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Abstract: We have considered a general 5D warped model with SM fields propagating

in the bulk and computed explicit expressions for oblique and non-oblique electroweak

observables as well as for flavor and CP violating effective four-fermion operators. We have

compared the resulting lower bounds on the Kaluza Klein (KK) scale in the RS model and

a recently proposed model with a metric modified towards the IR brane, which is consistent

with oblique parameters without the need for a custodial symmetry. We have randomly

generated 40,000 sets of O(1) 5D Yukawa couplings and made a fit of the quark masses

and CKM matrix elements in both models. This method allows to identify the percentage

of points consistent with a given KK mass, which in turn provides us with a measure for

the required fine-tuning. Comparison with current experimental data on Rb, FCNC and

CP violating operators exhibits an improved behavior of our model with respect to the RS

model. In particular, allowing 10% fine-tuning the combined results point towards upper

bounds on the KK gauge boson masses around 3.3 TeV in our model as compared with

13TeV in the RS model. One reason for this improvement is that fermions in our model are

shifted, with respect to fermions in the RS model, towards the UV brane thus decreasing

the strength of the modifications of electroweak observables.
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1 Introduction

The Standard Model (SM) of electroweak (EW) interactions suffers from a naturalness

problem, as the mass of the Higgs and its vacuum expectation value (VEV) are sensitive

to the ultraviolet cutoff. This is known as the hierarchy problem and a number of SM

extensions have been proposed with the aim of solving it. One of the most interesting

solutions was originally proposed by Randall and Sundrum (RS) [1] and it is based on a

five-dimensional (5D) space-time with Anti de Sitter (AdS) metric,

ds2 = e−2A(y)ηµνdx
µdxν + dy2, A(y) = ky , (1.1)

where k ∼MPℓ is the AdS curvature. The model has two boundaries, the ultraviolet (UV)

brane, located at y = 0, and the infrared (IR) brane, located at y = y1. The brane distance

can be stabilized by an extra bulk Goldberger-Wise (GW) scalar field φ [2]. The original

model had all the SM (and in particular the Higgs field) contained in the IR boundary

such that the Planck Higgs mass is redshifted to the TeV scale by the warp factor and the

hierarchy problem is solved provided that ky1 ≃ 35.
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However the SM should not necessarily be localized in the IR boundary. In fact if

the fermions (and gauge bosons) propagate in the bulk with O(k) 5D Dirac masses the

model could furnish a theory of flavor [3–5]. Moreover if the Higgs propagates in the bulk

it can solve the hierarchy problem if it is sufficiently localized towards the IR boundary. In

particular assuming a 5D bulk Higgs massM2 = a(4−a)k2 the solution to the gravitational

equations of motion (EOM) of the Higgs field in the AdS background provides a Higgs

profile as

h(y) = h(0)eaky , (1.2)

where the size of a measures the degree of localization of the Higgs towards the IR bound-

ary. Given the holographic interpretation of the parameter a as the dimension of the

Higgs condensate, a = dim(OH), the solution to the hierarchy problem requires the

lower bound a > 2.

However, confronting the electroweak precision observables (EWPO) in the RS model

with experimental data, or electroweak precision tests (EWPT), translates into lower

bounds on the Kaluza-Klein (KK) gauge bosons mass, mKK, which are outside the LHC

reach and thus recreate a little hierarchy problem. For instance for an IR localized Higgs

with a mass mH = 115GeV, mKK & 13TeV, while for a bulk Higgs with a & 2 one

obtains mKK & 7.5TeV [6]. The origin of this large bounds can be traced back to the

scaling dependence of the T (i.e. ∆ρ) parameter with the compactification volume, in

particular αT ∼ ky1. In order to fix the problem different solutions have been proposed

in the literature.

• One possible solution is to introduce large IR localized gauge boson kinetic terms [7].

However such large kinetic terms cannot come from radiative corrections and their

origin should be traced back to unknown UV physics.

• Another very interesting possibility is to enlarge the SM gauge group and particle

content by introducing an extra gauge custodial symmetry in the bulk protecting the

T parameter at the tree level [8]. In custodial symmetry models there are extra light

modes on top of the SM ones.

• A third possibility is to generalize the AdS metric in the IR with a strong defor-

mation of conformality such that the coupling of EW KK modes to the Higgs is

suppressed [9–11], consequently softening the bounds coming from oblique EWPO.

This solution allows for a minimal 5D extension of the SM.

The last possibility was analyzed by the present authors and confronted with oblique

EWPO’s in refs. [6, 9–11] yielding bounds on mKK as low as ∼ 1TeV for mH ≃ 115GeV.

We used a GW stabilizing field φ with profile

φ(y) = −
√
6

ν
log[ν2k(ys − y)] (1.3)

providing a metric [12]

A(y) = ky − 1

ν2
log

(
1− y

ys

)
, (1.4)
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with a spurious singularity located at ys = y1+∆, outside the physical interval. We assume

that the brane potentials fix the values φi ≡ φ(yi)/
√
6 at the branes at y0 = 0 and y1,

which implies that the brane separation is stabilized at

ky1 =
1

ν2

(
e−νφ0 − e−νφ1

)
, k∆ =

1

ν2
e−νφ1 . (1.5)

The required large hierarchy can thus naturally be fixed with values of the fields φ1 &

φ0, φ0 < 0 and O(1) in absolute value. Moreover the strict soft-wall configuration [12]

corresponds to the limit φ1 ≫ 1, y1 → ys. Note that due to its exponential dependence on

φ1, k∆ can be small or, in other words, the IR brane can naturally be located close to the

singularity. We will typically be interested in values of the parameters k∆ ∼ 1, ν ∼ 0.5.

For these values the Kaluza Klein spectrum is similar to RS. For instance for the first

few KK modes of the gauge bosons we find m
(n)
KK/m

(1)
KK = 2.22, 3.46, 4.69 for n = 2, 3, 4,

compared to 2.27, 3.55, 4.83 for RS.1 In order to facilitate comparison to other models,

we will always quote bounds on the lowest lying resonance of the KK gauge bosons (i.e.

mKK ≡ m
(1)
KK).

A bulk 5D Higgs mass is introduced as M2 = a(a − 4 − eνφ)k2 and the solution to

the EOM of the Higgs background is given by eq. (1.2) while the condition for solving the

hierarchy problem reads now as

a & a0 = 2
A(y1)

ky1
. (1.6)

In this paper we will pursue the phenomenological analysis of warped models with bulk

fermions describing the flavor in the quark sector by means of different localization (or 5D

Dirac masses) for different fermions and no special structure for the 5D Yukawa couplings.2

It is well known that the different fermion localization generates non-oblique observables,

mainly it modifies the Zb̄b coupling, as well as flavor changing neutral current (FCNC) and

CP violating dimension-six operators. We will get bounds on mKK from both Zb̄b coupling

and the flavor violating operators for both models based on the RS metric, eq. (1.1), and

on the modified background metric of eq. (1.4). In all cases we will find an improvement

on the bounds in the modified background model with respect to the RS model because,

in order to fit the quark masses and CKM matrix elements, the fermions in models with

metric (1.4) are shifted towards the UV brane with respect to fermions in RS model. This

will translate into milder bounds on mKK as we will see.

