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Abstract: We derive a sufficient condition for realizing meta-stable de Sitter vacua with

small positive cosmological constant within type IIB string theory flux compactifications

with spontaneously broken supersymmetry. There are a number of ‘lamp post’ construc-

tions of de Sitter vacua in type IIB string theory and supergravity. We show that one

of them — the method of ‘Kähler uplifting’ by F-terms from an interplay between non-

perturbative effects and the leading α′-correction — allows for a more general parametric

understanding of the existence of de Sitter vacua. The result is a condition on the values

of the flux induced superpotential and the topological data of the Calabi-Yau compact-

ification, which guarantees the existence of a meta-stable de Sitter vacuum if met. Our

analysis explicitly includes the stabilization of all moduli, i.e. the Kähler, dilaton and com-

plex structure moduli, by the interplay of the leading perturbative and non-perturbative

effects at parametrically large volume.
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1 Introduction & motivation

String theory is a candidate for a fundamental theory of nature, providing at the same time

a UV-finite quantum theory of gravity and unification of all forces and fermionic matter.

Mathematical consistency requires string theory to live in a ten dimensional space-time,

and a description of our large four-dimensional physics thus necessitates compactification

of the additional six dimensions of space.

The need for compactification confronts us with two formidable consequences: Firstly,

even given the known internal consistency constraints of string theory, there are unimagin-

ably large numbers of 6d manifolds available for compactification. Secondly, many compact

manifolds allow for continuous deformations of their size and shape while preserving their

defining properties (such as topology, vanishing curvature, etc) — these are the moduli,

massless scalar fields in 4d. This moduli problem is exacerbated if we wish to arrange for

low-energy supersymmetry in string theory, as compactifications particularly suitable for

this job — Calabi-Yau manifolds — tend to come with hundreds of complex structure and

Kähler moduli.

Therefore, a very basic requirement for string theory to make contact with low-energy

physics is moduli stabilization — the process of rendering the moduli fields very massive.

Moreover, as supersymmetry is very obviously broken — and so far has not been detected

— ideally, moduli stabilization should tolerate or even generate supersymmetry breaking.

And finally, the process should produce a so-called meta-stable de Sitter (dS) vacuum with

tiny positive cosmological constant, so as to accommodate the observational evidence for

the accelerated expansion of our universe by dark energy [1–3].

The task of moduli stabilization and supersymmetry breaking has recently met with

considerable progress, which is connected to the discovery of an enormous number [4–8]

of stable and meta-stable 4d vacua in string theory. The advent of this “landscape” [7] of

isolated, moduli stabilizing minima marks considerable progress in the formidable task of

constructing realistic 4d string vacua.

There are several methods of moduli stabilization. The first one uses supersymmetric

compactifications of string theory on a Calabi-Yau manifold, and the strong gauge dy-

namics of gaugino condensation in the ‘racetrack’ mechanism to stabilize the dilaton and

several of the bulk volume and complex structure moduli [9–11]. Recently, this method has

been applied to supersymmetric compactifications of M-theory on G2-manifolds, where the

structure of the manifolds allows for the racetrack superpotential to generically depend on

all the moduli of the compactification [12].

The second, more recent, method relies on the use of quantized closed string back-

ground fluxes in a given string compactification. These flux compactifications can stabilize

the dilaton and the complex structure moduli of type IIB string theory compactified on

a Calabi-Yau orientifold supersymmetrically [5]. The remaining volume moduli are then

fixed supersymmetrically by non-perturbative effects, e.g. gaugino condensation on stacks

of D7-branes [6]. The full effective action of such fluxed type IIB compactifications on

Calabi-Yau orientifolds was derived in [13]. In type IIA string theory on a Calabi-Yau

manifold all geometric moduli can be stabilized supersymmetrically by perturbative means

using the larger set of fluxes available [14].
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If the moduli are stabilized supersymmetrically, parametrically small and controlled

supersymmetry breaking can happen, e.g, by means of inserting an anti-D3-brane into

a warped throat of the Calabi-Yau [6], by D-terms originating in magnetic flux on a D7-

brane [15], or dynamically generated F-terms of a matter sector [16]. This process is known

as ‘uplifting’ and allows for dS vacua with extremely small vacuum energy by means of

fine-tuning the O(100) independent background fluxes available in a typical Calabi-Yau

compactification [4, 6]. The reliability of this last step of uplifting supersymmetric AdS

vacua without unstabilized moduli into a dS vacuum is still under discussion. Some of

the points in question e.g. concern the fact that the existence of D7-brane D-terms as well

as F-terms from hidden matter sectors are very model dependent, rendering statistical

sweeps over large sets of compactifications difficult. Supersymmetry breaking and uplift-

ing by a warped-down anti-D3-brane also remains under ongoing discussion on whether

its presence can be completely described in a probe approximation or causes dangerous

non-normalizable perturbations to the compact geometry [17–22]. Very recently, the use of

internal F2 gauge flux on a CY threefold in heterotic string theory has been used to stabi-

lize all geometric moduli except the dilaton and one Kähler modulus in a supersymmetric

Minkowski vacuum [23, 24].

Alternatively, in non-Calabi-Yau flux compactifications of type IIB or IIA string theory,

all geometric moduli can be stabilized perturbatively in a non-supersymmetric way using

a combination of background fluxes, D-branes, orientifold planes, and negative curvature.

Examples here are flux compactifications of type IIB with 3-form fluxes on a product of

Riemann surfaces [25] and almost Calabi-Yau 4-folds in F-theory [26], type II compactifica-

tions with generalized fluxes on manifolds of SU(3) (see, e.g., the reviews [27, 28]), as well

as of type IIA with fluxes on a product of two 3d nil manifolds [29]. The ingredients used

typically lead to scalar potential dominated by three perturbative terms with alternating

signs, which depend as varying power laws on the dilaton and the geometric moduli. Such

a ‘3-term structure’ structure generically allows for tunable dS vacua [25, 29]. Supersym-

metry is generically broken in these perturbative mechanisms of moduli stabilization at a

high scale, which typically is the Kaluza-Klein (KK)-scale. The geometric and flux part of

these type IIA compactifications were studied in more detail in [22, 30–37]. The conclusion

there so far seems to be that in absence of the KK5-branes used in [29] (which play a

similar role as ’explicit’ supersymmetry breaking objects as the anti-D3-brane in [6]) there

are no stable dS vacua. A complete analysis including the effects of the KK5-branes in the

language of [22, 30–37] still remains open.

Finally, in type IIB flux compactifications on Calabi-Yau manifolds there are con-

structions of a ‘hybrid’ type, where fluxes fix the complex structure moduli and the dilaton

supersymmetrically, but the volume moduli are stabilized non-super-symmetrically by an

interplay of non-perturbative effects on D7-brane stacks and the leading perturbative cor-

rection at O(α′3) in type IIB [38], or by perturbative corrections to the Kähler potential

alone. Examples for the latter consist of the Large-Volume-Scenario (LVS) [39], stabiliza-

tion by perturbative corrections to the Kähler potential of the volume moduli alone [40–43]

which are uplifted by D7-brane D-terms [44], and the method of ‘Kähler uplifting’ [45, 46].

For ‘Kähler uplifted’ dS vacua, an interplay between the leading perturbative correc-

tion at O(α′3) and a non-perturbative effect in the superpotential serves to generate a dS

– 3 –



J
H
E
P
0
1
(
2
0
1
2
)
0
2
0

vacuum with supersymmetry spontaneously broken by an F-term generated in the volume

moduli sector. For some recent reviews on flux compactifications and the associated ques-

tions of the landscape of string vacua and string cosmology ensuing from the meta-stable

dS vacua, with a much more complete list of references, please see [28, 47, 48].

‘Kähler uplifting’ has the benefit of generating meta-stable dS vacua in terms of just

background 3-form fluxes, D7-branes and the leading perturbative O(α′3)-correction, data

which are completely encoded in terms of the underlying F-theory compactification on

a fluxed Calabi-Yau fourfold. In addition, supersymmetry is spontaneously broken at a

scale of order of the inverse Calabi-Yau volume, measured in string units this is typically

∼MGUT here, and still below the KK-scale), by an F-term generated in the volume mod-

uli sector. No extra anti-branes, D-terms or F-term generating matter fields are needed or

involved. The existing analysis of these models consists of including manifestly the dilaton

and one complex structure modulus [45].

Therefore, in this paper we develop a method towards a rigorous analytical understand-

ing of ‘Kähler uplifting’ driven by the leading O(α′3) correction to the Kähler potential

of the volume moduli. Our derivation will be carried out in the presence of an arbitrary

number h2,1 of complex structure moduli. A large value of 3-cycles h2,1 = O(100) is a pre-

requisite to use the associated 3-form fluxes for the required fine-tuning of the cosmological

constant.

Note the relationship between the supersymmetric KKLT-type AdS vacua [6] (prior

to uplifting) with the flux superpotential tuned small, the SUSY-breaking LVS-type AdS

vacua [39] (again, prior to uplifting), and the SUSY-breaking ‘Kähler uplifted’ AdS/dS

vacua [45, 46] (inherently liftable to dS by the pure moduli sector itself) discussed here.

These three classes of moduli stabilizing vacua are three branches of solutions in the same

low-energy 4d N = 1 supergravity arising from type IIB compactified on a Calabi-Yau

orientifold with D7-branes.

In section 2, we will review the method of ‘Kähler uplifting’ and analytically derive

the existence of the meta-stable dS vacuum for the volume modulus of a one-parameter

Calabi-Yau compactification with h1,1 = 1 Kähler modulus, and then extend this to the

case of several Kähler moduli h1,1 > 1 explicitly. The interplay of perturbative and non-

perturbative effects implies for h1,1 = 1 that here a structure of two terms with alternating

signs is sufficient to approximate the volume modulus scalar potential and its tunable dS

vacuum. This contrasts with the ‘3-term structure’ generically necessary in purely pertur-

batively stabilized situations [25, 29]. For h1,1 > 1 a ‘3-term structure’ reappears for the

additional h1,1 − 1 blow-up Kähler moduli of a ‘swiss cheese’ Calabi-Yau.

Finally, we will show that we can express the existence of the meta-stable dS vacuum

for the volume modulus in terms of a sufficient condition on the microscopic parameters.

These are consisting of the fluxes, the D7-brane configuration, and the Euler number of the

Calabi-Yau governing the perturbative O(α′3)-correction, which are all in turn determined

by the underlying F-theory compactification on an elliptically fibred Calabi-Yau fourfold.

Thus, the result amounts to a sufficient condition for the existence of meta-stable dS vacua

in terms of purely F-theory geometric and topological data which can be satisfied for a

sizable subclass of all 4d N = 1 F-theory compactifications, instead of just single ‘lamp

post’ models. We also check that our sufficient condition satisfies the necessary condition
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for meta-stable dS vacua in 4d N = 1 supergravity given in [49] and the longevity of the

metastable vacuum under tunneling.

Section 3 includes the dilaton into a full analytical treatment of the combined dS mini-

mum. We show that supersymmetry breaking happens predominantly in the volume mod-

ulus direction, and explicitly determine the shift of the dilaton away from its flux-stabilized

supersymmetric locus as suppressed by inverse powers of the volume of the Calabi-Yau.

Section 4 extends the analysis by including an arbitrary number of complex struc-

ture moduli with unspecified dependence in the Kähler and superpotential. We then show

that the shift of the complex structure moduli and the dilaton in general is suppressed

by inverse powers of the volume, and that the dilaton and all complex structure moduli

generically are fixed at positive-definite masses. Finally, we estimate the backreaction of

the shifted dilaton and complex structure moduli onto the volume modulus. The ensuing

shift of the stabilized volume is generically found to be small and suppressed by inverse

powers of the volume. This crucially extends the sufficient condition for the existence of dS

vacua in type IIB F-theory compactifications to a large class of ‘swiss cheese’ style fluxed

Calabi-Yau compactifications with arbitrary h1,1 < h2,1.

In section 5, we apply our methods to a simple toy model where the Kähler and super-

potential of complex structure moduli are approximated by the structure found in a torus

compactification. We verify the general results of the previous sections, and show that the

shifts of the moduli and the backreaction effects are either independent of the number of

complex structure moduli h2,1, or decreasing as an inverse power of h2,1. We conclude in

section 6.

