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1 Introduction

Energetic partons traversing a hot plasma provide very important observables in the heavy

ion collisions (for a recent review with emphasis on holographic methods see [1]), that ex-

hibit distinctive properties such as jet-quenching which can clearly be observed at RHIC [2–

5] and more recently at LHC [6–8]. Depending on the energy of the projectile, the energy

loss can be due to various different mechanisms such as the destructive interference between

vacuum radiation and QCD brehmsstrachlung or elastic scattering of the projectile with

the surrounding medium. Theoretical study of these phenomena is notoriously difficult as

the the perturbative QCD calculations fall short, and one needs strong-coupling input at

various stages of the computations. Non-perturbative methods, such as lattice QCD are

also inadequate to describe such time-dependent phenomena.

This provides the main motivation behind the energy loss studies using gauge-gravity

duality [9–12]. In approach of [9, 10] the dominant mechanism is assumed to be the

elastic interactions of the parton with plasma. These interactions are further assumed

to be strongly coupled at all relevant energy scales. The simplest setting involves a quark

traveling with constant velocity in linear motion throughout the plasma, and the question is

the energy required to keep it in uniform motion using the AdS/CFT correspondence [13–

15]. On the gravity side, the quark is represented by the end-point of a string at the

boundary. The string that trails the quark extends toward the interior of the dual black-

hole geometry, reaching the horizon. The energy required to keep the quark in uniform
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motion is then given by the world-sheet momentum that falls across the horizon. In the case

of conformal plasmas such as the N = 4 super Yang-Mills theory, this energy turns out to

be proportional to the momentum of the parton, thus energy loss happens via drag. In more

realistic examples that imitate the energy dependence of the strong interactions [16, 17],

one finds that the drag coefficient is not constant but it also depends on the momentum of

the quark [18, 19].

In the real setting of the heavy-ion experiments however there is no external force

acting on the parton keeping it in constant velocity. Rather, the parton decelerates. On

the other hand, it turns out a challenging problem to study linearly decelerating projectiles

in the gauge-gravity duality. A technically more tractable case is when the quark is in

uniform rotation with constant angular velocity, where one can construct the relevant

rotating string solution relatively easily. Motivated by this, the authors of [20] studied

this problem in case of the conformal N = 4 plasma at finite temperature and strong

coupling. Generally, energy loss is a combination of two effects: the drag force due to

interaction with the medium and the syncrotron radiation of the rotating probe. The drag

effect becomes dominant in the regime ω → 0, L → ∞, with constant velocity v = ωL,

where the calculation [20] reproduces the earlier result of the linear drag force [9]. In the

opposite, high frequency and small radius limit ω → ∞, L → 0, v = ωL constant, the

latter effect becomes dominant and the calculation reproduces the Lienard potential for

syncrotron radiation [21].

In this paper we extend this study to non-conformal plasmas, where the vacuum of the

theory at zero temperature confines the color change. As a first step in this direction, first

we would like to understand the qualitative differences that arise due to non-conformality

and confinement. In particular, these theories possess a fundamental energy scale that we

refer to as ΛQCD in addition to temperature1. The rate of energy loss should therefore be

qualitatively different at energy scales smaller or bigger than ΛQCD. More precisely, the

theory we consider exhibits a confinement-deconfinement transition at some finite temper-

ature Tc ∝ ΛQCD, below which the fundamental excitations are color-blind objects such

as the glueballs2. Above the transition, the color charge deconfines and medium becomes

a gluon plasma. Clearly, energy loss of a rotating probe in the low T phase should only

be due to syncrotron radiation, whereas in the high T phase both radiation and drag may

play a role.

We study the problem in the celebrated model of Witten [22] based on N D4 branes

wrapped on a circle. The field theory is a non-supersymmetric SU(N) Yang-Mills theory

that confines at low temperatures [22]. Although the theory contains infinite number of

undesired scalar operators coupled to the glue sector, thus very different than pure Yang-

Mills theory, it is argued to be in the same universality class [22] in the sense that it

exhibits linear confinement of quarks in the vacuum. What makes this model attractive

for our purposes here is two-fold. Firstly, it is a top-down approach where one can control

1Of course, presence of a fundamental energy scale does not necessarily imply confinement. We refer

to [17] for a classification of confining theories in a general 5D holographic setting.
2In this paper we only consider pure Yang-Mills coupled to operators in the adjoint representation of

the gauge group, therefore the only hadrons are glueballs.
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the stringy corrections parametrically; secondly, the gravitational backgrounds dual to

both the vacuum and the high T phase is known analytically; a fact that simplifies the

calculations substantially.

In the next section we first review the calculation of energy-loss of rotating quarks in

the dual gravitational setting. We keep the discussion as general as possible, and present

formulae for the energy-loss rate that can be applied to a large class of backgrounds. Then

we review the features of the D4/S1 model that will be used in the following sections. The

third section is devoted to the study of rotating probes in the low T phase. In particular we

show that there is general mechanism on the gravitational set-up that yields a lower bound

on the possible energy loss by a rotating quark, that is given by the mass gap of the gluons.

We further argue that the energy loss in the low T phase is completely due to syncrotron

radiation. Therefore, our calculation provides the Lienard potential for the syncrotron

radiation at strong coupling for the confining gauge theory living on D4/S1 branes. The

fourth section studies rotating probes in the high T phase. We end the paper with a

discussion section where we summarize our results and point towards future directions.