The plan of the paper goes as follows. In section 2 we describe the low energy 4D the-

ory obtained after integrating out the KK weak gauge bosons (section 2.1), the KK gluons

(section 2.2) and the KK fermions (section 2.3). In section 3 we present an approximation

of the quark mass eigenstates and mixing angles, assuming a left-handed hierarchy which

is more general than other existing approximations in the literature. We also fit the pa-

rameters of the 5D theory to the observed quark masses, mixing angles and CP -violating

1Notice however that the gap between the IR-brane scale ke−ky1 and m
(1)
KK is larger than in RS due to

the breaking of conformal symmetry in the bulk [9–11].
2The absence of a 5D Yukawa hierarchy is sometimes referred to as anarchy.
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CKM phase by using an anarchic structure on the 5D Yukawa couplings. To this end, we

have generated a set of 40,000 random complex 5D Yukawa couplings and made a χ2 fit of

the nine 5D Dirac masses for quarks for both the RS model and the model defined by the

metric (1.4) to reproduce the observed masses and mixings. In section 4 we give explicit

expressions of oblique and non-oblique EWPOs for arbitrary metrics. In particular, we

extract the bounds on mKK for the RS model and the model defined by the metric (1.4) for

the set of points randomly generated in section 3. A similar analysis is done in section 5

for the bounds obtained from FCNC and CP violating dimension-six operators for both

models and the randomly generated set of points used in the previous section. Finally, in

section 6 we present our final conclusions and the combined bounds from both EWPO’s

and flavor violation.

Moreover, we include appendices to present a number of technical details, which the

reader more interested in the numerical results than in the details of the calculation can

skip. In appendix A the subleading four-fermion terms from integration of electroweak

KK modes are explicitly presented. In appendix B we present some details of how to

formally integrate out KK fermions in general backgrounds. In appendix C we present

explicit expressions for the quark mass eigenstates and mixing angles for the particular

case where there is a left-handed and a right-handed hierarchy using a starting point

the more general expressions of section 3 and found agreement with previously published

results. In appendix D we review the general procedure for linking the various oblique and

non-oblique corrections to measurements.

Notice that the issue of non-oblique EWPO’s in the model (1.4) has recently been

addressed in ref. [13]. Although we employ different fermion profiles, we find similar bounds

from the Zb̄b coupling, with slightly more optimistic bounds in the fully anarchic case.

Moreover our analysis is quite different and complementary to the one done in [13] as we

perform a democratic scan over possible 5D Yukawa couplings deducing the bulk masses

needed to reproduce the observed masses and mixings. In that way we are able to associate

a probability to a certain choice of bulk masses and hence quantify the fine tuning to achieve

a given KK scale that leads to agreement with experimental constraints. The improvement

of flavor/CP bounds with modified metrics has recently been noted in the context of soft

wall models [14]. Here we show that a similar improvement can be obtained in the hard

wall setup, and again we quantify the amount of fine tuning needed to obtain a satisfactory

bound on the KK scale.

2 The low-energy effective theory

In this section we would like to present general expressions for oblique and non-oblique

corrections, as well as FCNC operators, for arbitrary profiles for the metric, the Higgs

and the fermions. We will first integrate out the KK modes of the weak gauge bosons,

which will be relevant for EWPO’s, in section 2.1. Dimension six operators generated from

integration of the KK modes of gluons will be considered in section 2.2 and those obtained

from integration of the KK modes of fermions in section 2.3.
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2.1 Integrating out the KK weak gauge bosons

Let us define the currents

JAµ = {g jW a
µ , g′ jYµ } , (2.1)

where A = {a, Y } and g and g′ are the 4D gauge couplings corresponding to SU(2)L and

U(1)Y respectively. The EOM for the EW gauge bosons are then

DµFAµν + JAhν +
∑

ψ

JAψ ν = 0 , (2.2)

where Jh stands for the Higgs current and Jψ for fermion currents, with ψ = Q,L, u, d, ℓ

the fermions before EWSB, and for now we suppress flavor indices.

The starting point is the effective Lagrangian after integrating out the KK modes

Leff = LSM +
1

2
αhh Jh · Jh +

∑

ψ

αhψ Jh · Jψ +
1

2

∑

ψ,ψ′

αψψ′ Jψ · Jψ′ , (2.3)

where the coefficients αXX′ , with X,X ′ = ψ, h, were computed in ref. [9–11]

αXX′ = y1

∫
e2A(ΩX − y/y1)(ΩX′ − y/y1) . (2.4)

The functions ΩX are defined as

ΩX(y) =

∫ y

0
dy′ e−nXA(y

′) [fX(y
′)]2 , (2.5)

with fX(y) the zero mode wave function, and nX = 2 (3) for scalars (fermions). The

normalization condition on the wave functions implies ΩX(y1) = 1.

We will rewrite this Lagrangian as

Leff = LSM + Loblique + Lnon−oblique , (2.6)

with

Loblique =
1

2
α̂hh Jh · Jh + α̂hg [DµF

µν · Jh ν ] +
1

2
α̂gg [DµF

µν ]2 , (2.7)

Lnon−oblique =
∑

ψ

α̂hψ Jh · Jψ +
1

2

∑

ψ,ψ′

α̂ψψ′ Jψ · Jψ′ , (2.8)

which is physically equivalent to the Lagrangian eq. (2.3) by use of eq. (2.2) for arbitrary

choice of α̂hg and α̂gg as long as the following conditions

αhh = α̂hh − 2α̂hg + α̂gg ,

αhψ = α̂hψ − α̂hg + α̂gg ,

αψψ′ = α̂ψψ′ + α̂gg , (2.9)

hold. We can now transform away the non-oblique corrections for near UV localized (mostly

elementary) fermions such as first and second generation leptons (which have Ω ≈ 1) so all
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the new physics for them is encoded in the oblique parameters. We will refer to this basis

as the “oblique basis” and use it from now on. In order to achieve α̂hψ ≈ 0 and α̂ψψ′ ≈ 0

for the elementary fields a good choice is thus

α̂hg = y1

∫
e2A(1− Ωh)(1− y/y1) ,

α̂gg = y1

∫
e2A(1− y/y1)

2 , (2.10)

which leads to

α̂hh = αhh + 2α̂hg − α̂gg = y1

∫
e2A(1− Ωh)

2 ,

α̂hψ = αhψ + α̂hg − α̂gg = y1

∫
e2A(Ωh − y/y1)(Ωψ − 1) , (2.11)

α̂ψψ′ = αψψ′ − α̂gg = y1

∫
e2A[(Ωψ − y/y1)(Ωψ′ − y/y1)− (1− y/y1)

2] .

It is clear from eq. (2.11) that, for fermions strictly localized on the UV brane (Ωψ = 1),

α̂hψ and α̂ψψ′ vanish. Consequently fermions that are only near UV localized will still have

strongly suppressed non-oblique corrections. The oblique Lagrangian in (2.7) gives rise

to the (T, S,W, Y ) parameters [15, 16] while the first term of the non-oblique Lagrangian

in (2.8) contributes to modified Z andW couplings to fermions as we will describe in detail

in section 4. The second term of the non-oblique Lagrangian generates flavor violating four-

fermion operators as we will describe in appendix A. However the corresponding effects will

be subleading with respect to those induced by integration of KK gluons as explained in

section 2.2.

2.2 Integrating out the KK-gluons

Integrating out the KK gluons we obtain

L =
g2s
2

∑

ψ,ψ′

αψψ′ ψ̄γµλaψ ψ̄′γµλaψ′ , (2.12)

where here ψ runs over the quarks (uL,R, dL,R) and λ
a are the SU(3) matrices normalized

to trλaλb = 1
2δ
ab.