While this paper was being finished, we became aware of [50], whose section 2 contains

overlapping results with our section 2. The main results of section 2 and 3 here have first

been presented in talk by one of the authors in [51]. Additionally, we find numerical dis-

agreement concerning the values of x in section 2 permissible for a meta-stable dS vacuum

of T compared to the results for the same quantity given in section 2 of [50] due to an

approximation used between eqs. (16) and (17) ibid.

2 ‘Kähler uplifting’ — a meta-stable dS vacuum for the Kähler modulus

We will start with reviewing the structure of ’Kähler uplifted’ dS vacua in type IIB flux

compactifications on an orientifolded CY threefold [45]. We will at first restrict ourselves

to one-parameter models with h1,1 = 1 and h2,1 > 1 so that the Euler number χ =

2(h1,1 − h2,1) < 0 (which will be shown to be part of the the sufficient condition for the

existence dS vacua). Later, we will extend the analysis given here to all so-called swiss-

cheese Calabi-Yau threefolds with arbitrary h1,1 > 1 and h2,1 > h1,1, giving a strong

indication that the mechanism discussed here works for all threefolds with χ < 0.

For type IIB compactifications on Calabi-Yau orientifolds with 3-form fluxes and D7-

branes the effective 4d N = 1 supergravity of the moduli sector is determined by [5, 13,

38, 52]

K = −2 ln

(
V̂ + α′3

ξ̂

2

)
− ln(S + S̄)− ln

(
−i
∫
CY3

Ω̄ ∧ Ω

)
, (2.1)
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W = W0 +
∑
i

Aie
−aiTi , with W0 =

1

2π

∫
CY3

G(3) ∧ Ω . (2.2)

Note, that this 4d N = 1 supergravity has three branches of vacua. Firstly, we may look

for vacua where |W0| � 1 is tuned small. Then supersymmetric solutions DIW = 0 (with I

running over all h1,1 Kähler moduli, h2,1 complex structure moduli, and the dilaton S) sta-

bilizing all moduli, with 4-cycle volumes ReTi � 1, are possible including the α′-correction

discussed above [6]. On swiss-cheese style Calabi-Yau manifolds, a second branch of so-

lutions are the SUSY-breaking AdS vacua of the Large-Volume-Scenario which work for

arbitrary W0 [39], and the third branch consists of the ‘Kähler uplifted’ solutions studied

below, where typically |W0| − O(1 . . . 10) to get dS vacua.

For one-parameter models we have V̂ = γ(T + T̄ )3/2 and we set α′ := 1. Here

γ =
√

3/(2
√
κ) , (2.3)

ξ̂ = − ζ(3)

4
√

2 (2π)3
χ (S + S̄)3/2 , (2.4)

and κ denotes the self-intersection number of the single Kähler modulus T in terms of

the Poincare-dual 2-cycle volume modulus v of the underlying N = 2 theory prior to

orientifolding. The volume of 1-parameter CY threefolds is then given by [13]

V̂ =
κ

6
v3 ≡ γ (T + T̄ )3/2 , ReT =

1

3
∂vV̂ . (2.5)

The flux-superpotential W0 is determined by the integral over the holomorphic 3-form Ω of

the Calabi-Yau and the 3-form flux G(3) [52]. The Kähler potential K and superpotential

W determine the F -term scalar potential to be

V = eK
(
Kab̄DaWDbW − 3|W |2

)
(2.6)

with DaW = Wa +KaW , and a runs over the dilaton S, the single Kähler modulus T and

the h2,1 complex structure moduli Ui. We will now stabilize the Kähler modulus

T = t+ iτ , (2.7)

(τ denotes its axion) using the interplay between the leading perturbative α′ correction ξ̂

to the Kähler potential [38] and non-perturbative corrections to the superpotential. For

now, we assume the dilaton S and the complex structure moduli Ui to be stabilized already.

Thus, we have to find local stable minima of the scalar potential descending from eq.s (2.1)

assuming DSW = DUiW = 0.

Following [38, 45, 46] we can write the resulting scalar potential in the following form

V (T ) = eK
(
KT T̄DTWDTW − 3|W |2

)
(2.8)

= eK

(
KT T̄

[
WTWT + (WT ·WKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
.
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Here KT T̄ denotes the T T̄ -component of the inverse of the Kähler metric (KIJ̄)−1 where

I, J run over all fields involved.

The non-trivial task is to find stationary points of V (T ) with respect to t. It is

straightforward to show that the axionic direction has an actual minimum at τ = 0.

The Kähler potential does not depend on τ and the exponential in eq. (2.1) introduces

trigonometric functions sin(aτ) and cos(aτ) into V (T ). Then it can be shown that Vτ = 0

for τ = nπ/a for n ∈ Z. We restrict to the case τ = 0 so that after insertion of WT we obtain

V (t) = eK

(
KT T̄

[
a2A2e−2at + (−aAe−atWKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
.

(2.9)

2.1 Approximating the scalar potential V (T ) in the large volume limit

In [45], it was shown that one can get de Sitter minima for T at parametrically large volume

V̂ ' O(100 . . . 1000) and weak string coupling gS ' 0.1. The stable minimum is realized

at ξ̂/(2V̂) ' 0.01 so small that neglecting higher orders in the α′ expansion is well justified

and string loop effects are double-suppressed due to the smallness of gS and the extended

no-scale structure [42]. This minimum can be constructed under the following conditions

• Put a stack of N ' O(30 . . . 100) D7-branes on the single 4-cycle that undergoes

gaugino condensation.1 The parameter A is assumed to be O(1).

• Choose the flux induced superpotential W0 ' O(−30) and the parameter ξ̂ ' O(10).

Note that a W0 of this rather large magnitude does not induce problematic back

reactions, as in type IIB the fluxes are imaginary self-dual (ISD) and of (1,2) or (0,3)

type which limitates the back reaction to the warp factor.

In this setup, one typically obtains a minimum at T ' O(40) so that the non-

perturbative contribution to the superpotential Ae−aT is small enough to also trust the

Ansatz for the non-perturbative superpotential.

We now want to give a parametric understanding of this scenario by approximating

the scalar potential eq. (2.9) under the constraint of the typical values of the parameters

a,A,W0, ξ̂, γ. We use the condition ξ̂/(2V̂) ' 0.01 and the validity of the non-perturbative

superpotential:

V̂ � ξ̂, |W0| � Ae−at . (2.10)

Under these approximations, the Kähler Potential and its derivatives simplify in the

following way:

K = −2 ln

(
V̂ +

ξ̂

2

)
' −2 ln

(
V̂
)
,

1For example, the 2-parameter model P4
11169 was shown in [53] to have an F-theory lift containing an

E8 ADE-singularity for the condensing gauge group, giving a rank of 30. In general, the achievable rank

of the gauge groups is limited for compact CY fourfolds, due to the compactness interfering with enforcing

an ADE-singularity of arbitrarily high rank along a given divisor. Still, on compact F-theory fourfolds very

large gauge groups with very large ranks can be generated, e.g. in [54] F-theory was compactified to 4d on

a compact fourfold to yield a gauge group with 251 simple factors, the largest of which was SO(7232).

– 7 –
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KT =
−3γ2/3 3

√
V̂

V̂ + ξ̂
2

' −3γ2/3

V̂2/3
,

(KT T̄ )−1 = γ−4/3
3
√
V̂(4V̂2 + ξ̂V̂ + 4ξ̂2)

12(V̂ − ξ̂)
' V̂

4/3

3γ4/3
. (2.11)

Also the last term of eq. (2.9) simplifies under the approximation eq. (2.10). Implementing

eq. (2.10), the scalar potential eq. (2.9) becomes

V (t) ' e−2at(3aA2 + a2A2t)

6γ2t2
+
aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√

2γ3t9/2
. (2.12)

We also neglect the term ∝ e−2at since it is suppressed by one more power of e−at compared

to the second term in eq. (2.12) and obtain a ‘2-term structure’ for the scalar potential

V (t) ' aAe−atW0

2γ2t2
+

3W 2
0 ξ̂

64
√

2γ3t9/2
. (2.13)

Note that the flux-superpotential is negative, W0 < 0, so that the two terms have opposite

sign and a minimum is in principle allowed. Eq. (2.13) is a drastic simplification of the

rather complicated scalar potential eq. (2.9) that allows us to extract an analytic condition

on the parameters to obtain a meta-stable de Sitter vacuum. Factorizing eq. (2.13), we can

write it in terms of two characteristic variables x = a · t and C

V (x) ' −W0a
3A

2γ2

(
2C

9x9/2
− e−x

x2

)
, C =

−27W0ξ̂a
3/2

64
√

2γA
. (2.14)

The overall constant in eq. (2.14) does not influence the extrema of this potential. For

completeness, we mention that the stationary point in the axionic direction τ = 0 is always

a minimum since the mass

Vττ = −a
3Ae−atW0

2γ2t2
> 0 if W0 < 0 . (2.15)

The mass matrix Vij for i, j ∈ {t, τ} is diagonal since the mixed derivative Vtτ vanishes at

τ = 0.

Note, that it is the presence of the exponential factor in the negative term with the

slower inverse power-law dependence on x, which renders this term as a ‘negative middle

term’ in terms of the analysis of [29]. Here, however, this term shuts down exponentially

fast for large enough x. This combined behavior of being a power-law at small x and an

exponential at larger x is responsible for the fact, that a ‘2-term’ combination with a single

positive inverse power-law term is enough to obtain a tunable dS vacuum.

2.2 A sufficient condition for meta-stable de Sitter vacua

To calculate extrema of eq. (2.14) we need to calculate the first and second derivative with

respect to x (V ′ = ∂V
∂x )

V ′(x) =
−W0a

3A

2γ2

1

x11/2

(
C − x5/2(x+ 2)e−x

)
, (2.16)
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Figure 1. The approximate 2-term scalar potential V (x) from eq. (2.14) for different values of C.

V ′′(x) =
−W0a

3A

2γ2

1

x13/2

(
11

2
C − x5/2(x2 + 4x+ 6)e−x

)
. (2.17)

Solving for an extremum V ′(x) = 0 yields

x5/2(x+ 2)e−x = C (2.18)

which cannot be solved explicitly in an analytic way. Plotting the approximate expression

eq. (2.14) of V (x) for different values of the constant C in figure 1 we observe the following

behavior:

We see that with growing C we first obtain an AdS minimum. This minimum breaks

supersymmetry since

FT '
−3W0

2tV̂
6= 0 . (2.19)

Then at some point the minimum transits to dS, and for even larger C the potential

eventually develops a runaway in the x direction. We can analytically calculate the window

for C where we obtain a meta-stable de Sitter vacuum by identifying:

• Lower bound on C: V (xmin) = V ′(xmin) = 0

• Upper bound on C: V ′(xmin) = V ′′(xmin) = 0

In both cases we have to solve two equations for two variables {xmin, C}. For instance,

one can use eq. (2.18) to replace Cex in V (x) = 0 for the lower and in V ′′(x) = 0 for the

upper bound which gives equations maximally quadratic in x and then use eq. (2.18) again

to calculate C. In both cases, there exists only one solution with xmin > 0.
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• Lower bound on C:

{xmin, C} = {5
2 ,

225
8

√
5
2e
− 5

2 } ' {2.5, 3.65}

• Upper bound on C:

{xmin, C} ' {3+
√

89
4 , 3.89} ' {3.11, 3.89}

The region close to {xmin, C} is the one relevant for obtaining a small positive cosmological

constant suitable for describing the late-time accelerated expansion of the universe. For

a = 2π/100 the lower bound on x corresponds to a volume V̂ ' 100 so we are indeed at

parametrically large volume. The allowed window for C to obtain meta-stable de Sitter

vacuum is approximately

3.65 .
−27W0ξ̂a

3/2

64
√

2γA
. 3.89 (2.20)

In sections 3 and 4, we will show that fulfilling condition eq. (2.20) is still sufficient

to obtain a meta-stable minimum of the scalar potential when all the remaining moduli

fields of the Calabi-Yau, i.e. the dilaton and the complex structure moduli, are included

in the stabilization analysis. Hence, this is truly a sufficient condition for meta-stable de

Sitter vacua and no tachyonic instabilities occur by including further moduli, contrary to

the standard KKLT scenario [55, 56].

