pi. This has the interesting consequence that a measurement of η = −1 would

6The general case including lepton masses and scalars is discussed in full detail in ref. [32].
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be an unambiguous indication of New Physics (originating, for instance, from new weak

phases or sign flips in Wilson coefficients). Deviations from |η| = 1 could be expected,

for instance, from scalar contributions entering P5 and P6, since such contributions would

break the symmetry relation among the coefficients of the angular distribution.

However, when one tries to write a similar relationship for “binned” observables, it is

clear that a naive substitution Pi → 〈Pi〉bin is not possible due to the highly non-linear form

of eq. (A.1). One practical solution is to introduce an extra clean observable Q (or Q′):

J8 = −1

2
Q′

√

FTFL
dΓ

dq2
, (A.2)

with Q′ = Q
√
1 + P1 and whose definition, also valid in the massive case, is

Q =
Im(n†

0n⊥)
√

|n0|2|n⊥|2
= −

√
2J8

√

−J2c(2J2s + J3)
. (A.3)

The vectors ni (with i = 0,⊥) are defined in ref. [32]. This clean observable Q (or Q′) is

related to the form factor-sensitive observable S8 by means of

Q′ = − 2S8√
FTFL

. (A.4)

For completeness we also provide the expression of this observable in terms of our basis of

observables:

Q =
2

√

1− P 2
1

{

(P2P6 − P3P4) + η

(

(P2P6 − P3P4)
2 + P5(P2P4 + P3P6)

√

1− P 2
1

+
1

4

(

1−
6

∑

i=4

P 2
i

)

(1− P 2
1 )− P 2

2 − P 2
3

)
1
2

}

. (A.5)

In principle, this implies that Q (or Q′) can be measured using either eq. (A.3) or eq. (A.5)

(with η = +1 in the SM but free in general). However, eq. (A.5) would be of practical

experimental use only in the limit of the size of the binning going to zero. Of course,

eq. (A.5) can be very easily turned into an equation that relates S8 with the other Si by

using eq. (2.4) and eq. (2.17). This shows the redundancy of S8 in the massless case, again

up to a single discrete parameter η.

At a more practical level, the integrated form of this observable from eq. (A.3) is:

〈Q′〉bin =
−2

∫

bin dq
2J8(q

2)
√

∫

bin dq
2c4(q2)

∫

bin dq
2(c0(q2)−c4(q2))

=
−2〈J8〉bin

√

〈c4〉bin
(

〈c0〉bin−〈c4〉bin
)

(A.6)

and its SM prediction is given in figure 15. Notice that, as mentioned above, the binning

procedure breaks the relation eq. (3.15) of ref. [33] among the coefficients of the distribution,

which is only recovered in the limit of the size of the binning going to zero, when the

observable η would become accessible.

In conclusion the set of eqs. (2.13) and eq. (A.1) provides a complete parametrisation of

the distribution in the massless case with no scalars in terms of only eight parameters (eight
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Figure 15. SM prediction for the observable Q′, integrated in 5 bins of width 1GeV2.

observables P1,2,3,4,5,6 and FL, dΓ/dq
2) in agreement with the eight independent degrees of

freedom, but there is one extra redundant Q (or Q′) observable (up to a discrete parameter

η) which however can be fixed only once 〈J8〉bin is measured, due to the binning procedure

adopted by experimental analyses.

B New Physics expressions for binned observables

In this appendix we present the numerical expressions for the integrated observables 〈AFB〉,
〈FL〉, 〈P1,2,3〉 and 〈P ′

4,5,6〉 as a function of the NP Wilson coefficients, for different choices

of the q2-binning.