Using appropriate spinor and SU(3) identities, we can rewrite this as

L =
g2s
2

∑

q,q′

[
γij,kℓ
qL,q

′

L

(
−1

6
q̄iLγ

µqjL q̄
′k
L γ

µq′ℓL +
1

2
q̄iLγ

µq′ℓL q̄′kL γ
µqjL

)
+ L→ R

+2 γij,kℓ
qL,q

′

R

(
q̄iLq

′ℓ
R q̄′kRq

j
L − 1

3
q̄i αL q′ℓ βR q̄′k βR qj αL

)]
, (2.13)

where α and β are color indices,3 q and q′ run over u, d and we have defined

γij kℓ
qχ,q

′

χ′
= y1

∫
e2A

(
Ωijqχ −

y

y1
δij

)(
Ωkℓq′

χ′
− y

y1
δkℓ

)
, (2.14)

3We suppress color indices whenever they are contracted in the same way as the spinor indices.

– 6 –



J
H
E
P
0
1
(
2
0
1
2
)
0
3
3

with the hermitian matrices Ω defined as

Ωijqχ = (VqχΩ
diag
qχ V †

qχ)
ij , χ = L,R . (2.15)

The Lagrangian (2.13) will give rise to the leading flavor violating effects as we will see in

detail in section 5.

2.3 Integrating out the KK-fermions

We will now consider the fermion action [17–19]

S =

∫
dy e−3A

(
iψ̄L /∂ ψL + iψ̄R /∂ ψR

)

+ e−4A
(
ψ̄Rψ

′
L − 2A′ ψ̄RψL −Mψ(y)ψ̄RψL + h.c.

)
, (2.16)

where ψ = (ψL, ψR)
T (which runs over Q, u, d, L, ℓ) is a 5D (Dirac) fermion and for the sake

of generality we have allowed the bulk mass to depend on y. Defining new wave functions

ψL,R(y) = e2A(y)ψ̂L,R(y) , (2.17)

we can rewrite the Dirac equation as

mψ̂L,R = e−A(Mψ ± ∂y)ψ̂R,L . (2.18)

For the BC we take either ψL = 0 or ψR = 0 at both branes. Then there is a zero mode

with profile

ψ̂0
L,R(y) =

e−Qψ(y)

(∫
eA−2Qψ

) 1
2

, ψ̂0
R,L(y) ≡ 0 , (2.19)

where Qψ(y) = ∓
∫ y
0 Mψ(y

′), where the upper sign is for left handed zero modes (i. e. for

SU(2) doublets ψ = Q,L) and the lower one for right handed zero modes (i.e. for SU(2)

singlets ψ = u, d, ℓ). The function Ωψ defined in eq. (2.5) can then be written as

Ωψ(y) =
Uψ(y)

Uψ(y1)
, Uψ(y) =

∫ y

0
exp

[
A(y′)− 2Qψ(y

′)
]
. (2.20)

The quark Yukawa coupling is then

Y q
ij = Ŷ q

ij

∫
h e

−Q
Qi
L
−Q

q
j
R

(∫
e−2Ah2

∫
e
A−2Q

Qi
L

∫
e
A−2Q

q
j
R

) 1
2

, (2.21)

where q = u, d. Here Ŷ q
ij are 5D Yukawa couplings with mass dimension −1

2 .

We would now like to integrate out the KK modes of the quarks. In particular we are

interested in the diagrams shown in figure 1. Notice that we can neglect these contributions

if the external quarks are near UV localized. This is because, unlike the coupling of a UV

localized fermion to gauge KK modes, the coupling of a UV localized fermion to the Higgs

zero mode and a KK fermion does not go to a universal constant but rather to zero. Since
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q(n) q̄(n)

H H†

Q̄L QL

Bµ

Q̄(n) Q(n)

H H†

qR q̄R

Bµ,Wµ

Figure 1. Integrating out the KK modes of the singlets (left) and doublets (right). Notice that

the zero mode is not included in the internal line.

we are primarily interested in corrections to the Zb̄b coupling we will focus on the down

sector (the up sector works analogously with H → iσ2H
∗). One obtains the effective 4D

Lagrangian of zero modes

L′
non−oblique = iβdLiℓ

[
Q̄iLH

]
/D
[
H†QℓL

]
+ iβdRiℓ

[
d̄iRH

†
]
/D
[
H dℓR

]

⊃ βdLiℓ
v2

4

g

cw
d̄iLγ

µZµ d
ℓ
L − βdRiℓ

v2

4

g

cw
d̄iRγ

µZµ d
ℓ
R , (2.22)

where in the second line we have also used the Dirac equation. Using the results of ap-

pendix B we can express the couplings β as

βdLiℓ =
∑

j

Y d
ijY

d∗
ℓj

∫ y1

0
e2A (Ω′

d
j
R

)−1(Γdℓj − Ω
d
j
R
)(Γdij − Ω

d
j
R
) ,

βdRiℓ =
∑

j

Y d∗

ji Y
d
jℓ

∫ y1

0
e2A (Ω′

d
j
L

)−1(Γdjℓ − Ω
d
j
L
)(Γdji − Ω

d
j
L
) , (2.23)

where we have defined

Γdij(y) =

∫ y
0 h e

−Q
Qi
L
−Q

d
j
R

∫ y1
0 h e

−Q
Qi
L
−Q

d
j
R

, (2.24)

which is the cumulative distribution of the physical 4D down-type Yukawa coupling along

the fifth dimension. Thus, Γ monotonically increases from zero to one; if any of the three

fields (Higgs, QiL or djR) is UV (IR) localized we can take the limit Γdij → 1 (Γdij → 0).4

The non-oblique Lagrangian (2.22) will contribute with a significant amount to the

Zb̄b coupling as we will describe in detail in section 4.

3 Quark masses and mixing angles

In this section we will introduce explicit quark zero mode profiles and fit the parameters in

the 5D Lagrangian to the observed quark masses, mixing angles and CP -violating phase.

We will make the choice

Qψ(y) = cψA(y) , (3.1)

which concides with that used in RS models where QRS
ψ = cψky.

5 This particular mass

term can be achieved if the stabilizing field φ couples to the fermions. In particular if we

4Using this simple limit we have checked that we obtain the same result as quoted in ref. [20] for an

IR-brane localized Higgs.
5Of course one can also use for a general model Qψ = cψky. See e.g. ref. [13].
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parametrize the bulk potential for φ by a “superpotential” W (φ) as V = 3W ′2−12W 2 [21]

we can achieve eq. (3.1) by the choice Mψ(φ) = ∓cψW (φ) where the upper sign holds for

5D fermions with left-handed zero modes (i. e. ψ = QL, LL) and the lower one for 5D

fermions with right-handed zero modes (i. e. ψ = uR, dR, ℓR). In this case the previous

definitions simply read

Uψ(y) =

∫ y

0
exp

[
(1− 2cψ)A(y

′)
]
, (3.2)

and

Y q
ij = Ŷ q

ij F (cQiL
, c
q
j
R
) , (3.3)

where q = (u, d) and the function F is defined as

F (cL, cR) =

∫
h e−(cL+cR)A

[∫
e−2Ah2

∫
e(1−2cL)A

∫
e(1−2cR)A

] 1
2

. (3.4)

We note the following properties of the fermion profiles and the function F .

• For any strength of the metric deformation, fermions ψ are IR (UV) localized for

cψ < 1
2 (cψ > 1

2). This is thus the same situation as in the RS model. Notice

also that this choice of profile corresponds, in the dual theory, to the special case

of constant anomalous dimension, i.e. the fermionic operators are not significantly

disturbed by the presence of the CFT deformation.