2.3 h1,1 > 1

We will now proceed to show explicitly that the above argument can be extended to the

full class of all Calabi-Yau threefolds with h1,1 > 1 arbitrary and χ < 0 which are of ‘swiss

cheese’ type.2 A ‘swiss cheese’ type Calabi-Yau is characterized by a classical volume

given by

V̂ =
h1,1∑
I=1

1

6
κIII (vI)3 = γ (T + T̄ )3/2 −

h1,1∑
i=2

γi (Ti + T̄i)
3/2 (2.21)

where vI is the 2-cycle modulus, κ ≡ κ111 > 0, κiii < 0 for i = 2 . . . h1,1 and

t ≡ ReT =
1

3
∂vV̂ and γ =

√
3

2
√
κ

(2.22)

ti ≡ ReTi =
1

3
∂viV̂ and γi =

√
3

2
√
−κiii

∀ i = 2 . . . h1,1 .

This structure allows us to invert and get

vI = 2
√

2γI
√
tI . (2.23)

Thus the classical volume of such Calabi-Yaus has a (+−−− . . .) signature in intersection

number space. We will look for dS vacua which satisfy ReTi � ReT for i = 2 . . . h1,1

such that V̂ ∼ γ (T + T̄ )3/2, such the h1,1 − 1 blow-up Kähler moduli form the ‘holes’ of

the ‘swiss cheese’. This entails choosing the ai for i = 2 . . . h1,1 of the nonperturbative

2For the two Kähler moduli of P4
[1,1,1,6,9] the Kähler uplifted dS minimum was found numerically first

in [57].
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superpotential effects on the associated 4-cycles such that ai � a ≡ a1 while enforcing

aiti > 1 to maintain the validity of the one-instanton approximation.

We will again determine the leading terms in ξ̂/V̂ as before. The scalar potential reads

V = eK
(
KTI T̄J

[
aIaJAIAJe

−a(TI+T̄J ) + (−aIAIe−aTIWKTJ + c.c)
]

+3ξ̂
ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
. (2.24)

Guided by eq. (2.13), we extract the terms linear in ξ̂ and in e−aTI , suppressing terms which

are of order e−a(T+T̄J ) or ξ̂e−aTI as they are subleading in the limit we are considering. We

will see that we are forced to keep terms of order e−a(Ti+T̄j) as these will turn out to be of

a relevant order in ξ̂/V̂ once the condition of the minimum is imposed. Using the fact that

KTI = KT̄I
for our choice of V̂, the relevant part of the potential thus reads

V = −W0

V̂2
KTI T̄J

(
aIAIe

−aTIKT̄J
+ c.c

)
+

3ξ̂W 2
0

4V̂3
. (2.25)

We have

KT = KT̄ = −3
√

2γ
√
t

V̂
+O

(
ξ̂

V̂

)
, KTi = KT̄i

=
3
√

2γi
√
ti

V̂
+O

(
ξ̂

V̂

)
(2.26)

and the inverse Kähler metric can be found [58] to be

KTI T̄J = −2

9
(2V̂ + ξ̂)κIJKv

K +
4V̂ − ξ̂
V̂ − ξ̂

tItJ . (2.27)

Now we can apply our limit ξ̂/V̂ � 1, use that the κIJK = κIII are diagonal, and implement

that ti � t for i = 2 . . . h1,1. We then find using eq. (2.23) that

KT T̄ = −4

9
V̂κv + 4t2 = −4

9
V̂ 3

4γ2
2
√

2γ
√
t+ 4t2 '

√
2

3
V̂
√
t

γ

KT T̄i = 4 tit (2.28)

KTiT̄i = −4

9
V̂κiiivi + 4t2i = −4

9
V̂ −3

4γ2
i

2
√

2γi
√
ti +O(1) ' 2

√
2

3
V̂
√
ti
γi

while KTiT̄j = 4titj � O(vI V̂) can be dropped in this limit. Plugging eq.s (2.26) and (2.28)

into the potential eq. (2.25), we get

V =
4W0

V̂2

atAe−at cos(aτ) +

h1,1∑
i=2

aitiAie
−aiti cos(aiτi)

+
3ξ̂W 2

0

4V̂3

+
h1,1∑
i=2

4

3

aiA
2
i

V̂2

√
ti
γi
e−2aiti

[
V̂√
2

+ 3γi
√
ti(aiti + 1)

]
. (2.29)

The cross terms ∼ KT T̄i are relevant to obtain the correct sign of the axion terms in the

first round bracket. The terms ∼ e−2aiti look subleading. However, at the prospective
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minimum one can show that e−at ∼ e−aiti ∼ ξ̂/V̂. This implies, that the terms ∼ e−2aiti

are in fact ∼ ξ̂2/V̂3 (including the factor of V̂ in the rectangular bracket) and are thus of

relevant order for minimization.

This potential has a full minimum at at ' aiti ' 3 for i = 2 . . . h1,1, and τ = τi = 0,

if the quantity C defined in eq. (2.14) satisfies a structurally similar bound on C as in the

one-parameter case discussed above. However, the numerical interval of C-values allowed

by the metastability conditions increases slowly with h1,1. The size of C ∼ |W0| for given ξ̂,

intersection numbers, and gauge group ranks. As the maximum size of |W0| is given by the

maximum available fluxes, this implies an upper bound on h1,1 as the flux is limited by the

tadpole constraint quantified by the Euler characteristic of the F-theory elliptic fourfold.

The magnitude of χCY4 can be easily as large as O(104), so this is not a particularly strong

bound.

Thus we expect this minimum to persist for all ‘swiss cheese’ Calabi-Yau threefolds of

arbitrary h1,1 > 1. Moreover, the way how the additional Kähler moduli enter the leading

terms of the scalar potential implies that the inclusion of dilaton and complex structure

stabilization discussed in the subsequent sections will also extend to the h1,1 > 1 case by

virtue of its viability for the first Kähler modulus. Finally, as the quantity κIJKv
K is a

matrix with signature (1, h1,1− 1) (one plus and the rest minus) [59], we expect the overall

sign structure of eq.s (2.26) and (2.28) to persist even for general non-‘swiss cheese’ type

Calabi-Yau threefolds. As this will lead to a potential with the same basic structure as

eq. (2.29) we may expect this mechanism of stabilizing all Kähler moduli directly into a

dS vacuum via ‘Kähler uplifting’ to extend to all Calabi-Yau threefolds with χ < 0.

2.4 Suppressing flux-induced α′-corrections

We now want to discuss potentially dangerous flux-induced α′-corrections originating from

|W0| ' O(30). The leading α′ correction we used to stabilize the volume modulus in

section 2 to the Kähler potential can be derived from the R4 term in the 10d effective

supergravity action, where R is the 10d Ricci scalar. However, for a large flux-induced

superpotential, corrections to the scalar potential descending from the R3G2
(3) term in the

10d effective action might become relevant even though suppressed by higher powers of the

inverse volume [60] in the scalar potential. To trust our analysis of dS vacua in section 2 -

which takes only the R4 α′-correction into account - we need to ensure

∆VR3G2
(3)
∼
|G(3)|2

V̂11/3
∼ W 2

0

V̂11/3
< ∆VR4 ∼

ξ̂

V̂3
, (2.30)

where we have used that |W0| ∼ O(|G(3)|) barring fortuitous cancellations. For the ‘Kähler

uplifting’ regime V̂ ' O(100 . . . 1000), ξ̂ ' O(10) and |W0| ' O(30) the inequality (2.30) is

not a priori fulfilled but rather ∆VR3G2
(3)
' ∆VR4 , promoting flux-induced α′-corrections

problematic.

We can ensure the desired hierarchy between the corrections by demanding the choices

of all explicit flux quanta to be of O(1). In general, this implies that |W0| ' O(1) which is
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effectively a percent-order fine-tuning. Since G(3) = F(3) − S ·H(3), we can write

W0 =
1

2π

∫
CY3

F(3) ∧ Ω− S 1

2π

∫
CY3

H(3) ∧ Ω ≡ C1 − C2 · S . (2.31)

We will show in section 3, that the dilaton S will be approximately stabilized supersym-

metrically at Re(S) = g−1
S = −C1/C2, so that 〈W0〉 = 2C1. We can reduce |W0| from

O(30) to O(1) and stay in a dS vacuum if we also reduce gS because according to the

sufficient condition for dS vacua in eq. (2.20)

W0ξ̂ ∝
W0

g
3/2
S

= const. (2.32)

Note that reducing gS also improves the approximation of neglecting string loop effects.

This translates into the following requirements on the two functions C1 and C2:

gS = −C2/C1 � 1

W0 = 2C1 ∼ O(1) (2.33)

As C1 and C2 are functions of the flux-quanta and the VEV’s of the complex structure

moduli, eq. (2.33) can be fulfilled by choosing O(1) flux-quanta for F(3) and H(3) while

choosing the VEV’s of the complex structure moduli in C2 such that C2 � 1. The bound

on C2 which depends on the H(3) flux-quanta is more stringent than the bound on C1

which depends on the F(3) flux-quanta. This follows from a look at the superpotential

W0 = C1 − S C2 , and the way how H(3) enters the 10d type IIB bulk action. The cru-

cial point is that the bulk terms
∫
d10x
√
−ge−2φH2

(3) and
∫
d10x
√
−ge−2φR enter with the

same powers of the string coupling. Therefore, the dominant flux-inducedO(α′3)-correction

which is ∼ R3H2
(3) will give a correction to the Kähler potential which scales with same

dilaton dependence as the one from the R4-term, but is suppressed by an additional power

1/V̂2/3. This is because R scales as 1/V̂1/3 while H2
(3) ∼ 1/V̂. By keeping

∫
Σ3
H(3) of O(1)

we can then suppress the flux-induced α′-correction by large volume. Furthermore, since

the F(3) flux is suppressed by a further power of gs the bound is obviously stronger on

the H(3) flux. Thus, tuning of C1 and C2 can alleviate the problem of flux-induced α′-

corrections. Reducing fluxes requires additional contributions to fulfill tadpole constraints.

These contributions can be supplied by D3- and magnetized D7-branes.

2.5 F-theory interpretation

Eq. (2.20) forms a crucial result of our analysis. It represents an explicit condition relating

two topological properties of the CY threefold, the self-intersection number κ of its volume

modulus, and its Euler characteristic χ (via ξ̂ = ξ̂(χ)), to the flux superpotential and the

rank of condensing D7-brane gauge group.3

Let us briefly comment here on the link to F-theory. Type IIB warped flux com-

pactifications on an O7-orientifolded CY threefold with D3- and D7-branes with varying

3This verifies the numerical evidence fount in [45], indicating that one can trade of larger W0 for smaller

ξ̂ and still obtain a de Sitter minimum. This now is obvious from eq. (2.20).
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axio-dilaton can be described as the Sen limit of F-theory compactified on an elliptically

fibred CY fourfold. The CY threefold then is the double-cover of the base of the elliptic

fibration under the orientifold projection in the Sen limit [61]. The F-theory description

unifies the different objects of the CY threefold, the O7-plane and the D7-branes including

the non-abelian gauge theories into the geometry and topology of the elliptically fibred

CY fourfold. In particular, points in the base of the fibration, where the torus fibre of the

Weierstrass model degenerates via a vanishing 1-cycle, describe D7-branes. In consequence,

D7-brane stacks with their non-abelian gauge groups are geometrized into the notion of

ADE-type singularities at the points in the base where the torus fibre degenerates. The

type IIB 3-form fluxes H(3) and F(3), in turn, descend from a single 4-form flux G(4) on

the F-theory fourfold. Finally, the Euler characteristic χ, and h1,1, h2,1 are completely

determined in terms of the topological data of the fourfold.

Using this information, we immediately see that the sufficient condition for the exis-

tence of ’Kähler uplifted’ dS vacua in type IIB becomes particularly elegant criterion in

the underlying F-theory construction in so far, as the relation eq. (2.20) places a constraint

on the geometry and topology of the fourfold and the 4-form flux G(4):

• The data entering W0, ξ, and γ(κ), which consists of χ, h2,1, the intersection num-

ber(s), and the periods of the threefold, are completely determined in terms of the

topological data of the fourfold, and the 4-form flux G(4).

• The rank of the D7-brane gauge group entering a is determined by the ADE sin-

gularity enforced at the degeneration point of the Weierstrass model describing the

elliptic fibration.

Thus, the sufficient condition eq. (2.20) represents a purely geometrical and topological

constraint on the fourfold in F-theory except for the constraint on G(4).