2 Review of background material

2.1 Generalities of rotating strings and energy loss

We begin by reviewing general features of rotating string solutions in generic string back-

grounds and its relation to energy loss of rotating probes in the dual field theory. The

ansatz for a rotating string is given by3,

XM ≡ (t = τ, u = σ, φ = ωt+ θ(u), ρ = ρ(u), x3 = 0). (2.1)

Here τ and σ are the world-sheet coordinates and u is the radial coordinate in the space-time

geometry that is typically a domain-wall with translation invariance in the 3+1 Minkowski

directions. The boundary of the space-time is at u = ∞. We choose a radial parametriza-

tion of two the Minkowski directions t, xi as x1 = ρ cosφ and x2 = ρ sinφ.

The first two entries in (2.1) corresponds to the static gauge choice for the world-sheet

parametrizations. The third entry describes a string rotating with angular velocity ω and

and off-set angle θ that depends on the radial variable u. ρ is the radius of rotation at a

given plane u = const.

The end of the string corresponds to the quark rotating the in the plasma. This end

point is rotating in the (x1, x2) plane with an angular frequency ω. Radius of its circular

motion is a parameter of the problem, that we denote by L. Thus, the boundary conditions

for the string solution at u = ∞ are4:

ρ(∞) = L, θ(∞) = 0. (2.2)

3All other coordinates in possible internal dimensions are fixed to be constant.
4The latter is just a convenient choice with no loss of generality.
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Shape of the string is determined by the extremum of the Nambu-Goto action5,

S = − 1

2πα′

∫

dτdσL = − 1

2πα′

∫

dτdσ
√

− det gµν (2.3)

where gµν = GMN∂µX
M∂νX

N is the induced metric on the world-sheet. It is given by

gαβ =

(

Gtt +Gφφω
2 Gφφωθ

′

Gφφωθ
′ Guu +Gρρρ

′2 +Gφφθ
′2

)

(2.4)

The solution is parametrized by two functions ρ(u) and θ(u). A general feature of the

string solutions in this paper is independence of the NG Lagrangian (2.3) of the angular

variable θ. This is because the angle φ only appears under a derivative in (2.3) because the

space-time geometries we consider in this paper (see eqs. (2.2) and (2.22)), do not depend

on φ explicitly. As a result, the associated momentum is conserved:

Π =
∂L
∂θ′

= −θ′GttGφφ

L = constant. (2.5)

Furthermore, Π depends only on θ′ and not θ′′. Thus the equation of motion for θ is first

order. The general form of this equation is obtained from (2.5) in terms of the metric

components as,

θ
′2 = Π2 (−Gtt − ω2Gφφ)(ρ

′2Gρρ +Guu)

GttGφφ(Π2 +GttGφφ)
. (2.6)

Therefore the boundary condition θ(∞) = 0 is enough to determine the full solution (up

to an overall sign which can be fixed by hand with no loss of generality).

On the other hand, a typical background metric does explicitly depend on ρ, thus the

equation of motion for ρ will be second order. One boundary condition is provided by

eq. (2.2). The other will be completely fixed by demanding regularity of the solution, just

like in [9, 10] and [20], as follows: From (2.6) we see that the l.h.s. is always positive definite.

In order the r.h.s. be positive definite as well, one needs to impose that the numerator and

the denominator changes sign at the same point. This usually happen at a finite u = uc
because Gtt in (2.6) is negative definite. One determines uc and the value of ρ(uc) ≡ ρc at

this point from the equations

Π2 +Gtt(uc)Gφφ(uc) = 0, (2.7)

Gtt(uc) + ω2Gφφ(uc) = 0 (2.8)

respectively. Consider any metric of the generic form

ds2 = b(u)
(

−dt2ft(u) + dρ2 + ρ2dφ2 + dx2i + · · ·
)

. (2.9)

Here the function ft(u) = 1 in the low T (confined) phase of the dual QFT, and it is the

blackness function of the black-hole in the high T (deconfined) phase.

5In principle one has to also consider coupling of the string to dilaton in the form
∫
dτdσφR(2) where

R(2) is the world-sheet curvature. This term is O(ℓ2s) suppressed w.r.t the area coupling however, hence it

is safe only to consider the NG action in the SG limit.
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The locus uc precisely corresponds to the point where velocity of the string ρ(u)ω

coincides with the local speed of light observed from infinity, c(u) =
√

ft(u). This fact was

already observed in [20] and here we see that it directly generalizes to a large class of the

string backgrounds. This point also coincides with the location of a world-sheet horizon.

The latter is determined by substituting (2.6) in (2.4) precisely as (2.8). Again specifying

to a metric of the general form (2.9) this is given by

vc ≡ ρ(uc)ω =
√

ft(uc). (2.10)

At this point it is important to note that the world-sheet horizon is present for rotating

strings even in the low T phase when there is no black-hole horizon. This was already noted

in a different set-up in [23] (see also [24] for a more recent discussion) and [25]. In our

case, it is given by the locus ρ(uc) = 1/ω. One can contrast this with the case of string in

linear motion. In that case, generally there would be no world-sheet horizon in the low-T

phase, see e.g. [19]. In the dual field theory, the fact that there is a world-sheet horizon

at low T means that there will be energy loss — in terms of Hawking radiation from the

world-sheet horizon6 — even in the low T phase.

Quite generally, expansion of the equation of motion

d

du

δL
δρ′

=
δL
δρ

, (2.11)

around the point uc completely determines the first derivative ρ′(uc) in terms of ω and

Π. Solving the equation from the point u = uc + ǫ toward the boundary then fixes the

solution completely.7 Finally, equating the value ρ(∞) = L by the boundary condition (2.2)

determines Π in terms of the parameters of the field theory problem ω and L.