• The larger the deformation of the AdS background the larger is the portion of the

parameter space (cL, cR) where the function F (cL, cR) is enhanced. Consequently,

the coefficients cψ can be slightly larger for the same 5D Yukawa coupling in order

to reproduce the same (physical) 4D Yukawa coupling. This in turn leads to a

weaker coupling of the fermions to the KK modes of the gauge fields. Alternatively,

for fixed values of the coefficients cψ and 4D Yukawa couplings, the 5D Yukawa

couplings and correspondingly the couplings of fermion KK-modes to the fermion

and Higgs zero modes in figure 1 are decreased with respect to their values in the

AdS background leading to a softening of the bounds on the value of mKK as we will

see in section 4. This enhancement of the function F (cL, cR) for a background with a

large AdS deformation is illustrated in figure 2 for the metric given in eq. (1.4) with

k∆ = 1 and ν = 0.5.

Let us now consider the quark mass-squared matrices

MqL =
v2

2
Y qY q †, q = u, d (3.5)

where v = 246GeV is the VEV of the Higgs field. Unitary matrices should be introduced

to diagonalize the matrices MqL as

Mq
diag = V qL MqL V qL † . (3.6)

Next let us write expressions for the eigenvalues and mixing angles of the hierarchical

Yukawa couplings. In the following we will just make two reasonable assumptions
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Figure 2. The function F (cL, cR) for k∆ = 1, ν = 0.5 normalized to the corresponding RS value.

One can see that for a wide portion of the parameter space it leads to an enhancement of the 4D

Yukawa couplings with respect to RS.

• First we will assume a left handed hierarchy, i.e.

Y q
1i ≪ Y q

2i ≪ Y q
3i. (3.7)

This will be the case whenever there is a mild hierarchy between the left-handed cψ,

i.e. cQ1
L
> cQ2

L
> cQ3

L
.6

• The only second assumption we are making is that the left handed rotations show a

similar hierarchy as the CKM matrix

|V qL
12 | ∼ ǫ, |V qL

23 | ∼ ǫ2 , |V qL
13 | ∼ ǫ3 , (3.8)

where ǫ is of the order of the Cabbibo angle. This assumption is natural since

otherwise the smallness of the CKM mixing angles would be a consequence of large

cancellations. As it turns out it is also consistent with the assumption eq. (3.7).

Owing to our assumption eq. (3.8) these unitary rotations can be given in aWolfenstein-

like parameterization as [22]

V qL =




1− 1
2 |V

qL
12 |2 V qL

12 V qL
13

−V qL∗
12 1− 1

2 |V
qL
12 |2 V qL

23

(−V qL
13 + V qL

12 V
qL
23 )∗ −V qL∗

23 1


 , q = u, d (3.9)

6We will comment later on about possible further simplifications that take place in case there is also a

right handed hierarchy.
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where terms of order O(ǫ4) have been neglected. The matrix V qL contains three inde-

pendent complex parameters and it is unitary to the considered order. The angles and

eigenvalues are best expressed in terms of the quantities

M̃qL
ij = MqL

ij −
MqL

i3 M
qL
3j

M33
. (3.10)

First, by demanding the off-diagonal terms in eq. (3.6) to vanish we obtain the mixing

angles

V qL
12 = −M̃qL

12 /M̃
qL
22 , V qL

21 = M̃qL
21 /M̃

qL
22 ,

V qL
23 = −MqL

23 /M
qL
33 , V qL

32 = MqL
32 /M

qL
33 ,

V qL
13 = −MqL

13 /M
qL
33 + (M̃qL

12M
qL
23 )/(M̃

qL
22M

qL
33 ) ,

V qL
31 = MqL

31 /M
qL
33 , (3.11)

The mass eigenvalues are then obtained as:

(mq
3)

2 = MqL
33 ,

(mq
2)

2 = M̃qL
22 ,

(mq
1)

2 = M̃qL
11 − M̃qL

12M̃
qL
21

M̃qL
22

, (3.12)

where we are using the notation mu
3 = mt, m

d
3 = mb, and so on. The comparison with

CKM matrix (V = V uLV dL†) elements leads to the relations

Vus = V̂12 ,

Vcb = V̂23 ,

Vub = (−V̂31 + V uL
21 V̂32)

∗ ,

Vtd = V̂31 − V dL
21 V̂32 , (3.13)

where V̂ = V uL − V dL . The CKM matrix defined this way does not obey the usual phase

convention [22]. One can easily obtain the standard convention by multiplying V qL from

the left with appropriate phases. One finds

eiδ =
V ∗
ubVusVcb

|VubVusVcb|
. (3.14)

Alternatively we can write the Jarlskog invariant as

J = Im (V ∗
ubV

∗
scVusVcb)

= − Im (V̂12V̂23V̂31) + |Vcb|2 Im (V dL
12 V

uL
21 ) . (3.15)

To summarize there are nine constants cQiL
, cuiR

, cdiR
which should be adjusted to satisfy

the mass relations (3.12) and the experimental CKM matrix relations (3.13) and (3.15). We

have performed a χ2 fit to the experimental quark masses (measured at the KK scale [23]),
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Figure 3. The distribution of the c parameters for the different quarks and chiralities, for RS

(dashed lines) and for model eq. (1.4) with k∆ = 1 and ν = 0.5 (solid lines). Only the parameters

c(t,b)L and ctR are IR localized (c < 0.5). Notice the highly asymetric forms of the corresponding

distributions.

the mixing angles and the phase. To this end we have randomly generated a set of 40,000

complex 5D Yukawa couplings and fitted to the nine parameters cψ such that we correctly

reproduce the experimental data. We have accepted points which yield a χ2 . 4 to both

a pure RS metric and to metric (1.4) with ν = 0.5, k∆ = 1. Each pair of 5D Yukawas

(Ŷ u
ij and Ŷ d

ij) thus gives rise to two sets of cψ, one for RS and one for the model defined

by eq. (1.4). This facilitates a direct comparison between the two models since the 4D

effective theories originate from the same set of 5D Yukawa couplings. We have chosen flat

prior distributions 1 ≤ |
√
kŶ q

ij | ≤ 4 and 0 ≤ arg(Ŷ q
ij) < 2π.

The results of the fit are presented in figure 3 where we plot the probability distribution

function (PDF) ρ for the parameters cψ. The corresponding central values and 1σ confi-

dence intervals of the cψ parameters are listed in table 1. As it is clear from the individual
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RS:

c(u,d)L = 0.66± 0.02 c(c,s)L = 0.59± 0.02 c(t,b)L = −0.11+0.45
−0.53

cuR = 0.71± 0.02 ccR = 0.57± 0.02 ctR = 0.42+0.05
−0.17

cdR = 0.66± 0.03 csR = 0.65± 0.03 cbR = 0.64± 0.02

ν = 0.5:

c(u,d)L = 0.71± 0.02 c(c,s)L = 0.63± 0.02 c(t,b)L = 0.31+0.13
−0.52

cuR = 0.74± 0.03 ccR = 0.57± 0.03 ctR = 0.42+0.05
−0.11

cdR = 0.68± 0.04 csR = 0.67± 0.04 cbR = 0.66± 0.03

Table 1. Medians and 1σ confidence intervals of the c parameters corresponding to the different

species of quarks and chiralities, for RS and for model (1.4) with k∆ = 1, ν = 0.5.

plots, the cψ are slightly larger for our model than in the RS model, as anticipated above.7

This means that the couplings of the individual quarks to KK modes are more suppressed

than in RS.8

An interesting fact that we find is that the cdiR
are very much non-hierarchical. In fact

only about 30% of all points show the “traditional” hierarchy cd1R
> cd2R

> cd3R
. As expected

our expressions eq. (3.11) and eq. (3.12) are much better approximations to the true angles

and eigenvalues in these cases than the ones usually employed in the literature [24]. Note

that in practice we never need to have explicit expressions for the right handed angles

in terms of the Yukawa matrices, as the former do not enter in the fit.9 On the other

hand, the up-type sector will always be hierarchical, cu1R
> cu2R

> cu3R
or Y u

i1 ≪ Y u
i2 ≪ Y u

i3

respectively, and we could have used the simpler expressions for the eigenvalues and angles

described in appendix C.