2.6 The necessary curvature condition

The discussion so far has constituted a sufficient condition for the existence of meta-stable

’Kähler uplifted’ dS vacua in type IIB on a CY orientifold. Let us pause here for a moment,

and compare this condition to the necessary condition of positive sectional curvature of

the Kähler potential which [49] derived from a general 4d N = 1 supergravity argument.

The statement there is that a meta-stable dS vacuum cannot exist unless the sectional

curvature of the full Kähler potential of a given model

λ ≡ 2gi̄G
iG̄ −Ri̄mn̄GiG̄GmGn̄ > 0 (2.34)

is positive, where

gi̄ ≡ ∂i∂̄̄K, Gi ≡ e−G/2F i, G = K + ln |W |2 , (2.35)

and Ri̄mn̄(gi̄) is the Riemann tensor of the scalar manifold. For our case of the leading

order O(α′3) correction breaking no-scale and supplying the dominant direction of super-

symmetry breaking FT (this will be shown in the subsequent sections), this condition is

– 14 –



J
H
E
P
0
1
(
2
0
1
2
)
0
2
0

〈t〉 m2
t m2

τ m2
3/2

exact 43.0 9.8 · 10−4 2.5 · 10−3 1.3 · 10−2

approx. 39.8 1.4 · 10−3 3.4 · 10−3 1.9 · 10−2

Table 1. Numerical results for the minimum 〈t〉, the moduli masses m2
t , m

2
τ and the gravitino

mass m2
3/2. The exact results are obtained numerically from eq. (2.9) for W0 = −32.35, the

approximate results from eq.s (2.13) and eq. (2.15) for W0 = −37.73. The masses where determined

by diagonalization of the Hessian of the relevant scalar potential, and multiplying the eigenvalues

with KT T̄ for canonical normalization of the kinetic terms.

equivalent to [49]

ξ̂

8V
>

2 〈V 〉
105m2

3/2

. (2.36)

We do now see that satisfying the sufficient condition given here implies satisfaction of

eq. (2.36), as

m2
3/2 ≡ e

K |〈W 〉|2 ' eK |〈W0〉|2 > 0 (2.37)

is guaranteed always in the minimum due to |〈W0〉| ∼ O(1) � |e−a〈T 〉|, while tuning W0

allows 〈V 〉 ' 0 to O(10−h
2,1

).

Note that satisfying eq. (2.36) requires ξ̂ > 0 for true dS vacua, which fixes the sign of

ξ̂ and thus χ. This is consistent with the extremum conditions eq.s (2.18), (2.15) together

with definition of C in eq. (2.14), as they too dictate W0 < 0⇔ ξ̂ > 0.

We can rewrite eq. (2.36) by inserting the 2-term potential of eq.(2.14) and the grav-

itino mass m2
3/2 ' (W0/V̂)2:

1 >
2

35

(
2− 9e−xx5/2

C

)
. (2.38)

The only remaining parameters are x and C. This allows us to check the necessary curva-

ture condition at the upper limit for {x,C} = {3.11, 3.89}, i.e. where the meta-stable dS

minimum becomes a saddelpoint in the t-direction, see section 2.2. We find

1 >
1

140

(
9
√

89− 83
)
' 0.014 . (2.39)

We do not necessarily expect eq. (2.36) to be violated since this is a necessary condition,

i.e. a dS vacuum does not have to exist even though the inequality is fulfilled. However,

eq. (2.39) is far from being saturated which suggests that the space of actually meta-stable

dS vacua may be significantly smaller than the space of candidate vacua allowed by the

necessary condition.

2.7 Numerical example

Let us display our above analysis with a numerical example from [45]:

a =
2π

100
, W0 = −32.35, A = 1, γ =

√
3

2
√

5
, ξ̂ = 7.98 . (2.40)
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Figure 2. Dashed curve: the exact potential with parameters W0 = −32.35. Solid curve: the

approximate potential with parameters W0 = −37.73, C = 3.652.

The choice for γ is that for the quintic CP4
1,1,1,1,1 which has intersection number κ = 5.

The meta-stable minimum of the exact potential eq. (2.9) lies at t = 43 so that indeed the

approximations in eq. (2.10) are well justified.

ξ̂

V̂
' 0.03� 1,

Ae−at

|W0|
' 0.002� 1 . (2.41)

In figure 2, we compare the exact potential eq. (2.10) to the approximate potential eq. (2.14)

for the parameters eq. (2.40).

We see that the two curves agree sufficiently to justify the parametric understanding

drawn out of the 2-term potential eq. (2.14). The minimum of the approximate potential

is located at t ' 40. We give a summary of the numerical results for the moduli VEVs and

masses in table 1.

2.8 Vacuum decay

We will now briefly digress to discuss the (meta)stability of the dS vacua we just found.

The vacua are local minima of the scalar potential and thus are classically stable. However,

they will decay non-perturbatively by a tunneling process. There are two known instanton

solutions to the Euclidean equations of motion in the saddle point approximation — the

Coleman-DeLuccia (CdL) [62–64] and the Hawking-Moss (HM) [65] instanton. Denote the

position of the (meta)stable false vacuum of the volume moduli described in the preceding

section with t0 , ti,0 (i = 2 . . . h1,1, at vanishing axion VEVs), and its vacuum energy by

V0. There is a finite barrier in the direction of the large volume modulus t = ReT at the
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position tB > t0, while the smaller blow-up volume directions in Kähler moduli space ti do

not show a finite barrier in finite distance from their false vacuum locus ti,0. The barrier

in the t-direction protects against classical decompactification by runaway if V0 > 0, as

there is a de-compactified 10d Minkowski minimum at t → ∞. In our situation, where

t� ti at the two extrema of the potential with respect to t, we can derive the canonically

normalized field ϕ corresponding to t as

ϕ =

√
3

2
ln t (2.42)

up to small corrections of O(ti/t). As e.g. visible in figure 1, we can thus approximate the

canonically normalized barrier width ∆ϕ as twice the distance between the false vacuum

and the barrier top

∆ϕ ' 2

√
3

2
(ln tB − ln t0) =

√
6 ln

tB
t0
. (2.43)

The false vacuum is tuned to be a dS vacuum and for purposes of our late-time cosmology

should be further tuned to yield an exponentially small positive vacuum energy. Thus the

energy difference ∆V between this false vacuum and the Minkowski vacuum at t → ∞ is

exponentially small compared to the barrier height

∆V = V0 � VB . (2.44)

This places us deeply inside the validity regime of the thin-wall approximation to CdL

tunneling [62–64]. In the thin-wall limit tunneling mediated by the CdL instanton gives a

decay rate [64]

ΓCdL ∼ e
SE(ϕ0)

(1+4V0/3T
2)2 . (2.45)

The term in the denominator of the exponent is called the gravitational suppression factor.

Here SE(ϕ0) = −
∫
d4x
√
−gV (ϕ0) denotes the Euclidean action of the pure false vacuum

dS space solution at t0 , ti,0 (i = 2 . . . h1,1) which is [6]

SE(ϕ0) = − 24π2

V0
< 0 . (2.46)

T denotes the tension of the CdL bubble of true vacuum which in the thin-wall approxi-

mation is given by

T =

∫ ∞
ϕ0

dϕ
√

2V (ϕ) '
√

2VB∆ϕ ' 6
√

2VB ln
tB
t0
. (2.47)

We see that the gravitational correction in the decay rate is negligible only if

∆ϕ�
√
V0

VB
(2.48)

as for MP → ∞ we have V0M
2
P � T 2. In our case we typically have (see figure 1 again)

∆ϕ = O(0.1), so this bound is strongly violated in our own dS vacuum with V0 ∼ 10−122.
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So, we are in the opposite situation V0/T
2 � 1 and thus to first approximation the CdL

decay rate of our class of dS vacua is

ΓCdL ∼ e
− 24π2

V0 · e
64π2

T2 ∼ e−10122 . (2.49)

This is extremely long-lived, even compared to our cosmological time scales.

We can now compare this with tunneling mediated by the Hawking-Moss instanton [65]

which describes a transition where the field tunnels from the false vacuum first to the top

of the barrier, and then classically rolls to the true vacuum. Here, the decay rate comes

out to be

ΓHM ∼ eSE(ϕ0)−SE(ϕB) ∼ e−
24π2

V0
+ 24π2

VB . (2.50)

The ratio between the two decay rates is [6]

ΓHM
ΓCdL

∼ e24π2
(

1
VB
− 4
T2

)
. (2.51)

Thus, for a sub-Planckian barrier thickness ∆ϕ <
√

2MP the HM instanton is sub-dominant

to the CdL process, and eq. (2.49) provides a reasonable estimate for the metastability of

our dS vacua.

3 Stabilization of the Kähler modulus and the dilaton

We now include S = s + iσ explicitly into our analysis. Our strategy will be to first

determine the supersymmetric locus for S and then include the backreaction from volume

stabilization using perturbation theory in the small expansion parameter

ξ̂

V̂
. 0.1 (3.1)

for typical models. We will use the same logic in section 4 for incorporating the complex

structure moduli.

The flux-superpotential has the form W0 = C1−C2 ·S, where the C1 and C2 are func-

tions of the complex structure moduli, and the 3-form fluxes. In this section we still assume

the complex structure moduli to be integrated out supersymmetrically. The Kähler- and

superpotential are given as

K = KK +Kgs , with KK = −2 ln

(
γ(T + T̄ )3/2 +

ξ

2
(S + S̄)3/2

)
,

Kgs = − ln
(
S + S̄

)
,

W = C1 − C2 · S +Ae−aT . (3.2)

Notice that there is a mixing in the Kähler potential due to the S dependence of the pa-

rameter ξ̂ controlling the α′ correction. The VEV of s has to be chosen large enough, so

the string coupling gS ≡ 1/〈s〉 stays parametrically small. The scalar potential can be

organized in the following way:

V (T, S) = V (T ) + V (T,S) + V (S), with
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V (T ) = eK

(
KT T̄

[
WTWT + (WT ·WKT + c.c)

]
+ 3ξ̂

ξ̂2 + 7ξ̂V̂ + V̂2

(V̂ − ξ̂)(ξ̂ + 2V̂)2
|W |2

)
,

V (T,S) = eK
(
KT S̄DTWDSW + c.c

)
,

V (S) = eK
(
KSS̄ |DSW |2

)
. (3.3)

The term V (T,S) is due to the mixing of T and S in the Kähler potential.

It was shown in [45] numerically, that eq. (3.3) possesses a meta-stable de Sitter vac-

uum in the large volume limit eq. (2.10) with the dilaton being stabilized close to the

supersymmetric minimum DSW = 0. We now obtain an analytic understanding of these

features using an expansion of eq. (3.3) in ξ̂/V̂ and Ae−at/|W0|.

3.1 Approximating the scalar potential V (T, S) in the large volume limit

We can calculate V (T ) using our results from section 2 and the replacements

W0 −→ C1 − C2S ,

ξ̂ −→ ξ(2s)3/2 ,

eKK −→ eKKeKgs '
(

2sV̂2
)−1

, (3.4)

to obtain the two term potential

V (T ) ' 1

2s

(
aAe−at [(C1 − C2s) cos(aτ) + C2σ sin(aτ)]

2γ2t2

+
3ξs3/2

[
(C1 − C2s)

2 + C2σ
2
]2

32γ3t9/2

)
. (3.5)

To derive V (T,S) and V (S) we have to approximate KT S̄ which we find to be 1-st order and

KSS̄ which is a 0-th order term:

V (T,S) '
(C1 + C2s)

[
s3/2(−7C1 + 5C2s)ξ + 8Ae−atγt3/2 cos(aτ)

]
64 s γ3t9/2

− 7C2
2

√
s ξ σ2

64 γ3t9/2
+
Ae−atC2 σ sin(aτ)

8 s γ2t3
, (3.6)

V (S) ' 1

2sV̂2

[
(C1 + C2s)

2 + C2
2σ

2
]
. (3.7)

We see that in this approximate expression for the scalar potential the field s is to 0-th

order stabilized by a quadratic potential (C1+C2s)
2 if we neglect terms that are suppressed

either by ξ or e−at relative to the quadratic potential. The supersymmetric locus is

s0 = −C1

C2
> 0 ⇒ C1C2 < 0. (3.8)

The shift of s to this supersymmetric minimum due to the 1-st order terms V (T ) and

V (T,S) will be calculated in section 3.3 to first order. The extremum of t to 1-st order is

governed by V (T ) only since V (T,S) ∝ DSW and DSW equals zero to 0-th order so that

V (T,S) is actually a 2-nd order term. Finally, the axion field derivatives Vτ and Vσ can be

minimized for τ = nπ/a for n ∈ Z and σ = 0. As in section 2, we restrict to τ = 0.
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3.2 Moduli masses

Using the approximate scalar potential V (t, s, τ, σ) of eq. (3.3) we can calculate the mass

matrix of the moduli as the second derivative with respect to the real fields. The second

derivatives mixing real and imaginary parts vanish exactly at the axionic VEVs τ = σ = 0

so the mass matrix is block diagonal.