Energy loss rate is given by the world-sheet momentum:

dE

dt
= Πσ

t = − δS

δ∂σX0
= −GttGφφωθ

′

2πα′L , (2.12)

where, in the last equation, we used the general form of the Nambu-Goto action in terms

of the metric functions. Using eq. (2.5) above, one then finds the simple general form,

dE

dt
=

Π(ω,L)ω

2πα′
. (2.13)

We will be rather interested in the energy loss as a function of the field theory parameters ω

and L, which is determined by the function Π(ω,L). In general this can only be determined

by numerical solution of the fluctuation equations as mentioned above.

There is another useful way of rewriting (2.13) in the high T phase. Using (2.7)

and (2.8), equation (2.13) becomes,

dE

dt
=

|Gtt(uc)|
2πα′

=
b(uc)ft(uc)

2πα′
=

b(uc)v
2
c

2πα′
, (2.14)

6We refer the reader to [26] and the references therein for a general discussion.
7More precisely, this determines the solution in the part u > uc. The other section u < uc is also

completely determined similarly by solving the equation starting from u = uc − ǫ.
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where we also specified to a general form (2.9) and used (2.10). Now, for a generic form

with metric functions given by power-laws

b(u) =
(u

ℓ

)γ
, f(u) = 1−

(

u

uh

)−α

, (2.15)

one then finds,
dE

dt
=

1

2πα′

(uh
ℓ

)γ v2c

(1− v2c )
γ

α

, (2.16)

2.2 D4/S1 system at finite temperature

The first example of a gravitational system that corresponds to a confining gauge theory

under the gauge/gravity duality, was provided by Witten in his seminal paper [22]. The

construction is based on N D4 branes wrapped on a circle of radius R. The fermionic

fields on the brane acquire tree-level masses with choice of anti-periodic boundary condi-

tions along the circle, and the scalar fields acquire masses at one-loop order. Therefore

the supersymmetry of the original D4 brane system is completely broken by compactifica-

tion on S1.

The UV scale is given by the radius of the circle R, and as usual with the gauge/gravity

correspondence the gravity approximation is valid when the ’t Hooft coupling on the D4

brane theory is large, λ5 ≫ R. In this limit the gravitational background is a solution to IIA

string theory given by the metric, the dilaton and the RR-four form fields as follows [22]:

ds2 =

(

u

ℓ

)3/2

(−dt2 + dρ2 + ρ2dφ2 + dx23 + fkdx
2
4) +

(

ℓ

u

)3/2(du2

fk
+ u2dΩ2

4

)

F(4) =
2πN

V4
ǫ4, eφ = gs

(

u

ℓ

)3/4

, %ℓ3 ≡ πgsNℓ3s. (2.17)

Here V4 and ǫ4 are the volume of the unit for-sphere and the associated volume form, and,

fk = 1−
(

uk
u

)3

,
uk
ℓ

=
4

9

ℓ2

R2
. (2.18)

The second relation follows from demanding absence of a conical singularity at the tip of

the cigar uk that is spanned by x4 and u. In these formulae above, ℓ is a typical length

scale associated to the D4 brane geometry. We shall measure all dimensionful quantities

in units of ℓ below.

The dual field theory on D4/S1 is characterized by the UV cut-off scale 1/R, the 3+1

dimensional ’t Hooft coupling λ4 = λ5/2πR = 2πℓsgsN/R and the confinement scale u−1
k .

The decoupling limit on the D4 branes is obtained by taking ℓs ≪ 1 as usual. In this limit

the 10 D Newton’s constant also vanish, hence the string interactions can be ignored as

long as the dilaton is not too large. On the other hand λ4 is given by

λ4 =
λ5

2πR
, with

λ5

ℓ
= 4π

(

ℓ

ℓs

)2

. (2.19)
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In what follows we will keep ℓ ∼ R ∼ uk ∼ O(1) and ℓs ≪ 1. Thus the supergravity

approximation is valid when λ5/ℓ ∼ λ5/R ≫ 1. Then, by (2.19) the SG limit means

λ4 ≫ 1, hence effective theory in 3+1 D should be strongly interacting. On the other

hand, the confinement scale is around 1/R, which is the same as the UV scale of the D4/S1

theory. It will be convenient for our purposes to define this scale — in units of ℓ — as

ΛQCD =

√

uk
ℓ
. (2.20)

This is a dimensionless parameter that parametrizes the mass gap in the theory.

In the SG limit the 3+1 D field theory involves infinitely many KK modes that cannot

be decoupled from the gauge modes. In the opposite limit λ5/R ≪ 1 however, the confine-

ment scale is exponentially smaller than the KK scale and the theory flows to pure SU(N)

Yang-Mills in 3+1 D at energies smaller than 1/R.8 The stringy corrections cannot be

ignored in this limit. However, It is believed that the theory in these two opposite limits

are continuously connected, and in this sense the D4/S1 set-up even in the SG approxima-

tion corresponds to a theory in the same universality class as the pure non-supersymmetric

3+1 Yang-Mills.

Another concern is that there is an upper bound on the variable u because from (2.2)

requirement of a small dilaton means u/ℓ ≪ g
−4/3
s . This however is always satisfied in the

large N limit, provided that we first take N → ∞. One can easily see this by noting from

the equations above that, requirement of small dilaton is

u

ℓ
≪ π

4
3

(

λ4
R

2ℓ

)−2

N
4
3 . (2.21)

Although the quantity in the brackets is large in the SG limit, it is kept finite, and N is

taken to ∞ first. Thus the upper limit on u will play no role in what follows.