4 Electroweak precision tests

The general procedure to evaluate the effect of oblique and non-oblique EWPO’s in the

presence of New Physics is briefly described in appendix D where extensive use has been

done of ref. [25]. In this section we just present the final results in general warped spaces

which are ready for numerical calculations in particular models, as models with RS metric

and the metric in eq. (1.4).

The oblique Lagrangian eq. (2.7) generates the (T, S, W, Y ) parameters as given in

ref. [9–11]

αT = s2wm
2
Z α̂hh ,

αS = 8s2wc
2
wm

2
Z α̂hg ,

Y = c2wm
2
Z α̂gg ,

W = Y . (4.1)

7We have restricted ourselves to the region cψ > −1 in order to avoid strongly IR localized fermions,

which typically have stricter perturbativity bounds for the Yukawa couplings.
8We have checked that for fixed c, the individual couplings of KK gauge bosons to fermion zero modes

are of the same order for both models.
9For each data point obtained in the fit it is of course a simple matter to numerically find the right

handed rotations.
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Let us now focus on the non-oblique operators. In particular, the operator coupling the

Higgs current to the fermion currents — the first operator in eq. (2.8) — contributes to

the modified Z and W vertices. The same holds true for the operator given in eq. (2.22).

It is straightforward to extract the contributions to the vertex corrections by going to the

electroweak vacuum 10. Diagonalizing the physical Yukawa couplings with the rotation

matrices Vdχ , the Zq̄q couplings receive the corrections

δg
q
1,2
L,R

=
gSMqL,R
2

(
αT +

Y

c2w

)
−Qemq

1

c2w − s2w

(
αS

4
− c2ws

2
w αT − s2w Y

)
, (q = u, d)

δgbL,R =
gSMdL,R
2

(
αT +

Y

c2w

)
+

1

3

1

c2w − s2w

(
αS

4
− c2ws

2
w αT − s2w Y

)
+ δg̃bL,R ,

δg̃bL ≡ δg̃33dL =

(
−gSMdL m2

Z α̂h,diL
δiℓ +

v2

4
βdLiℓ

)
V 3i
dL
V ∗3ℓ
dL

,

δg̃bR ≡ δg̃33dR =

(
−gSMdR m2

Z α̂h,diR
δiℓ −

v2

4
βdRiℓ

)
V 3i
dR
V ∗3ℓ
dR

, (4.2)

where gSMqL = T 3
q − Qemq s2w and gSMqR = −Qemq s2w, and the integrals α̂hψ and βψij have

been given in eqs. (2.11) and (2.23). The tilde here denotes an explicit vertex correction

coming from the non-oblique operators. The dependence of the couplings on the oblique

parameters result from the various effects mentioned in ref. [25] and appendix D. We have

already mentioned that we can neglect the diagrams in figure 1 if the external quarks are

near UV localized. Moreover, the contribution from the gauge KK modes is universal

for near UV localized modes and is summarized in the oblique parameters. As shown in

section 3 only the left handed top-bottom doublet and the right handed top singlet are

near IR localized. We will thus neglect the explicit correction δg̃bR .

The analysis for oblique observables was already performed for general models in

refs. [6, 9–11, 13] and the resulting bounds do depend to a large extent on the value

of the mass of the Higgs boson and its location along the fifth dimension. The general

result is that the less localized the Higgs towards the IR brane [the lower the value of the

a parameter in eq. (1.4)] the milder bounds oblique corrections impose on the mass of KK

modes. On the other hand the degree of delocalization of the Higgs is bounded by the

solution of the hierarchy problem which imposes a lower bound on the a parameter. For

instance for the RS model the solution of the hierarchy problem imposes the bound a & 2

and for a light Higgs mH ≃ 115GeV oblique observables impose on the KK modes the

bound mKK & 7.5TeV .11 Moreover for the model of eq. (1.4) with k∆ = 1 and ν = 0.5

solving the hierarchy problem imposes the bound a & 3.1 and for mH ≃ 115GeV the

oblique observables are consistent with experimental data for mKK & 1TeV. The reason

for this improvement is that in the deformed background the Higgs zero mode can become

more decoupled from the KK modes than in the pure RS model.

10Notice, in particular that from eq. (2.2) one has �AAµ = −JAhµ+ . . . . Hence, after EWSB, Jh = −M2A

where M2 is the gauge boson mass matrix and one can directly evaluate the product with the fermion

currents.
11Notice that this bound can be lowered to ∼ 3−4TeV by introducing an extra gauge custodial symmetry

in the bulk [8].
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Figure 4. The bounds (in TeV) implied by the experimental limits on Rb, as a function of

cbL = cQ3

L

. Left panel: RS model. Right panel: our model with k∆ = 1, ν = 0.5. We also

display the dependency on the 5D bottom Yukawa: the coloring interpolates between green (light

gray) for
√
kŶ d

33 = 1 to red (dark gray) for
√
kŶ d

33 = 4.

There are several factors which influence the size of the nonuniversal Zb̄b coupling.

• The more UV localized the left handed top-bottom doublet, the more suppressed are

its coupling to the KK modes of the gauge bosons and to those of the singlet quarks.

Hence we expect a suppression of the contribution to Zb̄b for larger cQ3
L
.

• The smaller the 5D bottom Yukawa Ŷ d
33, the more suppressed the Yukawa coupling

of bL to the singlet KK modes appearing in the left panel of figure 1, and hence the

more suppressed is this contribution to δg̃bL .

• As explained above, the Higgs can become more decoupled from the IR in the de-

formed background, and this reduces both the coupling to KK gauge bosons and KK

fermions.

In order to compute the effect of the nonuniversal Zb̄b coupling to the partial width

Rb =
Γ(Z → b̄b)∑
q 6=t Γ(Z → q̄q)

(4.3)

we write

Rb = RSM
b +


∑

q 6=t

∂Rtree
b

∂gqχ
δgqχ



∣∣∣∣∣∣
gSMqχ

, (4.4)

where

Rtree
b =

g2bL + g2bR∑
q 6=t(g

2
qL

+ g2qR)
, RSM

b = 0.21578 . (4.5)
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Figure 5. PDF (left panel) and CDF (right panel) for mKK from comparison with Rb. Dashed

lines correspond to the RS model and solid lines to the model in eq. (1.4) for k∆ = 1 and ν = 0.5.

Only the left handed bottom has both oblique and non-oblique corrections, while all other

couplings only have corrections coming from the oblique parameters, see eq. (4.2). The

result should be compared to the experimental value [22]

Rexpb = 0.21629± 0.00066 , (4.6)

and translates into a lower bound on the KK scale.

All effects enumerated above are clearly visible in figure 4 where we present plots of

the minimal KK scale required to sufficiently suppress the observable Rb as computed in

eq. (4.2). We have used the randomly generated set of data used to fit the quark masses,

mixing angles and CP violating phase in figure 3. In particular, the third effect above

reduces the bounds (for fixed cQ3
L
and Ŷ d

33) by roughly a factor of 2 when comparing the

RS model to the model defined by eq. (1.4) for k∆ = 1 and ν = 0.5. We have also checked

the dependence on the choice of the fermion bulk mass term. In particular ref. [13] used a

constant mass term M(y) = ck. Although our analysis is quite different, we have verified

the results in ref. [13] qualitatively. In particular, for the anarchic case the bounds are

slightly higher than the ones for the choiceM(y) = cA′(y) and show a stronger dependence

on the 5D bottom Yukawa coupling. This indicates that the effect of the KK fermions is

dominating for large Ŷ d
33, which can easily be mitigated by lowering that coupling at the

cost of a mild O(10) hierarchy in the 5D Yukawa couplings [13].