Vij =


Vtt Vts 0 0

Vst Vss 0 0

0 0 Vττ Vτσ

0 0 Vστ Vσσ

 (3.9)

Since Vtt and Vts are 1-st order and Vss is 0-th order, the eigenvalues of eq. (3.9) are Vtt
and Vss to 1-st and 0-th order, respectively.

Next, we note that the kinetic terms of the moduli fields are highly non-canonical. The

kinetic part of the Lagrangian reads as

L = KSS̄∂µS∂
µS̄ +KT T̄∂µT∂

µT̄ +KT S̄

(
∂µT∂

µS̄ + c.c
)
. (3.10)

We expand the moduli around their minima in small fluctuations, S = 〈S〉 + δS and

T = 〈T 〉 + δT . Inserting this, we see that in the limit of small fluctuations we get the

KIJ̄(〈S〉, 〈T 〉) to be constants. In general, one has to diagonalize the Kähler metric and

then canonically normalize the kinetic terms in the rotated basis of fluctuations, but here

we find that in our limit ξ̂/V̂ � 1 an expansion of the inverse Kähler metric KIJ̄ shows us

that KST̄ is O(ξ̂/V̂) compared to KT T̄ and KSS̄ .

Thus, differentiating eq. (3.3) and evaluating at s = s0 and t = tmin, we find for the

physical masses

m2
t ' KT T̄

∣∣
ξ=0

Vtt =
4t2

3
Vtt

'
−32atAe−atC2γt

3/2(a2t2 + 4at+ 6) + 297ξC2
1

√
−C1
C2

48γ3t9/2

∣∣∣∣
t=tmin

∼ ξ̂

V̂3
, (3.11)

m2
s ' KSS̄

∣∣
ξ=0

Vss = 4s2 Vss '
−C1C2

2γ2t3

∣∣∣∣
t=tmin

∼ 1

V̂2
, (3.12)

m2
τ ' KT T̄

∣∣
ξ=0

Vττ '
(at)3AC2

2γ2

e−at

γ2t3

∣∣∣∣
t=tmin

∼ ξ̂

V̂3
, (3.13)

m2
σ ' KSS̄

∣∣
ξ=0

Vσσ '
−C1C2

2γ2t3

∣∣∣∣
t=tmin

∼ 1

V̂2
. (3.14)

Here we have used that for our dS solutions with 〈V 〉 ' 0 the product at ' 3 is roughly

constant. In this approximation the fields s and σ have the same mass which expresses

that they are in the same chiral multiplet and supersymmetry is unbroken in the S direc-

tion to 0-th order. Note, that s, τ and σ are manifestly positive in our approximation.

t could become tachyonic if the exponential term in eq. (3.11) gets larger than the term
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proportional to ξ. Since m2
t ∝ V ′′(x) of eq. (2.17), a tachyonic direction in t corresponds

to a saddle-point of the potential V (x) which is equivalent to violating the upper bound

on C eq. (2.20) as discussed in section 2.2.

3.3 Deviation of s from the SUSY minimum and SUSY breaking

In this section, we want to analyze the effect of the 1-st order terms δV (1) ≡ V (T ) +V (T,S)

on the 0-th order potential V (0) ≡ V (S) that stabilizes s in a supersymmetric minimum

s0 = −C1/C2. We will calculate the shift δs/s0 from the supersymmetric minimum s0 due

to the 1-st order terms δV (1) and show that it is indeed small, i.e. O(ξ̂/V̂). Furthermore, we

will show that naturally there appears a hierarchy m2
t � m2

s and show that supersymmetry

is predominantly broken in the T direction, i.e. FT � FS where

Fi = eK/2DiW . (3.15)

Expanding eq. (3.3) to first non-vanishing order for zero axionic VEVs τ = σ = 0 in

δs yields

V (t, s) = V (0)(t, s0) +
1

2
V (0)
s,s (t, s0)(δs)2 + δV (1)(t, s0) + δV (1)

s (t, s0)δs+ . . . . (3.16)

Since s = s0 + δs should still be a minimum of the full potential we demand

∂V

∂(δs)
= 0 ⇔ δs =

−δV (1)
s (t, s0)

V
(0)
s,s (t, s0)

. (3.17)

We see from eq. (3.5) and eq. (3.6) that the term δV
(1)
s (t, s0) involves terms proportional

to ξ and e−at. The latter can be replaced using the condition eq. (2.18) for the minimum

in t at s = s0:

e−at =
27ξ̂ C1

16V̂ Aat (2 + at)
. (3.18)

This yields a function whose t dependence is given by an overall factor V̂−3 and a rational

function in at = x. Since we are interested in de Sitter minima with almost vanishing

positive cosmological constant we can set x ' 5/2 according to section 2.2. The mass term

m2
s is obtained solely from V (S) so its t-dependence is given by an overall V̂−2 scaling from

the overall factor eK in the scalar potential. So finally for the shift we indeed obtain a

number of O(1) times our expansion parameter:4

δs

s0
' 93

20

ξ̂

V̂
= 4.65

ξ̂

V̂
. (3.19)

Thus, we have shown that it is consistent to assume the dilaton s to be stabilized ap-

proximately supersymmetrically since the 1-st order potential δV (1) only has a 1-st order

effect on the position of its minimum. Note that the sufficient condition on C for meta-

stable de Sitter vacua as it is written down in eq. (2.20), holds for the exact minimum of

4For a general supergravity analysis of the influence of supersymmetrically stabilized heavy moduli on

the stabilization of lighter moduli see [66, 67], where the O(ξ/V̂) shifts of the heavy moduli were found, too.
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s. If we approximate s by the supersymmetric minimum s0 or to 1-st order by s0 + δs this

will slightly change the bounds in eq. (2.20).

We can also use eq. (3.18) to bring m2
t into an expression that scales like ξ̂/V̂3. Setting

again x ' 5/2 we obtain the following hierarchy between the moduli masses

m2
t

m2
s

' (at)2

5 s0
· ξ̂
V̂

(3.20)

and hence m2
t � m2

s parametrically.

Finally, let us calculate the supersymmetry breaking terms FT and FS . The direction

FT has a non-vanishing 0-th order contribution

FT ' −
3C1√

−2C1/C2 tV̂
. (3.21)

As expected, the first non-vanishing contribution to FS is 1-st order. Other than terms

∝ ξ̂/V̂2 we have to add a term ∝ (s − s0)/V̂ that we evaluate at s = s0 + δs. Inserting

eq. (3.19) we get

FS ' −
9C1ξ̂

10
√

2 V̂2 (−C1/C2)3/2
' −FT ·

3 t C2

10C1
· ξ̂
V̂

(3.22)

so supersymmetry is predominantly broken in the T direction which is what one would

expect since t is stabilized in a minimum with spontaneously broken supersymmetry.

The gravitino mass can be approximated to 0-th order to

m2
3/2 = eK |W |2 ' − 2C1C2

V̂2
= − C1C2

4γ2t3
∼ 10−4 . . . 10−3 (3.23)

which is of order ∼M2
GUT for typical volumes.

We note thatm3/2 < ms ,mσ which renders the supersymmetric starting point for them

a self-consistent approximation. Moreover, the KK scale here is given for a single volume

modulus (i.e. no anisotropies are possible) and the volume given in units of α′ as V̂ = L6 as

mKK =
1

L
√
α′
∼ 1

V̂2/3
(3.24)

while he gravitino mass as well as the moduli masses scale at least ∼ 1/V̂. Here we have

used the relation between 10d string frame and 4d Einstein frame

1

α′
=

(2π)7

2
M2

P

g2
S

V̂
. (3.25)

Therefore, the use of a 4d effective supergravity description is justified, although the sep-

aration
m3/2

mKK
∼ 1

V̂1/3
(3.26)

will typically be only of O(0.1) here. Nevertheless, there is a parametric hierarchy between

the moduli mass scale, the SUSY and the KK-scale in the limit of large volume V̂ → ∞.
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〈t〉 〈s〉 m2
t m2

s m2
τ m2

σ

ex. 33.3 7.89 8.2 · 10−5 2.3 · 10−3 2.1 · 10−4 1.3 · 10−3

appr. 32.3 7.92 8.9 · 10−5 2.6 · 10−3 2.3 · 10−4 1.5 · 10−3

|FT | |FS | m2
3/2

ex. 1.3 · 10−3 3.3 · 10−4 8.3 · 10−4

appr. 1.4 · 10−3 2.1 · 10−4 1.2 · 10−3

Table 2. Numerical results for the VEVs in units of MP , mass spectrum and SUSY breaking in

units of M2
P , for the parameters of eq. (3.28). The exact results are obtained from the full potential

for C1 = −13.743, the approximate results are obtained from the approximate potential eq. (3.5)–

(3.7) for C1 = −13.926. In both cases, the field VEVs are calculated by numerical minimization of

the respective potential while the moduli masses are the eigenvalues of the second derivative matrix

times a factor from canonical field normalization (see text).

This suppresses potential mixing between the moduli masses and KK masses alleviating

their danger of causing additional tachyonic directions.

We have succeeded now in determining the combined scalar potential of the volume

modulus T and the dilaton S in a fully analytical form to first order in a perturbation

expansion around the supersymmetric locus for S. The resulting full minimum is a tunable

dS minimum of the same form and type as found in the previous section for T alone, and

it is perturbatively stable under the inclusion of the dynamics of the dilaton S.

3.4 Numerical example

Here, we will shortly compare our previous analytic results for combined T , S stabilization

to the exact results that one obtains by analyzing the full scalar potential. For concrete-

ness, we will again use the numerical example of [45]. In this example (see eq. (2.40)), we

had to fix the constants W0 and ξ̂ which are now given by the flux constants C1 and C2 to

0-th order via

W0 = 2C1, ξ̂ = ξ

(
−2C1

C2

)3/2

. (3.27)

For comparison, we choose a set of parameters from section 4.1 of [45], i.e.

a =
2π

100
, A = 1, γ =

√
3

2
√

5
, ξ = 0.17133, C1 = −13.743, C2 = 1.4 . (3.28)

The choice for γ and ξ again corresponds to the quintic CP4
1,1,1,1,1. For this choice of

parameters we have W0 = −27.49, s0 = 9.9 and ξ̂ = 14.9.

We find the minimum in the t direction of the full potential to lie at t ' 30. Hence,

our expansion parameters are small:

ξ̂

V̂
' 0.08� 1,

Ae−at

|W0|
' 0.006� 1 . (3.29)
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Figure 3. The approximate potential as a function of t and s. Parameter choice were C1 = −13.926,

C2 = 1.4.

Figure 3 compares the shape of the full potential and the approximate potential, while ta-

ble 2 presents a summary of the numerical results. The moduli masses show best agreement

in the axionic sector.

This finishes our numerical analysis. Having included the dilaton manifestly, we are

now led to the inclusion of the remaining fields missing so far in the full analysis, the

complex structure moduli, to which we now turn.