Temperature in the field theory is introduced by compactifying the Euclidean time on

a circle with periodicity 1/T : tE ∼ tE + 1/T , where tE = it is the Euclidean time. Thus,

the theory for sufficiently low temperatures is dual to the geometry given by a cylinder

in the (u, tE) plane and a cigar in the (u, x4) plane. There exists another geometry with

the same near boundary asymptotics, that is obtained by exchanging the tE and the x4
coordinates.9 This is the black-hole geometry with a horizon located at uh:

ds2 =

(

u

ℓ

)3/2

(−fhdt
2 + dρ2 + ρ2dφ2 + dx23 + dx24) +

(

ℓ

u

)3/2(du2

fh
+ u2dΩ2

4

)

(2.22)

where ℓ is given as in (2.2). The blackness function is

fh = 1−
(

uh
u

)3

,
uh
ℓ

=

(

4π

3

)2

(Tℓ)2. (2.23)

8One can easily see this from the beta-function equation in the gauge theory. One loop approximate

solution in 3+1 D yields Mglue ∼ R−1 exp(2πR/λ5) where the UV scale is set as 1/R. Clearly, for a

parametric separation between the glue and the KK scales, one needs to go outside the validity of the SG

approximation.
9The four-form field and the dilaton are exactly the same as in (2.2).
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Figure 1. The local radius of the rotating string in the low T phase as a function of the radial

coordinate u. The different curves in each figure correspond to different choices of the world-sheet

momentum Π = 500, 100, 50, 10, 5 (from above to below). Left: ω/Λc = 0.3 Right: ω/Λc = 3.

The latter expression above is again determined by demanding absence of a conical sin-

gularity at the horizon uh. The free energies associated with the (Euclidean versions

of)solutions (2.2) and (2.22) are obtained by the IIA supergravity action evaluated on

these geometries. Clearly the difference between the actions vanish when the perime-

ters of the x4 and the time circles become identical. This corresponds to a (first order)

confinement-deconfinement transition10 in the dual gauge theory at:

Tc =
1

2πR
. (2.24)

The theory for T < Tc is confined and described by the geometry (2.2), whereas, for

T > Tc the thermodynamics ensemble is dominated by (2.22). One useful dimensionless

combination of parameters is given by the ratio uh/uk that, in terms of physical parameters

reads as,

uh
uk

=

(

T

Tc

)2

. (2.25)

Flavor sector in the theory described above is represented by flavor D8 − D̄8 branes

that span the same field theory directions xi, i = 0, · · · 3 and localized at two arbitrary

points that can be chosen as x4 = 0 (D8) and x4 = r (D8) on the S1 in the background [28].

A hard quark(anti-quark) probe traveling through the gluon plasma is then represented

in this set-up as a probe string attached to the flavor D8 (D8) branes. We will not

deal with the dynamics of flavor sector in this paper. Therefore the number of flavor D8

branes is much smaller than the number of color D4 branes corresponding to the quenched

10Reference [27] questions the validity of the identification of this black-hole phase with the deconfined

phase of the D4/S1 gauge theory and concludes that, in fact another geometry i.e. the localized D3 brane

geometry corresponds to the true deconfined phase of the gauge theory. The arguments in this paper seem

to be convincing and it would be very interesting to study the energy loss in this new background as well.

However, our purpose in this work is to discuss the qualitative features of the low and high T phases in a

non-conformal background, and the black-hole solution below certainly serves for this purpose. We offer

more comments about the high T phase in the beginning of section 4.
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Figure 2. Shape of the rotating string solution in the low T phase, for the choice of parameters
ω

Λc

= 8, Π = 12 (in units ℓ = 1.) The red dot represents the location uc that corresponds to the

world-sheet horizon.

approximation in the dual field theory, where the quarks do not propagate in loops and

treated as external probes.11

3 Rotating quarks at low temperature

3.1 Rotating string solution

We first consider energy loss of a rotating probe in the D4/S1 theory in the low T phase,

i.e. when T < Tc. The theory is in the confined phase, therefore one expects energy loss

only associated with radiation due to acceleration in circular motion of the probe. This

is because the color charge in the low T states of the theory is always confined inside

hadrons, hence the flux lines emanating from the charged probe cannot end on anywhere

in the medium, thus one does not expect any drag associated with interactions with the

medium. A similar fact in the case of linear constant motion of a quark was observed in [31].

The dual gravity theory should be able to reproduce this feature for consistency of the

gauge-gravity correspondence, as we confirm in this section. We begin by constructing the

rotating string solution in the low T background (2.2). The on shell action follows from

substituting (2.2) in (2.3) as

S =
1

2πα′

∫

dτdσ

√

(

u

ℓ

)3

ρ2θ′2 +

(

u

ℓ

)3

(1− ρ2ω2)

(

ρ′2 +
1

(uℓ )
3f

)

≡ 1

2πα′

∫

dτdσL.
(3.1)

11Study of QGP beyond the quenched limit in the holographic setting is quite interesting [29]. See [30]

for a review.
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In what follows we present our computations in terms of dimensionless variables. This is

trivially done by omitting all factors of ℓ in the equations. By an abuse of notation we will

denote the dimensionless variables also by same symbols. At the end of the computation,

one can reinstate dimensions simply by the substitutions:

u → u

ℓ
, ρ → ρ

ℓ
, ω → ωℓ, Π → Π

ℓ
. (3.2)

Then the equation of motion for θ (2.5) gives

Π =
u3ρ2θ′

L . (3.3)

Upon use of (3.1), or directly from (2.6) one obtains

θ′2 =
Π2(1− ρ2ω2)(ρ

′2 + 1
u3f

)

ρ2(ρ2u3 −Π2)
. (3.4)