The formula for any observable 〈Ok〉 has the general form:

〈Ok〉 =
∑

i,j=0,7,7′,9,9′,10,10′ N(i,j) δCi δCj
∑

i,j=0,7,7′,9,9′,10,10′ D(i,j) δCi δCj
± δk (B.1)

where δC0 ≡ 1. The coefficients δ, Ni,j and Di,j corresponding to each observable are

collected in tables 8–12, where only nonzero coefficients are displayed. The coefficient δCi
denotes the NP contribution to the Wilson coefficient Ci at the hadronic scale µb. The

parameters δk correspond to the theoretical error assigned to each observable, and are also

collected in tables 8–12. We assume here that the uncertainty obtained within the SM

can be considered as a good estimate of the uncertainty for arbitrary (NP) values of the

Wilson coefficients. As discussed in detail in section 6, this assumption is appropriate for

theoretically clean observables only.
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〈AFB〉

[ 1 , 6 ] [ 2 , 4.3 ] [ 4.3 , 8.68 ] [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] [ 4 , 5 ] [ 5 , 6 ]

δ 0.035 0.059 0.126 0.127 0.106 0.04 0.051 0.089

N(0,0) −132.63 −129.81 1075.21 −169.19 −103.04 −31.81 44.25 127.17

N(0,7) 3659.89 1683.77 3248.78 709.73 725.48 736. 742.78 745.9

N(0,7′) 53.45 24.59 47.45 10.37 10.6 10.75 10.85 10.89

N(0,9) 273.22 112.45 446.79 22.53 38.38 54.54 70.81 86.96

N(0,10) 30.78 30.13 −249.55 39.27 23.92 7.38 −10.27 −29.51

N(0,10′) −9.55 −4.44 −7.25 −1.92 −1.93 −1.93 −1.91 −1.85

N(7,7′) −1210.54 −544.54 −1139.94 −242.44 −234.51 −237.58 −244.07 −251.93

N(7,9) 1502.03 688.89 1366. 286.75 295.32 301.92 307.12 310.92

N(7,9′) −415.72 −187.6 −424.87 −73.44 −78.45 −83.25 −87.97 −92.62

N(7′,9) −448.14 −202.46 −454.37 −79.62 −84.82 −89.76 −94.6 −99.33

N(7′,9′) 1511.64 693.23 1375.74 288.45 297.14 303.84 309.14 313.05

N(9,9′) −182.43 −82.42 −184.94 −32.42 −34.53 −36.54 −38.5 −40.43

N(10,10′) −182.43 −82.42 −184.94 −32.42 −34.53 −36.54 −38.5 −40.43

D(0,0) 3930.05 1652.9 4881.21 788.91 693.77 727.04 805.92 914.41

D(0,7) −675.8 −133.39 3759.72 −1510.4 −367.15 131.35 427.89 642.5

D(0,7′) −1514.33 −676.99 −1832.12 −243.59 −277.12 −303.71 −329.95 −359.96

D(0,9) 607.74 251.22 1056.34 62.61 90.17 119.3 150.44 185.22

D(0,9′) −659. −294.16 −766.64 −114.1 −122.32 −130.82 −140.19 −151.57

D(0,10) −1121.92 −494.21 −1333.74 −167.85 −196.49 −224.8 −252.76 −280.02

D(0,10′) 785.99 355.1 796.84 139.7 148.79 157.42 165.89 174.19

D(7,7) 19751.1 8522.58 8359.39 7326.88 4445.59 3246.87 2580.52 2151.26

D(7′,7′) 19812.1 8549.86 8412.14 7340.65 4457.7 3258.55 2592.18 2163.05

D(9,9) 260.39 114.7 309.56 38.96 45.6 52.18 58.66 64.99

D(9′,9′) 260.39 114.7 309.56 38.96 45.6 52.18 58.66 64.99

D(10,10) 260.39 114.7 309.56 38.96 45.6 52.18 58.66 64.99

D(10′,10′) 260.39 114.7 309.56 38.96 45.6 52.18 58.66 64.99

D(7,7′) −1210.54 −544.54 −1139.94 −242.44 −234.51 −237.58 −244.07 −251.93

D(7,9) 1502.03 688.89 1366. 286.75 295.32 301.92 307.12 310.92

D(7,9′) −415.72 −187.6 −424.87 −73.44 −78.45 −83.25 −87.97 −92.62

D(7′,9) −448.14 −202.46 −454.37 −79.62 −84.82 −89.76 −94.6 −99.33

D(7′,9′) 1511.64 693.23 1375.74 288.45 297.14 303.84 309.14 313.05

D(9,9′) −182.43 −82.42 −184.94 −32.42 −34.53 −36.54 −38.5 −40.43

D(10,10′) −182.43 −82.42 −184.94 −32.42 −34.53 −36.54 −38.5 −40.43

Table 8. Coefficients for the New Physics formula of 〈AFB〉.
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〈FL〉

[ 1 , 6 ] [ 2 , 4.3 ] [ 4.3 , 8.68 ] [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] [ 4 , 5 ] [ 5 , 6 ]