4 Inclusion of complex structure moduli: general analysis

We will now go the final step and include an arbitrary number h2,1 of complex structure

moduli Ui = ui+ iνi into our stabilization analysis. A commonly used example of a Calabi-

Yau 3-fold with one Kähler modulus are smooth hypersurfaces in CP4, for instance the

quintic CP4
1,1,1,1,1. In this case, we generically have O(100) complex structure moduli so

the Euler number of our Calabi-Yau 3-fold will be of the order

χ = 2(h1,1 − h2,1) ∼ O(−200) . (4.1)

The analysis of the previous sections led us to expect the leading α′ correction to the

Kähler potential to be ξ̂ = O(10). This needs the dilaton Re(S) = g−1
S to be at weak

coupling:

ξ̂ = − ζ(3)

4
√

2 (2π)3
χ (2 s)3/2 ' 0.5 g

−3/2
S ⇒ gS ' O(0.1) . (4.2)
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Finding meta-stable minima of an effective scalar potential of O(100) complex scalar fields

is in general a challenging and cumbersome task. A further difficulty enters by the fact

that the explicit form of the Kähler potential and the superpotential

K = KK +Kgs +Kc.s., with KK = −2 ln

(
γ(T + T̄ )3/2 +

ξ̂(S, S̄)

2

)
,

Kgs = − ln
(
S + S̄

)
,

Kc.s. = − ln

(
−i
∫
CY3

Ω̄(Ūi) ∧ Ω(Ui)

)
, (4.3)

W = C1(Ui)− C2(Ui) · S +Ae−aT , (4.4)

of the complex structure sector are only known explicitly for some special Calabi-Yau

threefolds [68]. We neglect the dependence of A on the complex structure sector and assume

it to be constant. Note that A always comes together with an exponential term e−aT in

the superpotential and hence also in the scalar potential. Thus, the effect of a non-trivial

dependence of A = A(zi) on the complex structure moduli stabilization will effectively be

suppressed by an overall factor ξ̂/V̂. However, since in general the function A(zi) is not

known, we cannot go beyond this qualitative argument in a model-independent way. This

leaves us with a possible caveat, as a very steep functional dependence of A(zi) might derail

our perturbative treatment of complex structure moduli stabilization in certain examples.

Similar to eq. (3.3), we can split the full scalar potential into four parts

V = V (T ) + V (T,S) + V (S) + V (U) (4.5)

where V (T ) contains the F-terms of T and the −3|W |2 term and V (S) and V (U) are the

F-terms of S and the Ui, respectively and V (T,S) mixes the F-terms of T and S. The first

three terms of (4.5) are given in (3.3) while V (U) is given by

V (U) = eKKUiŪjDUiWDUjW . (4.6)

From our analysis in section 3, we expect a meta-stable minimum of the effective scalar

potential which includes the complex structure moduli to have the following properties: The

complex structure moduli should be stabilized approximately in a supersymmetric mini-

mum like the dilaton since they enter the scalar potential similarly. They are even further

decoupled from the SUSY breaking Kähler modulus since there is no mixing term in the

Kähler potential for the complex structure moduli. We will show in section 4.1 that the

deviation is in general a 1-st order effect and hence the fields are stabilized supersymmet-

rically to 0-th order.

4.1 Deviation of s and ui from the SUSY minimum

In this section, we repeat the analysis of section 3.3 for the additional inclusion of the

complex structure moduli. The 1-st order terms of the scalar potential include terms that

are proportional to either e−at or ξ̂ so we write it as a perturbance δV (1) = V (T ) +V (T,S) of
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the 0-th order scalar potential V (0) = V (S) + V (U). Expanding this to first non-vanishing

order in ~θ = (s, ui) around the supersymmetric minimum ~θ0 = (s0, u0i) gives

V = V (0) +
1

2
(~θ − ~θ0)︸ ︷︷ ︸

δ~θ

V
(0)
~θ0 ~θ0

(~θ − ~θ0) + δV (1) + δV
(1)
~θ0

(~θ − ~θ0) + . . . , (4.7)

where subscript ~θ0 denotes differentiating with respect to ~θ, evaluated at ~θ0. Notice, that

we again only expand around the real parts of the moduli fields since the supersymmetric

minimum for all axionic VEVs equal to zero is an exact minimum of the scalar potential.

Demanding δ~θ to still be a minimum of V we get an expression for δ~θ in terms of 0-th

order terms that is similar to eq. (3.17):

V
δ~θ

= 0 ⇔ δ~θ = −
(
V

(0)
~θ0 ~θ0

)−1
· δV (1)

~θ0
. (4.8)

We will now estimate the correction δ~θ for a general complex structure sector to be

of the order ξ̂/V̂ multiplied with terms depending on Kc.s., W0 and derivatives of these

expressions with respect to s and ui. First, let us note that the matrix V
(0)
~θ0 ~θ0

has to be

positive definite. It is not sufficient to demand the weaker condition of Breitenlohner-

Freedman vacuum stability [69] since we are spontaneously breaking supersymmetry in the

T direction to obtain a de Sitter vacuum. Hence the feature of AdS space that keeps a

tachyon from exponentially rolling down a negative definite V
(0)
~θ0 ~θ0

is absent in our case. To

analyze the scaling of V
(0)
~θ0 ~θ0

with respect to our expansion parameter ξ̂/V̂ only the overall

factor eK is relevant since there is otherwise no t dependence in V (0). Hence

V
(0)
~θ0 ~θ0
∼ V̂−2 . (4.9)

To analyze the scaling of δV
(1)
~θ0

with respect to ξ̂/V̂, we have to build the derivatives of

V (T ) and V (T,S) with respect to s and ui respectively and evaluate at the supersymmetric

minimum. Note that it is not a priori clear that since V (T,S) scales with ξ̂/V̂3 this also

applies to the derivative of VTS with respect to ~θ. For the derivatives of V (T ), we can re-

place the term proportional to e−at by an expression in ξ̂/V̂ using the t minimum condition

eq. (2.18) after differentiation. Furthermore, we use V (T ) ' 0 at the minimum of t, i.e. de

Sitter, and at ' 5/2 to obtain

V (T )
s =

3

16 s2
eKc.s.(3W0 + 2s(W0)s)W0

ξ̂

V̂3
,

V (T )
ui =

3

8 s
eKc.s.(W0)uiW0

ξ̂

V̂3
. (4.10)

To calculate the derivatives of V (T,S), note that V (T,S) in eq. (3.6) can be brought into the

form

V (T,S) = −eKc.s.DSW0

(
(DSW0 s− 3W0) ξ̂

2V̂3
+

2Ae−at

V̂2

)
∼ ξ̂2

V̂4
, (4.11)
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by using the identities for the 0-th order covariant derivative and the superpotential

DSW0 = −C1 + C2s

2 s
,

W0 = C1 − C2s , (4.12)

to replace the parameters C1 and C2 in eq. (3.6). Differentiating with respect to ~θ and

afterwards setting DSW0 = 0 and replacing terms proportional to e−at using eq. (2.18),

only the following term survives:

V
(T,S)
~θ0

=
33

20
eKc.s.W0(DSW0)~θ0

ξ̂

V̂3
. (4.13)

After calculating the derivatives (DSW0)s and (DSW0)ui we finally obtain

δV (1)
s0 =

3W0

80 s2
eKc.s. (37W0 − 12s (W0)s)

ξ̂

V̂3
,

δV (1)
ui0 =

3W0

20 s
eKc.s. (11s (W0)S ui − 3 (W0)ui)

ξ̂

V̂3
. (4.14)

We conclude that δV
(1)
~θ0

scales as a product of W0 and an expression of derivatives of

W0. Both terms scale linearly in the flux quanta of G(3). We also expect V
(0)
~θ0 ~θ0

to scale

quadratically in the flux quanta of G(3), due to differentiating twice with respect to ~θ. So

finally going back to eq. (4.8) we indeed obtain

δ~θi ∼
ξ̂

V̂
(4.15)

to be a 1-st order perturbation of the supersymmetric minimum ~θ0. The scaling of δ~θ

described in eq. (4.15) induces the scaling of the covariant derivatives in ~θ

DiW ' (DiW0)~θ0 · δ
~θ ∼ ξ̂

V̂
for i = s, u1, . . . , uh2,1 , (4.16)

since DiW = 0 at 0-th order and all components of δ~θ scale with ξ̂/V̂. For the Fi terms,

this implies a scaling ∝ ξ̂/V̂2.

Note that our analysis does not take into account a possible dependence of δ~θ on

h2,1. This implies the potential caveat that a perturbative expansion of the shift from

the supersymmetric minimum in ξ̂/V̂ might not be consistent for large h2,1, as we will

now discuss. The parts of the scalar potential V (T ) and V (T,S) depend on U1, . . . , Uh2,1

via the flux superpotential W0. Hence, when we calculate the deviation of the 0-th order

supersymmetric VEV of the dilaton or a complex structure modulus along the lines of

section 3.3 to 1-st order we might expect the deviation to depend on the number of fields

that are supersymmetrically stabilized. In the worst case, one could expect the deviation to

grow with the number of fields included such that the 1-st order deviation would eventually

become of the same order as the 0-th order VEV which would make our perturbative
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expansion valid only up to certain number of fields included. This is what one could

expect naively, since a growing number of fields could ’pull away’ the supersymmetrically

stabilized fields from their VEVs via δV (1) the stronger the more fields are included.

However, we will give here a short argument why we expect no such deleterious depen-

dence of the shifts δ~θ on h2,1 to arise. Upon inspection of eq. 4.8 concerning the ui = ReUi
we see that we can approximate the mass matrix V

(0)
~θ0~θ0

entering there by two extreme cases

within which we will typically find realistic examples.

Consider first the non-generic case, where V
(0)
~θ0~θ0
∼ 〈µ2〉diag(O(1), . . . ,O(1)) is roughly

diagonal, where µ denotes the common mass scale assumed for this non-generic case. Now

we note that δV
(1)
~θ0
∼ |(W0)~θ0 | and from the 3-cycle decomposition of the CY threefold we

have

W0 =
1

2π

∫
CY3

G(3) ∧ Ω ∼
h2,1∑
i=1

(∫
Ai

G(3)

∫
Bi

Ω +

∫
Bi
G(3)

∫
Ai

Ω

)

=
h2,1∑
i=1

(
Ni Πi(Uj) + M i Ui

)
. (4.17)

Here the Πi(Uj) denote the periods of the CY, the complex structure coordinates Poincare

dual to the Ua. At a generic point in the interior of moduli space of a generic CY we

expect the periods, in being the dual complex structures, to have the same sizes as the Ui,

and thus δV
(1)
~θ0
∼ |(W0)~θ0 | will be roughly constant in h2,1. For our first case of a roughly

diagonal mass matrix this implies that the shifts δ~θ are roughly constant in h2,1.

Now consider the 2nd generic case of a non-diagonal mass matrix which we approxi-

mate by V
(0)
~θ0~θ0

∼ 〈µ2〉O(1) ∀i, j = 1 . . . h2,1. In this case, each row on the l.h.s. of eq. (4.18),

which is eq. (4.8) before inversion, contains a sum over all δ~θi with roughly equally sized

coefficients.

V
(0)
~θ0 ~θ0
· δ~θ = −δV (1)

~θ0
(4.18)

Now as V
(0)
~θ0~θ0

has roughly equal sized entries everywhere, eq. (4.18) should have a solution

δ~θ ∼
〈

1

µ2

〉
1

h2,1
(4.19)

for the shifts of the complex structure moduli, where µ denotes the mass scale of the eigen-

values of a mass matrix with roughly equal entries everywhere. As a given tree-level mass

matrix V
(0)
~θ0~θ0

for a given model will in general fall in between these two extreme cases, we

expect no positive power of h2,1 to appear in the shifts δ~θ.

We will supplement this line of thinking by an explicit example based on T 6. This is

presented in section 5, and we will show there that, in fact, the dependence is harmless as

there we will have δs ∼ const., and δ~u ∼ 1/h2,1.

We finally note in passing, that the structure of the complex structure superpotential,

eq. (4.17), and the corresponding Kähler potential eq. (4.3)

Kc.s. = − ln
(
UiΠ̄

i(Uj)−Πi(Uj)Ūi
)

(4.20)

– 28 –



J
H
E
P
0
1
(
2
0
1
2
)
0
2
0

ensure, similarly to the case for S in its potential eq. (3.7), that eK does not contain more

inverse powers of the Ui than the F-terms Ki̄DUiWDUjW . This implies, that there is no

finite potential barrier in finite field space distance in the space of the complex structure

moduli and the dilaton which separates the flux vacuum locus from a possible Minkowski

minimum at large ReUi or ReS. Instead, the scalar potential of the complex structure

moduli and the axio-dilaton grows at large distance without limit. This justifies their

neglect in the treatment of vacuum decay in section 2.8.

4.2 Backreaction on the Kähler modulus

We will now derive an expression for the 1-st order shift in δt of the Kähler modulus due to

2-nd order terms in the scalar potential. δt will then be used to calculate the perturbance

of the mass m2
t ' KT T̄ · V (T )

tt due to these 2-nd order terms.