Given the function ρ(u) and the boundary condition for θ in (2.2) this equation completely

determines θ. The equation of motion for ρ on the other hand is given by

ρ′′ +
ρ′(3ρ2u3k + 2u4fρρ′ + 3Π2 − 6u3ρ2 − 3u6f2ρ2ρ′2) + 2uρ

2uf(ρ2u3 −Π2)

− 1 + u3fρ′2

u3fρ(1− ρ2ω2)
= 0

(3.5)

The regularity condition of (2.7) and (2.8) yields

ρ(uc) = ρc =
1

ω
at uc = ℓ(Πω)2/3. (3.6)

In order to find the shape of the string solution, one has to solve the differential equa-

tion (3.5) numerically. This is done by starting at u = uc + ǫ for an ǫ ≪ 1 and solving

the equation towards the boundary at u → ∞ (in practice it suffices to solve until a large

enough value of u such that ρ(u) ceases to change further as u is varied). Substituting

u = uc + ǫ in (3.5) and expanding in ǫ, the leading term determines ρ′ as a solution of the

following algebraic equation:12

(

ρ′2(u3k −Π2ω2)− 1
)

(

4ρ′Πω2 + 3(Πω)1/3
[

1 + ρ′2(u3k −Π2ω2)
]

)

= 0 (3.7)

Therefore, once Π and ω are given, the entire solution ρ(u) is determined completely.13 We

plot the function ρ(u) for various different choices of Π and ω in figure 1. These solutions

are similar to the conformal case in [20]: The local radius of the rotating string decreases

as one approaches the boundary, and it increases as the parameter Π is increased. Once

this is found, the angular dependence is determined by solving (3.4) with the boundary

condition (2.2). A sample solution is presented in figure 2 where we also display the location

of the world-sheet horizon by the red dot.

12Generically, there is a single acceptable solution with real and negative ρ′. Negativity requirement

comes from the fact that r is supposed to decrease towards the boundary.
13In the other range uk < u < uc the solution is determined similarly by expanding in u = uc − ǫ.
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Figure 4. Energy loss rate Πω = 2πα′dE/dt in the low T phase as a function of the radius of

rotation for a large choice of frequency ω

Λc

= 3. We denote the minimum allowed value of the radius

as Lmin.

One important point is that, one has to choose the range of Π and ω such that uc is

always bigger than uk. From equation (3.6), we learn that this means

Πω > u
3
2
k . (3.8)

Given ω this provides a lower bound on the allowed values of Π, vice versa. On the other

hand we numerically observe in figure 3 that the length L is a monotonically increasing

function of Π at fixed ω. Therefore, a lower bound on Π implies a lower bound on L. We

call this value Lmin and plot is as a function of ω in figure 3.

3.2 Energy loss

Once the string solution is found, the energy loss of the rotating quark in the dual field

theory is given by (2.13)

2πα′ dE

dt
= ωΠ(ω,L) = u3/2c , (3.9)

where we also used (3.6) in the last equality.
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We are, however, interested in dE/dt as a function of ω and L rather than Π. One

needs to numerically evaluate the function Π(ω,L). This is achieved by solving (3.5) as

described at the end of the previous section for a given Π and ω and read off the value L

from the asymptotics of ρ(u) for large enough u.

The result of this numerical calculation is shown in figures 4 and 5. In figure 4 we plot

the energy loss rate as a function of the radius of rotation L. It is clearly a monotonically

increasing function of L.

Figure 5 presents the same function at different values of the frequency. As clearly

seen from this figure changing ω only changes the allowed range of L. The allowed range

increases (Lmin decreases) with increasing ω. This is because, from equation (3.8) the

minimum value of Π decreases, therefore Lmin also decreases by monotonicity (figure4).

The form of the curve stays the same for different ω is becuase the only dimensionally

meaningful quantity is the ratio ω/Λc, therefore increasing ω is equivalent to decreasing Λc

(or equivalently, increasing uk). The latter change can be absorbed into a redefinition of

the u variable, hence does not change the form of the string equation of motion but only

the allowed range of u > uc.

3.3 Energy loss at low T : discussion

Motivated by [20], we ask how much of the energy loss is due to linear drag and how much

is due to radiation.14 As discussed at the beginning of this section, we do not expect any

linear drag component in the low energy phase, and the entire energy loss should be due to

radiation from the rotating probe. We present four arguments to support this view based

on calculations on the gravity side.

14In [20] the question is asked is asked in case of the N = 4YM theory which is qualitatively similar to

the high T phase of the D4/S1 plasma which we discuss in the next section.
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• A simple argument can be made by taking the “linear drag limit” of the rotating

string solution, as in [20], that is, ω → 0, L → ∞, v = ωL = constant. In this limit

one should use the rescaled variable v(u) = ωρ(u) instead of ρ(u) which diverges. The

leading term in the equation of motion for ρ (3.5) then becomes v′(u) = 0. Therefore

it should be given by its value at uc that is v(u) = ωρc. On the other hand, by (3.6)

this means v = 1, that contradicts our assumption that the end point of the string

describes a probe moving at some velocity v < 1. Therefore, there is no smooth linear

drag limit in the low T phase.

• Related to the argument above, one notes the following. As mentioned in section 2.1,

there exists a horizon on the world-sheet of a rotating string solution. This horizon

is given by ρ(uc) = 1/ω in the low T phase. Quite generally AdS/CFT associates

Hawking radiation from a world-sheet horizon to energy loss of the probe on the

boundary theory. On the other hand one can show that the presence of this horizon is

totally due to rotation and not linear drag. This is because we know that the horizon

disappears in the linear drag limit discussed above. In support of this view, one can

also note that the horizon disappears in the limit ω → 0 because ρ(uc) = 1/ω → ∞
cannot happen for any ∞ < uc < uk. This is in accord with the fact that syncrotron

radiation disappears in the limit ω → 0.