δ 0.178 0.162 0.18 0.211 0.164 0.158 0.169 0.179

N(0,0) 1413.04 635.91 1559.39 251.77 266.81 281.63 297.22 315.6

N(0,7) 681.08 305.96 758.66 120.71 128.16 135.6 143.55 153.06

N(0,7′) −696.01 −312.66 −775.28 −123.35 −130.97 −138.58 −146.69 −156.42

N(0,9) 323.9 145.53 360.32 57.46 60.98 64.49 68.24 72.74

N(0,9′) −323.9 −145.53 −360.32 −57.46 −60.98 −64.49 −68.24 −72.74

N(0,10) −378.21 −171.92 −367.37 −68.88 −72.6 −75.94 −79.01 −81.79

N(0,10′) 378.21 171.92 367.37 68.88 72.6 75.94 79.01 81.79

N(7,7) 388.11 176.38 377.96 70.55 74.44 77.92 81.14 84.06

N(7′,7′) 405.3 184.19 394.71 73.68 77.73 81.38 84.73 87.79

N(9,9) 87.78 39.9 85.27 15.99 16.85 17.62 18.34 18.98

N(9′,9′) 87.78 39.9 85.27 15.99 16.85 17.62 18.34 18.98

N(10,10) 87.78 39.9 85.27 15.99 16.85 17.62 18.34 18.98

N(10′,10′) 87.78 39.9 85.27 15.99 16.85 17.62 18.34 18.98

N(7,7′) −605.27 −272.27 −569.97 −121.22 −117.25 −118.79 −122.04 −125.97

N(7,9) 751.01 344.45 683. 143.37 147.66 150.96 153.56 155.46

N(7,9′) −207.86 −93.8 −212.44 −36.72 −39.23 −41.62 −43.98 −46.31

N(7′,9) −224.07 −101.23 −227.18 −39.81 −42.41 −44.88 −47.3 −49.67

N(7′,9′) 755.82 346.62 687.87 144.23 148.57 151.92 154.57 156.53

N(9,9′) −91.21 −41.21 −92.47 −16.21 −17.27 −18.27 −19.25 −20.21

N(10,10′) −91.21 −41.21 −92.47 −16.21 −17.27 −18.27 −19.25 −20.21

D(0,0) 1965.02 826.45 2440.6 394.45 346.88 363.52 402.96 457.21

D(0,7) −337.9 −66.69 1879.86 −755.2 −183.57 65.68 213.94 321.25

D(0,7′) −757.17 −338.49 −916.06 −121.8 −138.56 −151.85 −164.98 −179.98

D(0,9) 303.87 125.61 528.17 31.31 45.09 59.65 75.22 92.61

D(0,9′) −329.5 −147.08 −383.32 −57.05 −61.16 −65.41 −70.1 −75.79

D(0,10) −560.96 −247.1 −666.87 −83.93 −98.25 −112.4 −126.38 −140.01

D(0,10′) 393. 177.55 398.42 69.85 74.4 78.71 82.94 87.09

D(7,7) 9875.55 4261.29 4179.7 3663.44 2222.8 1623.43 1290.26 1075.63

D(7′,7′) 9906.06 4274.93 4206.07 3670.32 2228.85 1629.28 1296.09 1081.53

D(9,9) 130.2 57.35 154.78 19.48 22.8 26.09 29.33 32.5

D(9′,9′) 130.2 57.35 154.78 19.48 22.8 26.09 29.33 32.5

D(10,10) 130.2 57.35 154.78 19.48 22.8 26.09 29.33 32.5

D(10′,10′) 130.2 57.35 154.78 19.48 22.8 26.09 29.33 32.5

D(7,7′) −605.27 −272.27 −569.97 −121.22 −117.25 −118.79 −122.04 −125.97

D(7,9) 751.01 344.45 683. 143.37 147.66 150.96 153.56 155.46

D(7,9′) −207.86 −93.8 −212.44 −36.72 −39.23 −41.62 −43.98 −46.31

D(7′,9) −224.07 −101.23 −227.18 −39.81 −42.41 −44.88 −47.3 −49.67