Splitting eq. (4.5) into 1-st order V (T ) and 2-nd order δV (2) = V (T,S) + V (S) + V (U)

terms we can perform an expansion in δt along the lines of eq. (3.16)–(3.17) in δt and obtain

δt = −(δV (2))t

V
(T )
tt

. (4.21)

The scaling of V (S) and V (U) is (ξ̂/V̂)2 from the |DiW |2 term, times an 1/V̂2 from the

overall factor eK . Evaluating V (T,S) to 2-nd order we can make use of eq. (4.11) in only

keeping terms linear in DSW0. So we get

δV (2) ∼ ξ̂2

V̂4
. (4.22)

which additionally depends quadratically on the flux quanta. Effectively, all t dependence

of δV (2) is captured in an overall factor 1/V̂4 so that differentiating with respect to t will

just give an overall factor ∝ −1/t. The expression for V
(T )
tt was calculated in eq. (3.11).

It scales quadratically in the flux quanta since it is proportional to W 2
0 . Inserting into

eq. (4.21), we obtain

δt

t
=
ξ̂∆

V̂
, (4.23)

where ∆ is a function which is O(1) in the fluxes, whose overall sign and dependence on

h2,1 and hence the smallness of δt/t is in general unknown.

We can expand the perturbed mass m̃2
t

m̃2
t = m2

t + (∂tm
2
t ) δt+

1

2
(∂2
tm

2
t ) δt

2 + . . .

=
5W 2

0

4s V̂2
· ξ̂
V̂
eKc.s.

1− 31

2

ξ̂∆

V̂
+O

(
ξ̂∆

V̂

)2
 . (4.24)

So if ∆ is negative it cannot cause a tachyonic direction in t. However, if ∆ is positive,

only values of ∆ that are smaller than roughly O(10) can be allowed to keep the spectrum

tachyon free. Due to its constant scaling in the fluxes we typically expect ∆ = O(1).
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Let us pause here again to discuss a possible dependence of the expansion on h2,1. Once

it is shown that the dilaton and complex structure moduli are stabilized supersymmetrically

with a 1-st order deviation one expects this to induce a 2-nd order term in the potential.

This is due to the quadratic dependence of V (S) and V (U) on the respective F-terms and the

structure of V (T,S) which is a 1-st order term times FS . Since V (T ) is a 1-st order term we

expect an effective 1-st order correction on the stabilization of t. A correction of the VEV of

t induces a correction in m2
t which could in the worst-case create a tachyonic direction in t.

Similar to the situation discussed above for the deviation of the dilaton and the com-

plex structure moduli from the supersymmetric minimum, there is the danger that the

correction to m2
t will be negative and scale with positive powers of h2,1. Then, a non-

tachyonic t direction would only be possible up to a certain upper bound on h2,1. Note,

that in case the correction to m2
t is positive, a scaling with h2,1 would even increase m2

t

and make this direction more stable in the end.

At this point, we have succeeded now in determining the combined scalar potential of

the volume modulus T ,the dilaton S, and an arbitrary number h2,1 of complex structure

moduli Ui in a fully analytical form to first order in a perturbation expansion around the

supersymmetric locus for the S,Ui. The resulting full minimum is a tunable dS minimum

of the same form and type as found in the previous section for T or T and S, and it is

perturbatively stable under the inclusion of the dynamics of the dilaton S and all Ui (with

certain caveats, as there may be non-generic dependence on h2,1 in the coefficients of the

perturbation expansion).

5 Inclusion of complex structure moduli: concrete toy example

We will now work out the dependence of the 1-st order deviation from the supersymmetric

minimum and the 2-nd order Kähler modulus backreaction on h2,1 for a concrete choice

of the Kähler potential and superpotential for the complex structure sector. Our guiding

example will be the complex structure of a (possible orbifolded) T 6 orientifold compactifi-

cation.

We will show that here the 1-st order shifts from the supersymmetric minimum are

actually either independent of h2,1 or even decrease with negative powers of h2,1 for our

specific choice of Kc.s. and W0. Furthermore, we will show that the backreaction on the

Kähler modulus will not introduce a tachyon. This means that our construction: a Kähler

modulus stabilized by the interplay of the leading α′ correction and non-perturbative ef-

fects together with approximately supersymmetrically flux stabilized dilaton and complex

structure moduli can contain meta-stable de Sitter vacua for an arbitrary large value of

h2,1 in this toy model. We will show this by explicitly calculating the minima of the scalar

potential for the Kähler modulus, the dilaton and h2,1 complex structure moduli.
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Our guidance from the example of T 6 gives us an Ansatz for complex structure sector

Kc.s. = − ln

(
−i
∫
CY3

Ω̄ ∧ Ω

)
= −

h2,1∑
i=1

ln
(
Ui + Ūi

)
, (5.1)

W0 = c1 +

h2,1∑
i=1

d1iUi − (c2 +

h2,1∑
i=1

d2iUi) · S , (5.2)

with the flux constants ci, dij ∈ R. The structure above has been found for the various

orientifolded orbifolds of T 6 discussed in [56]. The toroidal orbifold-orientifold are orb-

ifold limits of non-trivial CY threefolds, yet at the orbifold point they preserve the simple

structure of Kähler potential of the untwisted complex structure moduli inherited from T 6,

which enables us to do explicit calculations. Explicating the arguments of the previous

section on a general CY threefold compactification requires knowledge of the periods of the

threefold, which in general is not available.

5.1 The supersymmetric minimum for the dilaton and the complex structure

moduli

We now want to calculate the position of the supersymmetric VEVs of the dilaton and

complex structure moduli which corresponds to their 0-th order VEV when the Kähler

modulus is included in the stabilization. We have the DiW = Wi +KiW that follow from

eq.s (5.1), (5.2):

DSW = −
c1 +

∑
i d1iUi + (c2 +

∑
i d2iUi) S̄

S + S̄
,

DUiW = −
c1 +

∑
j 6=i d1jUj − d1iŪi + (c2 +

∑
j 6=i d2jUj − d2iŪi)S

Ui + Ūi
. (5.3)

To obtain the supersymmetric minima we need to solve

Re(DSW ) = Re(DUiW ) = 0 , (5.4)

Im(DSW ) = Im(DUiW ) = 0 . (5.5)

We see that due to ci ∈ R setting νi ≡ Im(Ui) and σ ≡ Im(S) to zero will always be a

solution of the eq.s (5.5).

5.1.1 Solving for real parts

We now have to solve the equations

−
c1 +

∑
i d1iui + (c2 +

∑
i d2iui) s

2 s
= 0 ,

−
c1 +

∑
j 6=i d1juj − d1iui − (c2 +

∑
j 6=i d2juj − d2iui) s

2ui
= 0 . (5.6)

In general, an analytic solution of these h2,1 + 1 non-linear equations is difficult to obtain.

However, if we restrict the flux parameters to d1i = d2i ≡ di the h2,1 equations Re(DUiW ) =

0 obtain a symmetric structure in diui. The solution will always respect the condition

d1u1 = d2u2 = · · · = dh2,1uh2,1 ≡ du . (5.7)
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Hence, the h2,1 equations Re(DUiW ) = 0 are all equivalent and effectively only two equa-

tions remain:

−c1 + h2,1 du+ (c2 + h2,1 du) s

2 s
= 0 ,

−c1 + (h2,1 − 2) du− (c2 + (h2,1 − 2) du) s

2ui
= 0 . (5.8)

Now, finding solutions for s and du as functions of c1, c2 and h2,1 reduces to solving a

quadratic equation. The detailed form of these expressions is not instructive for our anal-

ysis. If instead we solve for the flux constants c1 and c2 as a function of s, du and h2,1

c1 = −(h2,1 − 1 + s) du , (5.9)

c2 = −1− s+ h2,1s

s
du , (5.10)

and insert this result into eq. (5.2) we find

W0 = 2 du (1− s) . (5.11)

This now tells us how to explicitly construct supersymmetric minima for the fields s

and ui that fulfill our sufficient condition eq. (2.20) for de Sitter vacua: We choose W0 and

ξ̂ (and hence s) so that eq. (2.20) is fulfilled. Then eq. (5.11) fixes the value of du and

eq.s (5.9) and eq. (5.10) determine c1 and c2. For every complex structure modulus, only

the product diui is fixed and the VEVs of the ui can be chosen by adjusting the parameters

di. Note that for s = 1 the superpotential eq. (5.11) vanishes. We are not interested in

this peculiar VEV of the dilaton since we demand small string coupling, i.e. s ' O(10). So

from now on we will always assume s > 1.

5.1.2 Solving for imaginary parts

We now solve the eq.s (5.5) for a more general choice of νi 6= 0. However, we still restrict

to σ = 0 so the real and imaginary parts of the complex structure moduli fields decouple:

Im(DSW ) = −
∑

i d1iνi + (
∑

i d2iνi) s

2s
= 0 ,

Im(DUiW ) = −
∑

i d1iνi − (
∑

i d2iνi) s

2ui
= 0 . (5.12)

In this case the h2,1 equations Im(DUiW ) = 0 are manifestly the same other than in the case

Re(DUiW ) = 0 where those terms were just highly symmetric. Clearly the two equations

are solved by ∑
i

d1iνi =
∑
i

d2iνi = 0 . (5.13)

These two equations leave h2,1− 2 of the νi undetermined and in the special case d1i = d2i

that was considered in the previous subsection this degeneracy is even increased to h2,1−1.

This corresponds to h2,1− 1 flat axionic directions in the scalar potential so we should ob-

serve exactly this number of massless axions in our following analysis.
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5.2 Approximating the scalar potential V (T, S, Ui) in the large volume limit

In the following, we restrict Kc.s. and W0 to be of the form that we specified in eq. (5.1)

and eq. (5.2). Then, the parts V (T ), V (T,S) and V (S) are obtained from eq. (3.5)–(3.7) by

the replacements

C1 −→ c1 +
∑
i

d1iUi ,

C2 −→ c2 +
∑
i

d2iUi ,

eKK+Kgs −→ eKK+Kgs+Kc.s. . (5.14)

With these replacements calculating V (T ), V (T,S) and V (S) in dependence of the real field

components of T , S and Ui is straightforward. The only complication arises from the fact

that C1 and C2 are complex now in contrast to section 3 where they were assumed to be real.

The Kähler metric of the complex structure sector is diagonal and hence is the inverse

KUiŪj = diag
(
(Ui + Ūi)

2
)
. (5.15)

With DUiW already calculated in eq. (5.3) we can write down the scalar potential for the

complex structure sector:

V (U) =eK
∑
i

c1 +
∑
j 6=i

d1juj − d1iui − (c2 +
∑
j 6=i

d2juj − d2iui) s+ (
∑
j

d2jνj)σ

2

+

∑
j

d1jνj − (
∑
j

d2jνj) s− (c2 +
∑
j 6=i

d2juj − d2iui)σ

2 . (5.16)

5.3 Moduli masses

We now want to find extrema of the scalar potential V and check if the second derivative

Vij is a positive definite matrix. This is the case if all eigenvalues of Vij , i.e. the moduli

masses are positive. We will calculate analytic expressions for the moduli masses, show

that they are always positive for the real parts and never negative for the imaginary parts

(axions) of the moduli fields in this section. Thus we can exclude tachyonic directions in

the scalar potential.

At first, we find that setting all imaginary parts of the moduli to zero

τ = σ = νi = 0 (5.17)

is a solution of

Vτ = Vσ = Vνi = 0 . (5.18)
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This is the same axionic behavior that we found in section 3 for τ and σ. We again find that

the components of Vij that mix real and imaginary components vanish for this solution, i.e.

Vij =



Vtt Vts Vtuj−2 0 0 0

Vst Vss Vsuj−2 0 0 0

Vui−2t Vui−2s Vui−2uj−2 0 0 0

0 0 0 Vττ Vτσ Vτνj−2

0 0 0 Vστ Vσσ Vσνj−2

0 0 0 Vνi−2τ Vνi−2σ Vνi−2νj−2


. (5.19)

In our approximation V̂ � ξ̂, the real components s and ui are stationary points to

0-th order of V (U) + V (S) while t is a stationary point of the first order term V (T ) which

was analyzed in section 2. Solving

Vs = Vui = 0 (5.20)

for s and ui is equivalent to solving eq. (5.4) which we already did in section 5.1.1. We had

found a solution by setting the flux constants d1i = d2i = di so that the minima fulfilled

condition eq. (5.7), i.e. the product diui = du for all ui. We can write the scalar potential

manifestly as a function of diui if we write the exponential of the Kähler potential

eKc.s. =
1∏
i 2ui

=

∏
i di∏

i 2diui
≡ D∏

i 2diui
(5.21)

and all other terms in V already appear manifestly as functions of diui. This simplifies the

evaluation of the (2h2,1 + 4) × (2h2,1 + 4) matrix Vij at the stationary points diui = du.