• In the next section we show that, the limit ω → ∞ of the energy loss in the high T

phase is entirely accounted for, by the energy loss in the low T background. As, one

expects that the energy loss in the high T phase should be dominated by radiation

in the large ω limit, this provides another argument in support of our view that low

T energy loss is completely due to radiation, see equation (4.10).

• Perhaps the strongest argument can be made as follows: We recall the lower limit (3.8)

on the energy loss rate of the quark:

2πα′dE

dt
= Πω > Λ3

QCD, (3.10)

where ΛQCD is a dimensionless parameter that characterizes the mass gap in the

confined theory and defined in (2.20). This lower bound is in complete agreement

with our expectations on the dual field theory side. In the low T phase the theory is

confined. On the other hand when a probe accelerates, it should radiate its energy

in gluon quanta. However the gluons cannot have arbitrarily small energy because

of confinement: they should turn into jets of glueballs. Indeed what we observe from

eq. (3.10) is that, precisely the lower limit on the energy loss is given by the mass

gap of the confining theory (2.20)! Consistency of this picture also requires that

energy loss can only be in terms of radiation in the low T phase: if it was also by

drag, then there would be no reason for a lower bound because the drag force can be

made arbitrarily small by making the velocity of the quark v = Lω arbitrarily small.

Therefore, we see that the only possible interpretation of a lower bound eq. (3.10) in

the energy loss is if it is totally due to radiation.
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Figure 6. The numerical proof that a simple Lienard type formula (3.12) for syncrotron radiation

does not hold for the D4/S1 plasma. The ratio of the energy loss in the low T phase versus (3.12)

is plotted for two different frequencies ω

Λc

= 3 (left) and 0.3 (right) as a function of the velocity

v = ωL. The minimum allowed value of the velocity vmin = ωLmin is also displayed.

We conclude that the rotating string solution in the low T phase should directly mea-

sures the energy loss of a rotating probe in the vacuum theory due to radiation. The latter

can be calculated in perturbative QFT. It is given by the Lienard potential of a charged

rotating particle [32] in case of electromagnetic radiation. An immediate consequence of

our result is that, the gauge-gravity correspondence provides a way to calculate the Lienard

potential for the syncrotron radiation in a complicated field theory given by the D4/S1

branes at strong coupling! The result is given in figures 4 and 5. Our result is only nu-

merical and it is beyond our technical ability to determine the dependence of the Lienard

potential in ω and L analytically.

The only known analytic result at strong coupling is in the case of N = 4 YM theory,

that is obtained by the dual rotating string calculation in the vacuum AdS solution [21]

(specified to rotation with constant frequency and radius):

dE

dt

∣

∣

∣

∣

N=4,radiation

=

√
λ

2π

v2ω2

(1− v2)2
. (3.11)

This turns out to be just equivalent to Lienard’s result for electromagnetic syncrotron

radiation, except for a simple replacement of the proportionality constant.

It is tempting to ask whether the form in (3.11) is also attained in a more complicated

theory such as the D4/S1 theory. For that purpose we define the function

ΠR =

√
λ

2π

v2ω2

(1− v2)2
, (3.12)

and we plot in figure 6 the ratio of our result for the energy loss in the vacuum D4/S1

theory and the r.h.s. of equation (3.11) where we set
√
λ = 2π for simplicity. We observe

that the ratio depends on v and ω, therefore a simple analytic formula as in (3.11) does

not work in the confining case,15 neither for small nor for large frequency.

15This conclusion of course relies on our arguments above that the low T energy loss is totally due

syncrotron radiation.
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4 Rotating quarks at high temperature

In the high T phase T > Tc the field theory is in the deconfined phase. As in the case

of N = 4 plasma one expects two components in the rate of energy loss [20]: one due to

syncrotron radiation and one due to drag in the deconfined medium. Indeed, our results

in this section will be qualitatively similar to [20].

Before going into details of this investigation let us discuss certain properties of this

phase16 in view of ref. [27]. This paper suggests that the “high T deconfined” phase

of the D4/S1 field theory is in fact a different geometry based on a localized D3 brane

background. The reason for this identification is as follows. ref. [27] argues that in order

the KK reduction on S1 to make sense one needs the Wilson loop around this circle to

have non-trivial expectation value. This is indeed the case in the low T phase we discussed

above, because the submanifold of (2.2) spanned by the x4 and u directions form a cigar,

hence a Nambu-Goto string wrapping this cigar (appropriately renormalized in the UV)

has finite action, corresponding to a finite expectation value for the dual Wilson loop

operator [22]. This is not the case in the black-hole solution (2.22), thus the Wilson loop

around the x4 circle vanishes. This means that the high T phase (2.22) is intrinsically a

5D theory. ref. [27] further argues that the true deconfined phase of the D4/S1 field theory

should be a localized D3 brane geometry in the T-dual IIB picture.

Although the arguments in [27] are convincing, we shall still perform our investigation

16We thank Takeshi Morita for a discussion on this point.
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of the high T phase in the background given by (2.22). The reason is two-fold. Firstly,

we are interested in studying the deconfined phase of a non-conformal field theory at

strong coupling, and (2.22) certainly describes a deconfined phase.17 Thus it is suitable

for our qualitative investigation here. Secondly, it is highly non-trivial to study the energy

loss in the suggested localized D3 geometry, because the geometry depends on Euclidean

time. Therefore, for the purpose of this paper the “deconfined phase” corresponds to the

background (2.22).