D(7′,9′) 755.82 346.62 687.87 144.23 148.57 151.92 154.57 156.53

D(9,9′) −91.21 −41.21 −92.47 −16.21 −17.27 −18.27 −19.25 −20.21

D(10,10′) −91.21 −41.21 −92.47 −16.21 −17.27 −18.27 −19.25 −20.21

Table 9. Coefficients for the New Physics formula of 〈FL〉.
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〈P1〉

[ 1 , 6 ] [ 2 , 4.3 ] [ 4.3 , 8.68 ] [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] [ 4 , 5 ] [ 5 , 6 ]

δ 0.051 0.05 0.06 0.052 0.056 0.046 0.046 0.053

N(0,0) −30.44 −9.75 −103.1 1.11 −1.96 −5.4 −9.53 −14.65

N(0,7) −82.98 −33.81 −116.67 −17.23 −14.27 −14.77 −16.77 −19.95

N(0,7′) −1017.67 −372.1 1124.22 −875.94 −311.58 −69.64 70.79 168.7

N(0,9) −5.6 −1.55 −23. 0.41 −0.18 −0.92 −1.85 −3.05

N(0,9′) −20.03 −19.92 167.85 −26.15 −15.89 −4.84 6.98 19.87

N(0,10) 14.79 5.63 31.05 0.98 1.8 2.78 3.94 5.3

N(0,10′) −182.75 −75.18 −299.5 −15.05 −25.65 −36.46 −47.37 −58.22

N(7,7) −5.14 −4.4 −102.13 27.93 4.9 −6.01 −13.18 −18.78

N(7′,7′) −412.36 −179.74 −265.45 −126.24 −87.31 −72.35 −65.09 −61.37

N(9,9) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(9′,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(10,10) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(10′,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

N(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

N(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

N(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

N(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

N(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(0,0) 551.99 190.54 881.21 142.68 80.07 81.89 105.74 141.61

D(0,7) −1018.98 −372.65 1121.2 −875.91 −311.74 −69.93 70.4 168.19

D(0,7′) −61.16 −25.83 −140.78 1.56 −7.59 −13.28 −18.28 −23.56

D(0,9) −20.03 −19.92 167.85 −26.15 −15.89 −4.84 6.98 19.87

D(0,9′) −5.6 −1.55 −23. 0.41 −0.18 −0.92 −1.85 −3.05

D(0,10) −182.75 −75.18 −299.5 −15.05 −25.65 −36.46 −47.37 −58.22

D(0,10′) 14.79 5.63 31.05 0.98 1.8 2.78 3.94 5.3

D(7,7) 9487.44 4084.91 3801.73 3592.89 2148.36 1545.51 1209.12 991.57

D(7′,7′) 9500.76 4090.74 3811.36 3596.65 2151.12 1547.9 1211.35 993.74

D(9,9) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(9′,9′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10,10) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10′,10′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