Moreover in figure 5 we have considered the probability distribution functions (PDF)

ρ and cumulative distribution functions (CDF) P for the lower bound on mKK. The fact

that the model with the modified background generally requires larger cQ3
L
, see figure 3,

further pushes these distributions to lower KK scales, implying milder bounds. For a given

KK scale on the horizontal axis one can read off from the CDF (right panel of figure 5) the

fraction of points consistent with such a scale for both models on the vertical axis. This

fraction is thus the probability that the KK scale is smaller than a given value. Notice

that it can also be viewed as the amount of fine tuning necessary to obtain a given bound.

Conversely one can start from a given fraction (fine tuning) and read off the percentile on
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Probability for mKK below Percentile

3TeV 5TeV 10TeV 10% 20% 50%

RS 0% 2.4% 17% 8.0TeV 11TeV 16TeV

ν = 0.5 18% 46% 98% 2.3TeV 3.2TeV 5.3TeV

Table 2. Left panel: Integrated probability for values of mKK below 3, 5 and 10TeV from Rb for

RS (upper row) and the model in eq. (1.4) for k∆ = 1 and ν = 0.5 (lower row). Right panel: 10th,

20th and 50th (median) percentiles for both models.

the horizontal axis for both models. Moreover in table 2 we present some explicit numbers

obtained from these distributions.

As we can see from table 2 getting “acceptable” bounds depends to a large extent on

the amount of fine-tuning which we tolerate. For instance assuming a 20% (50%) fine-

tuning the lower bound is 11TeV (16TeV) for the RS model and 3.2TeV (5.3TeV) for the

model with modified background.12

Finally we should mention that, to be fully consistent, one should consider a global

fit of the EWPT data to the observables S, T and δg̃bL and also include possible loop

corrections [13]. We will leave this to future work.

5 Flavor violation

The dominant flavor violation comes from the KK gluons, in particular the off-diagonal

elements in eq. (2.13). Following standard convention [28, 29] we parametrize the most

constraining ∆F = 2 Lagrangian as 13

− L∆F=2
sd = H∆F=2

sd = −Csd
1 (d̄Lγ

µsL)
2 − C̃sd

1 (d̄Rγ
µsR)

2

+Csd
4 (d̄LsR)(d̄RsL) + Csd

5 (d̄αLs
β
R)(d̄

β
Rs

α
L) . (5.1)

In full analogy we can write similar operators by replacing sd→ uc or bd. We can use the

results of section 2.2 to write the coefficients explicitly as

Csd
1 =

g2s y1
6

∫
e2A(Ω12

dL
)2 , (5.2)

C̃sd
1 =

g2s y1
6

∫
e2A(Ω12

dR
)2 , (5.3)

Csd
4 = −g2s y1

∫
e2A(Ω12

dL
Ω12
dR
) , (5.4)

Csd
5 =

g2s y1
3

∫
e2A(Ω12

dL
Ω12
dR
) , (5.5)

12It has previously been noted that one can fine-tune the fermion bulk-masses in RS in order to achieve

Rb in agreement with experiment [27]. Our analysis shows that in the minimal anarchic RS model such a

fine-tuning is sizable.
13The minus signs in the first two operators reflect our convention for the metric, ηµν = diag(−+++).

– 17 –



J
H
E
P
0
1
(
2
0
1
2
)
0
3
3

mKK (TeV)

0 10 15 20 25 305
0

0.12

0.10

0.02

0.04

0.06

0.08

mKK (TeV)

P

0 10 15 20 25 305
0

1.0

0.2

0.4

0.6

0.8

Figure 6. PDF (left panel) and CDF (right panel) formKK from comparison with
∣∣ImCsd

4

∣∣. Dashed

lines correspond to the RS model and solid lines to the model in eq. (1.4) for k∆ = 1 and ν = 0.5.

where Ω12
dχ

has been defined in eq. (2.15). Notice that using the unitarity of the mixing

matrices we can write

Ω12
dL

= (Ω2
dL

− Ω1
dL
)V 12
dL
V ∗22
dL

+ (Ω3
dL

− Ω1
dL
)V 13
dL
V ∗23
dL

, (5.6)

and similarly for L→ R.

The coefficients Ci are related to flavor violating and/or CP violating observables [29]

from where they get upper bounds. With our set of data points we can then compute the

exact mixing matrices numerically and use them to find the coefficients Ci defined above.

The former bounds are then translated into lower bounds on mKK (the mass of the first

resonance of the gluon). The most constraining parameter is Im Csd
4 , which is related to

the CP violating observable in the K-system, ǫK , and is bounded by [29]

∣∣∣ImCsd
4

∣∣∣ < 2.6× 10−11 TeV−2 . (5.7)

By using the expression for Csd
4 provided in eq. (5.4) and comparing with the experimental

bound in eq. (5.7) we obtain bounds on mKK for every data point,14 as we did in the

previous section for the coupling Rb. The result is exhibited in figure 6 where we show

both the PDF and CDF for the distribution of points.

A statistical analysis similar to that done in section 4 can be performed here, and

in table 3 we present some explicit numbers obtained from these distributions. We can

trace back the improvement in the bounds on mKK in the modified background model with

respect to the RS model on the weakening of couplings of gauge KK modes to the first and

second generation SM fermions, resulting in turn from the enhancement in the coefficients

cψ. For instance assuming a 20% (50%) fine-tuning the lower bound for the RS model

is 9.7TeV (19TeV) while for the modified background model they are 2.5TeV (6.3TeV).

The combined bounds will be much stronger as we will show in the section 6.

14A more refined procedure would be to link the Wilson coefficients in eq. (5.1) to the actual observables,

in particular ǫK and ∆mK , and apply the direct experimental bounds, see e.g. ref. [14].
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Probability for mKK below Percentile

3TeV 5TeV 10TeV 10% 20% 50%

RS 2.4% 6.4% 22% 6.5TeV 9.7TeV 19TeV

ν = 0.5 26% 43% 64% 1.6TeV 2.5TeV 6.2TeV

Table 3. Left panel: Integrated probability for values of mKK below 3, 5 and 10TeV from Im Csd
4

for RS (upper row) and the model in eq. (1.4) for k∆ = 1 and ν = 0.5 (lower row). Right panel:

10th, 20th and 50th percentiles for both models.

Finally we should pay attention to the other coefficients: Re Csd
4 , Csd

1 , C̃sd
1 and Csd

5 .

The bounds on Re Csd
4 , coming mostly from ∆mK , are about one to two orders of mag-

nitude weaker than for Im Csd
4 . However it is conceivable that the favorable points that

allow a low KK scale could result from an accidental cancellation of the phase and hence

the bounds from the real part turn out to dominate. We have verified that this is not the

case and the bounds are not changed by taking into account the real part. Furthermore,

notice that Csd
5 = 1

3C
sd
4 and hence whenever Csd

4 is suppressed so is Csd
5 (the experimental

constraints on the two quantities are comparable). The experimental constraints on the

coefficients Csd
1 and C̃sd

1 are about two orders of magnitude weaker with again a similar

suppression as Csd
4 . We thus do not expect any additional constraints from here either.