4.1 The rotating string

We begin by describing the rotating string solution in the high T background (2.22). The

on shell Nambu-Goto lagrangian is obtained by substituting (2.22) in (2.3) as

L =
√

u3ρ2θ′2fh + u3(fh − ρ2ω2)(ρ′2 + (u−3f−1
h ), (4.1)

where the blackness function fh is given by (2.23) with the horizon location uh. As in

the previous section we shall omit all factors of ℓ in the equations. They can be trivially

reinstated as in eq. (3.2).18

The equation of motion for θ follows from (2.6) as

θ′2 =
Π2(fh − ρ2ω2)(ρ

′2 + u−3f−1
h )

ρ2fh
(

ρ2u3fh −Π2
) (4.2)

The equation of motion for the radial variable ρ(u) is given by

ρ′′ +
2u4ρ2 + 3ρu3(Π2 − u3fρ2 − u3ρ2)ρ′ + 2u7ρ2fρ

′2 − 3u9ρ3fρ
′3

2u3ρ(Π2 − u3fρ2)
(4.3)

+
2u+ 3u3hρρ

′ + 2u4fρ
′2 + 3u3u3hω

2ρ3ρ
′3

2u3ρ(f − ω2ρ2)
= 0.

Just as the low T solution above, there is a special point uc where the denominator of

the r.h.s. of (4.2) changes sign. In order the l.h.s. of this equation to be positive definite

then, the value of ρc ≡ ρ(uc) should be chosen accordingly as in the low T phase above.

One finds,

uc =

(

Πω

2
+

1

2

√

4u3h +Π2ω2

)
2
3

(4.4)

ρc =
1

ω

√

√

√

√

2Πω

Πω +
√

4u3h +Π2ω2
(4.5)

We note that these equations have exactly the same form as those of [20] if one defines a

dimensionless frequency ω = ω/u
3
2
h analogously.

17This is because the Wilson loop around the Euclidean time direction is finite, hence the dual Polyakov

loop has non-vanishing VeV.
18We will denote the dimensionless variables also by same symbols as the original dimensionful ones with

a slight abuse of notation.
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Figure 8. Local radius of the rotating string as a function of the radial coordinate for various

different choices of parameters: Π = 500, 100, 50, 10, 1, 0.1 (from above to below) in all of the

figures except the bottom right, and ω

T
= 0.13 (top left), ω

T
= 1.3 (top right), ω

T
= 13 (bottom

right). Bottom right figure is a comparison of different choice of ω

T
= 2, 0.93, 0, 75, 0.42 (from above

to below), for a fixed angular momentum Π = 20 in units of ℓ = 1.

The numerical evaluation of ρ(u) and θ(u) is completely analogous to the previous

section. We note that, unlike in the low T phase, here there is no restriction on the

minimum value of the energy loss Πω of the quark. Such a restriction would come from

the requirement that uc > uh but from eq. (4.4) we see that for any positive value of Πω

this condition is satisfied automatically.

A sample shape of the string is given in figure 7. Profile of the radial function ρ(u) of

the string, as shown in figure 8 exhibits a similar behavior as in the low T phase, figure 1.

4.2 Energy loss

The rate of energy loss of the rotating quark in the high T plasma is determined by the

world-sheet momentum of the string solution found above. This is given by the general

formula (2.16) which for the geometry (2.22) becomes

2πα′ dE

dt
= u

3
2
h

v2c
√

1− v2c
. (4.6)

Here we reinstated the units ℓ and used the equation (4.4). vc is the local velocity of the

string at the world-sheet horizon uc, i.e., vc = ρcω with ρc given by (4.5). It determines
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Figure 9. Energy loss rate Πω = 2πα′dE/dt in the high T phase as a function of the radius of

rotation for the choices of different ω/T=0.3 , 2, 3 (from below to above).

the dependence of the energy-loss on L and ω. Using the definitions in section 2.2, the

“dimensionless” energy-loss rate can be written in physical parameters as,

dE

dt
=

32π2λ4

9

T 3

ΛQCD

v2c
√

1− v2c
. (4.7)

Here λ4 is the ’t Hooft coupling in the dual 3+1 D field theory (2.19) and ΛQCD is the

dimensionless mass-gap parameter defined in (2.20). We present our numerical findings for

the various temperatures and frequency in figure 9.

As noted below eq. (4.5) there is no lower bound on the rate of energy loss of the quark,

unlike in the low T phase, see eq. (3.10). This is in perfect agreement with what we expect

from the field theory dual. In the high T phase the theory is deconfined and an accelerating

quark loses energy in possible ways: by radiation due to acceleration and by the drag force

that arises from interactions with the deconfined medium surrounding the quark. The

latter can be arbitrarily small as the velocity of the quark can be chosen arbitrarily small.

Similarly, radiation due to acceleration can also be arbitrarily small because the theory

is deconfined and the quark can radiate energy by gluons that can have arbitrarily small

energies, unlike in the confined case. One can distinguish these two contributions in the

two separate limits. This is what we discuss next.

4.2.1 The IR and the UV limits

As in section 3.3 for the low T phase, it is interesting to study the energy loss rate in the

various limits. Here we focus on the two limits, that were already studied in [20] in the

case of the conformal N = 4 plasma. These limits are:

1. The IR or the “liner drag dominated limit”: ω → 0, L → ∞, v kept constant.

2. The UV or the “radiation dominated limit”: ω → ∞, L → 0, v kept constant.

In the following we analyze both limits in detail.
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Figure 11. Ratio of the total energy loss and the energy loss due to linear drag as a function of

the radius of rotation for choices ω/T=0.03, 0.3 and 3 (right to left).