D(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

D(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

D(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

D(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

D(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

Table 10. Coefficients for the New Physics formula of 〈P1〉.
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〈P2〉

[ 1 , 6 ] [ 2 , 4.3 ] [ 4.3 , 8.68 ] [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] [ 4 , 5 ] [ 5 , 6 ]

δ 0.067 0.07 0.074 0.023 0.032 0.085 0.082 0.071

N(0,0) 44.21 43.27 −358.4 56.4 34.35 10.6 −14.75 −42.39

N(0,7) −1219.96 −561.26 −1082.93 −236.58 −241.83 −245.33 −247.59 −248.63

N(0,7′) −17.82 −8.2 −15.82 −3.46 −3.53 −3.58 −3.62 −3.63

N(0,9) −91.07 −37.48 −148.93 −7.51 −12.79 −18.18 −23.6 −28.99

N(0,10) −10.26 −10.04 83.18 −13.09 −7.97 −2.46 3.42 9.84

N(0,10′) 3.18 1.48 2.42 0.64 0.64 0.64 0.64 0.62

N(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

N(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

N(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

N(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

N(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

N(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(0,0) 551.99 190.54 881.21 142.68 80.07 81.89 105.74 141.61

D(0,7) −1018.98 −372.65 1121.2 −875.91 −311.74 −69.93 70.4 168.19

D(0,7′) −61.16 −25.83 −140.78 1.56 −7.59 −13.28 −18.28 −23.56

D(0,9) −20.03 −19.92 167.85 −26.15 −15.89 −4.84 6.98 19.87

D(0,9′) −5.6 −1.55 −23. 0.41 −0.18 −0.92 −1.85 −3.05

D(0,10) −182.75 −75.18 −299.5 −15.05 −25.65 −36.46 −47.37 −58.22

D(0,10′) 14.79 5.63 31.05 0.98 1.8 2.78 3.94 5.3

D(7,7) 9487.44 4084.91 3801.73 3592.89 2148.36 1545.51 1209.12 991.57

D(7′,7′) 9500.76 4090.74 3811.36 3596.65 2151.12 1547.9 1211.35 993.74

D(9,9) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(9′,9′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10,10) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10′,10′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

D(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

D(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

D(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

D(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

D(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

Table 11. Coefficients for the New Physics formula of 〈P2〉.
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〈P3〉

[ 1 , 6 ] [ 2 , 4.3 ] [ 4.3 , 8.68 ] [ 1 , 2 ] [ 2 , 3 ] [ 3 , 4 ] [ 4 , 5 ] [ 5 , 6 ]

δ 0.024 0.024 0.027 0.027 0.027 0.022 0.022 0.024

N(0,0) −1.73 −0.72 −0.57 −0.49 −0.34 −0.3 −0.28 −0.32

N(0,7) 3.7 1.54 0.98 1.29 0.79 0.59 0.51 0.52

N(0,7′) 172.63 71.81 45.75 60.34 36.74 27.69 23.8 24.07

N(0,9) −0.16 −0.07 −0.07 −0.03 −0.03 −0.03 −0.03 −0.04

N(0,9′) 10.89 4.61 4.74 1.84 1.92 2.04 2.27 2.81

N(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

N(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

N(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

N(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

N(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

N(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

N(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(0,0) 551.99 190.54 881.21 142.68 80.07 81.89 105.74 141.61