6 Summary and conclusions

In this paper we have considered a general 5D warped model, with SM fields propagating in

the bulk of the fifth dimension, and computed explicit expressions for oblique (S, T, W, Y )

and non-oblique (δg̃bL) observables, as well as flavor and CP violating effective four-fermion

operators. We have worked out in particular the RS model and the model with the modified

metric (1.4). While there is a wide literature on the RS model, for the model of eq. (1.4),

introduced as an alternative to models with an extra gauge custodial symmetry in the

bulk, only electroweak observables were considered [6, 9–11, 13] while its flavor structure

was largely unexplored. We have then concentrated here on bounds on mKK from the

modification of the Zb̄b coupling and from FCNC and CP violating operators. We have in

all cases compared the result for the RS model with those for the model with metric (1.4)

and parameter values for which corrections to oblique observables are well under control

for mKK & 1TeV.

We have randomly generated 40,000 sets of values for the 5D Yukawa couplings and

made for each of them a χ2 fit to the quark mass eigenvalues and CKM elements for both

models [RS and the model (1.4) with k∆ = 1 and ν = 0.5] generating in each case the

fermion profiles such that we can then compare the results in both models.

Concerning non-oblique versus FCNC and CP violating observables in both models

the final comparison is as follows:

• The bounds for the modified metric model are milder than those in the RS model.

This can be clearly seen from figures 5 and 6 and from tables 2 and 3. The main origin

of this improvement in the modified metric model with respect to the RS model can
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Figure 7. PDF (left panel) and CDF (right panel) for mKK from comparison with
∣∣ImCsd

4

∣∣ and
Rb. Dashed lines correspond to the RS model and solid lines to the model in eq. (1.4) for k∆ = 1

and ν = 0.5.

Probability for mKK below Percentile

3TeV 5TeV 10TeV 10% 20% 50%

RS 0% 0% 3.3% 13TeV 16TeV 21TeV

ν = 0.5 7.1% 30% 64% 3.3TeV 4.2TeV 7.2TeV

Table 4. Left panel: Integrated probability for values of mKK below 3, 5 and 10TeV from Rb and

Im Csd
4 for RS (upper row) and the model in eq. (1.4) for k∆ = 1 and ν = 0.5 (lower row). Right

panel: 10th, 20th and 50th percentiles for both models.

be traced back to the fact that because of the IR deformation of the metric fermions

fitting the quark mass eigenvalues and CKM matrix elements are shifted towards

the UV in the former model which produced a general suppression of effects in the

observables.

• The bounds from FCNC and CP violating effective operators are stronger than those

from non-oblique observables in both models. This is mainly due to the strong

constraints on these operators, in particular from the CP violating observable ǫK .

Of course we expect the combined bonds to be stronger than those from the individual

constraints.

In figure 7 we show the PDF and CDF distributions corresponding to the combined bounds

from non-oblique observables and flavor/CP violating effective operators. A similar statis-

tical analysis to those presented for the individual contributions is done here and the results

are presented in table 4. From there we can see that assuming a 20% (50%) fine-tuning the

lower bound for the RS model is 16TeV (21TeV) while for the modified background model

they are 4.2TeV (7.2TeV). Then since the percentile is also a measure of the fine-tuning

we can conclude that if we tolerate a fine tuning ∼10%-20% a KK-mass ∼ 3TeV can be

roughly acceptable.
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Let us remark that the derived bounds can be considered the most conservative ones

(i.e. the worst case scenario in the absence of further suppressions). In particular the Zb̄b

bounds can be improved if one allows for a moderate hierarchy in the 5D Yukawas, i.e. by

lowering the 5D bottom Yukawa. On the other hand flavor bounds will improve if the

matching of the QCD coupling is performed at one-loop order and/or if negative UV-brane

kinetic terms for the gluon are included [23, 30]. An alternative way to lower the bounds

is by invoking some flavor symmetries [31–33].

However before claiming a theory of quark flavor, a number of points, outside the

scope of the present paper, should be clarified. First of all the anarchic solution to the

flavor problem should arise from an underlying UV completion, which should explain the

values of the 5D Yukawa couplings and the localizing fermion coefficients cf . In particular,

all coefficients are quite close to the flat value cf = 1
2 , owing to the fact that the quark

mass hierarchies are actually much less than the Planck-weak hierarchy. Second, all the

results presented in this paper are tree-level results while radiative corrections should also

be considered.15 They should depend to a large extent on the size of 5D Yukawa couplings

so that they are very model dependent. Moreover there are some CP violating effects which

appear only at the loop level and which consequently we have not considered either here. In

particular the one-loop contribution to the neutron electric dipole moment [34] due to non-

removable Majorana phases would probably require some kind of flavor alignment although

a bulk Higgs should certainly alleviate the problem since it renders the one-loop diagram

contributing to it finite. Finally a theory of lepton flavor can certainly be constructed

along similar lines. We expect corresponding improvements for processes like µ → eγ and

µ→ 3e, see also ref. [35].
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GG would like to thank S. Huber and S. Jäger for discussions. Work supported in part by

the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by CICYT-

FEDER-FPA2008-01430. The work of JAC is supported by the Spanish Ministry of Ed-

ucation through a FPU grant. The research of GG is supported by the ERC Advanced

Grant 226371, the ITN programme PITN- GA-2009-237920 and the IFCPAR CEFIPRA

programme 4104-2.

A Four-fermion terms from the EW KK modes

In this appendix we explicitely write the four-fermion interactions. For the neutral currents

the effective Lagrangian reads

L4f
NC =

∑

fχ,f ′χ

δkℓ,rsfχ,f ′χ
(f̄kχγ

µf ℓχ)(f̄
′r
χ′γµf

′s
χ′) , (A.1)

15Radiative corrections to electroweak observables are already taken into account in ref. [13].
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where the constants δ are tensors in flavor space:

δkℓ,rsfχ,f ′χ
=
e2

2

(
QfQf ′ +

1

s2W c
2
W

gSMfχ g
SM
f ′χ

)∑

i,j

α̂
f iχ,f

′j
χ
(V ki
fχ
V ∗ℓi
fχ

)(V rj
f ′χ
V ∗sj
f ′χ

) . (A.2)

Finally, integrating out the KK modes of the W boson also leads to four-fermion terms,

which we write explicitly as

L4f
CC = δukdℓ,drus(ū

k
Lγ

µdℓL)(d̄
r
Lγ

µusL) + δνkeℓ,erνs(ν̄
k
Lγ

µeℓL)(ē
r
Lγ

µνsL)

+
[
δukdℓ,erνs(ū

k
Lγ

µdℓL)(ē
r
Lγ

µνsL) + h.c.
]
, (A.3)

with

δukdℓ,drus =
g2

2

∑

ij

α̂
qiL,q

j
L
V ki
uL
V ∗ℓi
dL
V rj
dL
V ∗sj
uL

,

δνkeℓ,erνs =
g2

2

∑

ij

α̂
ℓiL,ℓ

j
L
V ki
νL
V ∗ℓi
eL
V rj
eL
V ∗sj
νL

,

δukdℓ,erνs =
g2

2

∑

ij

α̂
qiL,ℓ

j
L
V ki
uL
V ∗ℓi
dL
V rj
eL
V ∗sj
νL

. (A.4)

B Fermion propagator

In this appendix we will provide a few more details concerning the procedure of integrating

out fermionic KK modes, as done in section 2.3. This parallels and generalizes the compu-

tation in ref. [9–11] for the gauge bosons. We will restrict ourselves to the case where the

KK tower contains a zero mode that has to be subtracted, which is the most complicated

case and the only relevant for this work. In fact, in order to evaluate the first diagram in

figure 1 we need to compute

βdLiℓ =
∑

j

Ŷ d
ij Ŷ

d∗
ℓj

∑

n 6=0

∫ y1

0
dy dy′

[
ξ0(y) ψ̂0

Qi
L

(y) ψ̂n
d
j
R

(y)