Linear drag limit: in this limit we keep the local velocity v(u) = ρ(u)ω constant as we

send ω → ∞. Substituting into the radial equation (4.3) we see that the equation in this

limit becomes v′(u) = 0. Therefore the velocity at every point on the string should be the

same as its value at the boundary, i.e. v(u) = Lω ≡ v. In particular the velocity at the

special point uc should also be the same: vc → v in this limit. Inspection at equation (4.7)

then confirms that energy-loss is indeed dominated by linear drag in this limit:

dE

dt
→ 32π2λ4

9
T 3ΛQCD

v2√
1− v2

. (4.8)

This is the same as the result obtained in [31], where the drag force acting on a quark in

linear motion with constant velocity v in the D4/S1 plasma was studied. This conclusion

is confirmed by our numerics in figure 11. One observes in thse plots that the ratio of the

total energy loss and the energy loss due to linear drag becomes 1 for a larger range of L

as the frequency decreases, supporting the argument above.

Radiation dominated limit: now, let us discuss the opposite limit ω → ∞, L → 0, v

kept constant. In this limit Πω also diverges.19 From equations (4.4) and (4.5) we find

19This can be inferred from the fact that in the UV limit the energy loss — that is proportional to Πω,

see eq. (2.13) — should diverge. We also numerically checked that, for a fixed v, i.e. L = v/ω, Πω diverges

as ω increases, see figure 10.
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Figure 12. Ratio of the total energy loss and the energy loss due to syncrotron radiation as a

function of the velocity v = ωL for different choices of ω/T=2.8, 4.6 and 28 (left to right). The

syncrotron radiation is determined by the low T energy loss. We display the minimum allowed

value of v in the low T phase by vmin.

that ρc → 1/ω in the limit:

uc → (Πω)2/3, ρc →
1

ω
as ω → ∞. (4.9)

Now, one can easily show that, energy loss of the probe in this limit, is dominated

by radiation with the following argument: Since Πω becomes large in this limit, so does

uc according to (4.9), therefore uc comes very close to the boundary. In this part of the

solution, i.e. u > uc, then, the geometry approaches that of the boundary asymptotics.

In particular, this means fh → 1 in the limit. The same is true for the low T solution,

where again, for very large uc the solution in the region u > uc satisfies fk → 1. Therefore

both the low T and the high T geometries (2.2) and (2.22) become the same. As a result

the string Lagrangians and the equations of motion (3.5) and (4.3) also become the same.

Furthermore, comparison of (4.9) and (3.6) shows that the initial condition for solving

these equations also become identical. Therefore, the entire solution and particularly the

value of ρ at the boundary should also become the same in the low and high T phases in

the UV limit. From the general equation (2.13) then we learn that

dE
dt

∣

∣

∣

∣

highT

dE
dt

∣

∣

∣

∣

lowT

→ 1, as ω → ∞. (4.10)

The argument we present here supports the other arguments in section (3.3) that the low

T energy loss (3.9) is completely due to radiation. To confirm the picture we present here,

we check that (4.10) is indeed satisfied by the numerics. In the figure 12 we compare the

low T and high T energy loss rates at two different frequency ω = 0.3 and ω = 3. We

observe that, although the two phases differ substantially for the smaller frequency, they

become identical (in the range L > Lmin in the low T phase) as the frequency gets bigger.

5 Discussion

In this paper, we studied energy loss of probes in uniform circular motion in strongly

coupled confining gauge theories. The phenomenon is investigated both in the low and the
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high T phases of the gauge theory by constructing rotating string solutions in the D4/S1

background. Our findings can be summarized as follows.

• There exists a world-sheet horizon in the low T phase for circular motion, as opposed

to linear motion. This corresponds to the fact that although there is no drag in the

low T phase, there is still energy loss due to syncrotron radiation.

• Our calculation of the low T energy loss rate determines the Lienard potential for

syncrotron radiation for the D4/S1 theory at strong coupling. We observed that

the simple analytic formula that holds for the N = 4 theory [21], that is essentially

identical to that of the Lienard potential for electromagnetic radiation, does not hold

here. In particular it increases with a rate much slower than quadratic in this theory,

see figure 10. This is due to the unrealistic UV completion in the D4/S1 system.

• We found a lower limit to the energy radiated in the low-T phase, that is proportional

to ΛQCD corresponding to the fact that at low T, there is no drag but radiation and

the latter should be by emission of glueballs that are gapped. The corresponding

statement on the GR side is as follows: There exists an IR cut-off in the geometries

dual to confining backgrounds, that is given by uk in the D4/S1 case, and the reg-

ularity of the rotating string solution requires that the world-sheet horizon uc > uk.

This yields a lower bound on the world-sheet momentum.

• Energy loss rate in the high T phase is similar to the conformal plasma [20]. We

demonstrated, both analytically and numerically, that the energy loss is dominated

by syncrotron radiation in the limit ω → ∞, L → 0, v = ωL constant and it becomes

identical to that of the low T energy loss formula in this limit.

• We also showed that the opposite limit ω → 0, L → ∞, v = ωL constant reproduces

the linear drag case studied in [31].

All of the results above immediately generalize to arbitrary holographic backgrounds that

is dual to a strongly coupled confining gauge theories at large N, where one can neglect gs
and α′ corrections.

It will be very interesting to investigate rotating strings in more realistic holographic

backgrounds, such as [33, 34]. It is also tempting to generalize the study of linearly accel-

erating probes in [35] to the case of confining gauge theories such as the model we studied

here. Finally, it would be very interesting to study the energy loss of rotating (as well as in

linear motion) hard probes in the high T phase background in [27] described by localized

D3 branes.
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