D(0,7) −1018.98 −372.65 1121.2 −875.91 −311.74 −69.93 70.4 168.19

D(0,7′) −61.16 −25.83 −140.78 1.56 −7.59 −13.28 −18.28 −23.56

D(0,9) −20.03 −19.92 167.85 −26.15 −15.89 −4.84 6.98 19.87

D(0,9′) −5.6 −1.55 −23. 0.41 −0.18 −0.92 −1.85 −3.05

D(0,10) −182.75 −75.18 −299.5 −15.05 −25.65 −36.46 −47.37 −58.22

D(0,10′) 14.79 5.63 31.05 0.98 1.8 2.78 3.94 5.3

D(7,7) 9487.44 4084.91 3801.73 3592.89 2148.36 1545.51 1209.12 991.57

D(7′,7′) 9500.76 4090.74 3811.36 3596.65 2151.12 1547.9 1211.35 993.74

D(9,9) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(9′,9′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10,10) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(10′,10′) 42.42 17.45 69.51 3.49 5.95 8.46 10.99 13.51

D(7,7′) −208.65 −92.03 −183.73 −49.13 −41.19 −39.16 −39.12 −40.06

D(7,9) 566.44 260.55 503.48 109.79 112.25 113.9 114.99 115.51

D(7,9′) −23.29 −9.91 −32.92 −3.14 −3.81 −4.56 −5.41 −6.36

D(7′,9) −35.45 −15.5 −43.73 −5.49 −6.22 −7.01 −7.88 −8.84

D(7′,9′) 567.2 260.89 504.42 109.91 112.38 114.05 115.15 115.7

D(9,9′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

D(10,10′) −3.43 −1.31 −7.21 −0.23 −0.42 −0.64 −0.91 −1.23

Table 12. Coefficients for the New Physics formula of 〈P3〉.
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C Statistical approach

We determine and combine our constraints in a frequentist framework, treating theoretical

and experimental uncertainties on the same footing (i.e., taking them as normally dis-

tributed random variables). The model independent bounds are obtained in the following

way. A chi-square function is constructed, according to:

χ2(p) =
∑

k

(Oth
k (p)−Oexp

k )2

δ2k + σ2
k

(C.1)

where p are the theoretical parameters constrained by the analysis (Wilson coefficients,

hadronic quantities, CKM matrix elements. . . ), Oth
k , δk are the central value for theoretical

prediction and error for the observable Ok, and Oexp
k ± σk is the experimental average. In

case of several uncertainties (statistical and systematic ones, for instance), we combine

them in quadrature. In the case of the observables 〈AFB〉, 〈FL〉, 〈P1,2,3〉 and 〈P ′
4,5,6〉, the

numbers Oth
k and δk are given by eq. (B.1). We add to the χ2 similar quadratic terms

for the theoretical quantities involved (decay constants, form factors, quark masses, CKM

matrix elements).

We want to obtain the constraints in the two-dimensional plane corresponding to

two (shifts of) Wilson coefficients (δCa, δCb) among all the parameters p (we denote the

remaining theoretical parameters q). We obtain these regions by drawing the region of

(δCa, δCb) where:
min
q

χ2(δCa, δCb)−min
p

χ2 < δ (C.2)

where δ depends on the dimension of the parameter space where the region is drawn (here,

a two-dimensional plane), and the required confidence level (here, 2.3 for 68.3%C.L. and

6.18 for 95.5%C.L., see the review of statistics and Monte Carlo techniques in ref. [46])

At the practical level, one could in principle compute the χ2 on a grid for the Wilson

coefficients, performing the minimisation over all the nuisance parameters. One would

obtain the two-dimensional contours for a given pair of Wilson coefficients (δCa, δCb) by

performing a further minimisation on the other Wilson coefficients. It turns out that

one can improve the accuracy of the method by sampling the parameter space through a

Metropolis-Hastings Markov-Chain Monte Carlo algorithm with a weight that favours the

minima of the χ2, for instance exp(−χ2/2). Once this sampling has been performed, one

creates the grid of points (and compute the value of the χ2 points) by considering all the

points sampled by the algorithm. The points of grid which have not been sampled at all

are given a very large χ2. One then proceeds to a smearing procedure to get a smooth

dependence of the reconstructed χ2 grid.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License which permits any use, distribution and reproduction in any medium,

provided the original author(s) and source are credited.
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