] [
ξ0(y′) ψ̂0

Qℓ
L

(y′) ψ̂n
d
j
R

(y′)

]

m2
n

, (B.1)

where ξ0(y) is the normalized Higgs zero mode wave function. The expression for βdRiℓ is

completely analogous. The idea is now to first perform the sum over the KK modes and

then the integrations. Let us thus consider the equations of motion for the KK modes of

a fermion,

e2Am2
nψ̂n + eA(∂y −Q′)e−A(∂y +Q′)ψ̂n = 0 , ψ̂′

n +Q′ψ̂n

∣∣∣
y=0,y1

= 0 , (B.2)

which follow from eq. (2.18). It will be convenient to factor out the zero mode as

ψ̂n(y) = e−Q(y)χn(y) (B.3)

which transforms eq. (B.2) into

eA−2Qm2
n χn + (e−A−2Qχ′

n)
′ = 0 , χ′

n

∣∣
y=0,y1

= 0 . (B.4)
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The completeness and orthonormality conditions in this basis read:

∞∑

n=0

χn(y)χn(y
′) = e−A+2Qδ(y − y′) ,

∫ y1

0
eA(y)−2Q(y)χn(y)χm(y) = δmn . (B.5)

We now need to compute the sum

G(y, y′) =
∑

n 6=0

χn(y)χn(y
′)

m2
n

. (B.6)

Note that the zero mode has been excluded from the sum. To computeG(y, y′), we integrate

eq. (B.4) twice

χn(y) = χn(0)−m2
n

∫ y

0
eA(u)+2Q(u)

∫ u

0
eA(v)−2Q(v)χn(v) , (B.7)

and use eq. (B.5) to get

G(y, y′) =
∑

n 6=0

χn(0)χn(0)

m2
n

−
∫ y>

0
eA+2Q(1− Ω) +

∫ y<

0
eA+2QΩ , (B.8)

where Ω(y) has been defined in eq. (2.20), and y> (y<) is the larger (smaller) of the pair

(y, y′). We thus have reduced the problem of finding G(y, y′) to that of finding G(0, 0),

which is the zero momentum limit of the (zero mode subtracted) brane-to-brane propagator.

The latter can be written as

G(0, 0; p2) = − χ(0, p2)

χ′(0, p2)
− χ2

0(0)

p2
(B.9)

where χ(0, p2) is the solution to

− eA−2Qp2χ+ (e−A−2Qχ′)′ = 0 , χ′
∣∣
y1

= 0 . (B.10)

(note that we do not impose a BC at y = 0). One can easily derive an equation for χ′/χ

and solve it in a power series in p2:

e−A(y)−2Q(y)χ
′(y, p2)

χ(y, p2)
= −p2

∫ y1

y

eA(u)−2Q(u)+p4
∫ y1

y

eA(u)+2Q(u)

[∫ y1

u

eA(v)−2Q(v)

]2
+. . .

(B.11)

One ends up with

G(0, 0) =

∫ y1

0
eA+2Q(1− Ω)2 , (B.12)

and hence

G(y, y′) =

∫ y1

0
eA+2Q(1− Ω)2 −

∫ y>

0
eA+2Q(1− Ω) +

∫ y<

0
eA+2QΩ . (B.13)

Using this expression in eq. (B.1) we arrive, after a series of partial integrations, at the

quoted result eq. (2.23).
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C Right handed hierarchies

In section 3 we have given expressions for the masses and left handed mixing angles in

case there is a left handed hierarchy, Y q
1i ≪ Y q

2i ≪ Y q
3i. This fact is well supported by

experiment, given that the CKM mixing angles are hierarchical. There is no such analogous

measurement for the right handed mixing angles. However, making the assumptions that

we also have a right-handed hierarchy,

Y q
i1 ≪ Y q

i2 ≪ Y q
i3 , (C.1)

the expressions given in section 3 simplify. Although the calculation is a bit tedious, the

result is very simple: we just have to replace the mass-squared matrices by the Yukawas.

Indeed, by writing the expressions in eq. (3.11) and eq. (3.12) explicitly in terms of the

Yukawa couplings and taking the limit eq. (C.1) we obtain for the angles

V qL
12 = −Ỹ q

12 / Ỹ
q
22 , V qL

21 = (Ỹ q
12 / Ỹ

q
22)

∗ ,

V qL
23 = −Y q

23 / Y
q
33 , V qL

32 = (Y q
23 / Y

q
22)

∗ ,

V qL
13 = −Y q

13 / Y
q
33 + (Ỹ q

12Y
q
23)/(Ỹ

q
22Y

q
33) ,

V qL
31 = (Y q

13 / Y
q
33)

∗ , (C.2)

and for the mass eigenvalues

(mq
3)

2 =
v2

2
|Y q

33|2,

(mq
2)

2 =
v2

2
|Ỹ q

22|2 ,

(mq
1)

2 =
v2

2
|Y q

11 − Ỹ q
12Ỹ

q
21/Ỹ

q
22|2 , (C.3)

where we have defined

Ỹ q
ij = Y q

ij −
Y q
i3Y

q
3j

Y33
. (C.4)

These results agree with the ones quoted in ref. [24] whose authors considered real Yukawas.

In the case of a right handed hierarchy, there is also an approximation to the right handed

rotations. It can be obtained from eq. (C.2) by replacing Y q → Y q†, leading to expressions

again in agreement with those in ref. [24].

D EWPO effects on couplings

Following ref. [25] we proceed as follows

1. Diagonalize and canonically normalize the kinetic terms for the gauge bosons. To

simplify a little, we will use the fact that W = Y , which is equivalent to not having

any mixing between Z and γ at O(p4).
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2. Express the SM input parameters ẽ, s̃w and m̃Z appering in LSM in terms of the

physically measured ones e, sw and mZ . The latter are inferred from the measure-

ments of α, GF and mZ . Beyond the contributions identified in ref. [25], the only

difference is a shift in the Z mass due to the presence of Y and W , while α and GF
remain unchanged.16

We then find the following corrections to the SM gauge couplings 17:

δgfχ =
gSMfχ
2

(
αT +

Y

c2w

)
−Qemf

1

c2w − s2w

(
αS

4
− c2ws

2
w αT − s2w Y

)
+ δg̃fχ , (D.1)

δhud = −VCKM
1

2(c2w − s2w)

(
αS

2
− c2w αT − Y

)
+ δh̃ud , (D.2)

δhνe = −VPMNS
1

2(c2w − s2w)

(
αS

2
− c2w αT − Y

)
+ δh̃νe , (D.3)

where the tilded quantities refer to the explicit vertex corrections stemming from the various

non-oblique corrections (see below for the explicit expressions). The tree level inverse

propagators for the gauge bosons now take the simple diagonal form

Πγ(s) = s

[
1 +

Y

c2w

s

m2
Z

]
, (D.4)

ΠZ(s) = (s−m2
Z)

[
1 +

Y

c2w

(
1 +

s

m2
Z

)]
, (D.5)

ΠW (s) = (s−m2
W )

[
1 + Y

(
1 +

s

m2
W

)]
. (D.6)

In the last propagator the physical W mass can be expressed as

m2
W = m2

Zc
2
w

(
1− αS

2(c2w − s2w)
+

c2w αT

c2w − s2w
+

s2w Y

c2w − s2w

)
. (D.7)

The four-fermion terms in eq. (A.1) and eq. (A.3) remain unchanged by this procedure.
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