After building the second derivative of V with respect to at least one diui we have to set

the diui = du. Thus, all entries of Vij will be mostly equal for differentiating with respect

to different ui, up to proportionality to di, dj or didj at the stationary point. The same

story holds for the axions which are set to diνi = 0 after differentiating. For mixed ui and

νi components we get

Vtui = di

(
d2V

dt d(diui)

) ∣∣∣∣
diui=du

≡ diVt du ,

Vsui = diVs du ,

Vτνi = di

(
d2V

dτ d(diνi)

) ∣∣∣∣
diνi=0

≡ diVτ dν ,

Vσνi = diVσ dν . (5.22)

For the pure νi components of Vij we get

Vνiνj = didj

(
d2V

d(diνi) d(djνj)

) ∣∣∣∣
diνi=djνj=0

≡ didjVdν dν (5.23)
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which basically also holds for the pure ui components with the additional subtlety that

the diagonal components i = j differ from the off-diagonals i 6= j which we choose to

parameterize in the following way:

Vuiuj = didj

(
d2V

d(diui) d(djuj)

) ∣∣∣∣
diui=djuj=du

≡

{
d2
i (Vdu du + Ṽdu du) i = j

didjVdu du i 6= j
. (5.24)

The different form of Vνiνj and Vuiuj can be anticipated from eq. (5.16). V (U) is a

function of the form
∑

k gk(
∑

l s
k
l xl) with skl = 1 for the xl representing the axionic fields

νi and with

skl =

{
−1 l = k

1 l 6= k
(5.25)

for the xl representing the ui. The slightly more complicated structure of V (U) with respect

to the ui is the reason for the two different results in eq. (5.24).

Thus, the calculation of Vij effectively reduces to the calculation of two matrices, one

for the real parts and one for the imaginary parts of the moduli fields. The matrix for the

real parts is of the following type:

Vtt Vts d1Vt du . . . dh2,1Vt du

Vst Vss d1Vs du . . . dh2,1Vs du

d1Vt du d1Vs du d2
1(Vdu du + Ṽdu du) . . . d1dh2,1Vdu du

...
...

...
. . .

...

dh2,1Vt du dh2,1Vs du dh2,1d1Vdu du . . . d2
h2,1(Vdu du + Ṽdu du)


. (5.26)

For the imaginary parts, we have the same structure except the Ṽdν dν term equals zero.

We now want to obtain the eigenvalues of these two matrices to 0-th order. All terms

involving a t or τ derivative are proportional to either e−at or ξ̂ and are therefore neglected.

The expressions for the eigenvalues are in general rather cumbersome so we simplify again

by setting di ≡ d for all i. According to section 5.1.1, this corresponds to demanding the

VEVs of the ui to have the same values. The eigenvalues are then given by

m2
1,2 =

1

2

[
Vss + (h2,1Vuu + Ṽuu)±

(
(Vss − (h2,1Vuu + Ṽuu))2 + 4h2,1Vsu

)1/2
]
, (5.27)

m2
i =Ṽuu =

d2(s− 1)2

(2u)h2,1 2s γ2t3
, for i = 3, . . . , h2,1 + 1 . (5.28)

Note, that we consider the masses of the moduli before canonical normalization. However,

the squared masses of the canonically normalized fields will have the same overall sign as

those of the unnormalized fields due to positive definiteness of the Kähler metric KIJ .

It is obvious that the mass m2
i in eq. (5.28) is manifestly positive whereas it is more

difficult to see this analytically for m2
1,2 since it is a rather complicated function of s, u

and h2,1. For m2
1 we find that it is a sum of two positive terms but for m2

2 positivity is not

obvious. However, for typical VEVs s and u we can plot m2
2 as a function of h2,1 and show
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Figure 4. (2u)h
2,1 ·m2

2 as a function of h2,1 for s = 10 and three different VEVs of the complex

structure moduli.

that it is indeed positive, see figure 4. This is of course not a strict argument that m2
1,2 is

never negative. For our analysis though, it is sufficient to show that for every h2,1 we can

choose moduli VEVs which are consistent with our framework, as for instance weak string

coupling, which yield positive m2
1,2.

In the axionic sector we obtain the eigenvalues

m2
1 =Vσσ =

d2u2[h2,1 + 1 + 2(h2,1(h2,1 − 1)− 1)s+ (h2,1(h2,1 − 1)2 + 1)s2]

(2u)h2,1 8s3 γ2t3
, (5.29)

m2
2 =h2,1Vνν =

d2h2,1[h2,1(s− 1)2 + (s+ 1)2]

(2u)h2,1 8s γ2t3
, (5.30)

m2
i =0, for i = 3, . . . , h2,1 + 1 . (5.31)

The axion masses simplify significantly due to Ṽνν = Vσν = 0 at the supersymmetric

minimum. Indeed, we find h2,1 − 1 massless axions as we had anticipated at the end of

section 5.1.2. The positivity of m2
1 and m2

2 is obvious from eq. (5.29) and eq. (5.30).

In [70] it was shown that for every unfixed axionic direction one gets a tachyonic

direction in the real components of the moduli fields if all moduli are stabilized supersym-

metrically. Note that this is not in contradiction with the fact that the masses eq. (5.27) and

eq. (5.28) are positive which we have seen above. The crucial difference to the setting in [70]

is that we are not stabilizing all fields supersymmetrically, i.e. supersymmetry is sponta-

neously broken in the T direction and so the argument of [70] does not apply in our case.
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The presence of massless axions per se does not constitute a serious failure of the

moduli stabilization procedure, since axions couple only derivatively to all other fields at

the perturbative level, and they are expected to receive a potential from non-perturbative

gauge theory effects at some lower scale. A more general choice of fluxes, and/or having

a CY threefold more general than T 6 will in general lift all of these axions, too. However,

a detailed analysis of the stabilization of these complex structure moduli axions is model-

dependent. Sometimes the additional non-perturbative effects which typically give them a

scalar potential may not be sufficiently suppressed in scale. In such a situation the mixing

of the axion masses in the total moduli mass matrix may have to be taken into account to

rule out further potential accidental tachyons, which is again a model-dependent issue.

5.4 Deviation of s and ui from the SUSY minimum

In this section, we apply the analysis of section 4.1 to our explicit T 6-based toy example

for the complex structure sector eq.s (5.1), (5.2). Restricting ourselves again ourselves

again to the case di = d, we expand around the supersymmetric 0-th order minimum
~θ0 = (s0, u0) for s and ui. Then δ~θ is given by eq. (4.8). The matrix V

(0)
~θ0 ~θ0

is written down

in eq. (5.26) if one eliminates the row and column that includes the derivatives with respect

to t. Performing the matrix operations of eq. (4.8) one obtains

δ~θ = (δs, δu, . . . , δu) . (5.32)

With δV
(1)
~θ0

= (δV
(1)
s0 , δV

(1)
u0 , . . . , δV

(1)
u0 ) the components of δ~θ are given by

δs =
h2,1δV

(1)
u0 Vsu − δV (1)

s0 (h2,1Vuu + Ṽuu)

Vss(h2,1Vuu + Ṽuu)− h2,1V 2
su

, (5.33)

δu =
δV

(1)
s0 Vsu − δV (1)

u0 Vss

Vss(h2,1Vuu + Ṽuu)− h2,1V 2
su

, (5.34)

so essentially there is a non-trivial mixing between δV
(1)
s0 and δV

(1)
u0 .

Now we are at the point where we can investigate the h2,1 dependence of δ~θ. Inserting

all necessary second derivatives of V in eq. (5.33) and eq. (5.34) and replacing the constants

c1 and c2 according to the supersymmetric minimum conditions eq. (5.9) and eq. (5.10) we

get

δs

s0
=− 3(s0 − 1)2(47s2

0 − 40s0 + 37)

80(s2
0 + 1)2

· ξ̂
V̂

+O
(

1

h2,1

)
, (5.35)

δu

u0
=− 3(s0 − 1)2(47s2

0 − 40s0 + 37)

80(s2
0 + 1)2

· ξ̂

h2,1V̂
+O

(
1

(h2,1)2

)
. (5.36)

Also terms proportional to e−at have been replaced using eq. (2.18). We see that δs has a

constant asymptotic behavior in h2,1 whereas δu decreases with 1/h2,1. Most importantly,

neither δs nor δu grow with positive powers of h2,1. This is a very crucial point in our anal-

ysis since as mentioned above h2,1 = O(100) often appears in common realistic examples

of the Calabi-Yau space like the quintic.

– 37 –



J
H
E
P
0
1
(
2
0
1
2
)
0
2
0

Of course, the specified Kähler potential and superpotential of eq. (5.1) and eq. (5.2)

strictly speaking only hold for toroidal compact spaces. However, this semi-realistic con-

struction still gives us an example for a possible h2,1 dependence of the deviations from

the supersymmetric minimum.

5.5 Backreaction on the Kähler modulus

We now apply the analysis of section 4.2 to our example eq. (5.1) and eq. (5.2). We cal-

culate δV (2) = V (T,S) + V (S) + V (U) by expanding to first non-vanishing order in s0 + δs

and u0 + δu and replacing c1 and c2 by the supersymmetric minimum condition eq. (5.9)

and eq. (5.10). This yields

V (T,S) ' −33d(2u0)−h
2,1
W0[(s0 − 1)u0 δs+ h2,1s0(s0 + 1) δu]

40s2
0V̂2

· ξ̂
V̂
,

V (S) ' d2(2u0)−h
2,1

[(s0 − 1)u0 δs+ h2,1s0(s0 + 1) δu]2

2s3
0V̂2

,

V (U) ' d2h2,1(2u0)−h
2,1

[(s0 + 1)u0 δs− (h2,1 − 2)(s0 − 1)s0 δu]2

2s3
0V̂2

. (5.37)

Knowing the leading order behavior of δs and δu in h2,1 from eq. (5.35) and eq. (5.36),

we hence expect V (T,S) and V (S) to grow maximally O(1) and V (U) to grow maximally

O(h2,1). The dependence of δs equals the dependence of ∆ on h2,1 since m2
t ∝W 2

0 and W0

is independent of h2,1, see eq. (5.11).

If we insert the values of δs and δu calculated in the previous section, the O(h2,1)

contribution to V (U) cancels to zero. Note, that we cannot directly insert equations (5.35)

and (5.36) but have to take the expressions where e−at is not replaced yet. The replacement

has to be performed after differentiation of δV (2) with respect to t since those two operations

do not commute. Hence, we are left with an O(1) expression for ∆ which interestingly does

not depend on d and u, i.e. ∆ = ∆(s, h2,1). ∆ is a rational function where the numerator

and denominator are both polynomials of degree four in s and degree two in h2,1.

We plot ∆ for typical values of s as a function of h2,1 in figure 5. By taking the limit

s, h2,1 →∞, one can show ∆ < 0.6. Furthermore, for s & 5, ∆ is negative with |∆| < 1.2.

Hence, we conclude that ∆ is always in a region where according to our analysis at the end

of section 4.2, it does not induce a tachyonic direction in t.

We conclude by noting that our exemplary construction eq. (5.1) and eq. (5.2) has

passed both potential caveats: it maintains small first-order shifts of the supersymmetri-

cally stabilized moduli and limits the backreaction on the Kähler modulus VEV.

6 Conclusions

‘Kähler uplifting’ has the benefit of generating meta-stable dS vacua in terms of just back-

ground 3-form fluxes, D7-branes and the leading perturbative O(α′3)-correction, which

data are completely encoded in terms of the underlying F-theory compactification on a

fluxed Calabi-Yau fourfold. In addition, supersymmetry is spontaneously broken (typically
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Figure 5. ∆ for different values of s.

∼MGUT here, which is below the KK scale) by an F-term generated in the volume moduli

sector. No extra anti-branes, D-terms, or F-term generating matter fields are needed or

involved. We emphasize that the perturbative O(α′3)-correction breaks supersymmetry

spontaneously. In a similar fashion as in spontaneously broken gauge theories where the

ground state does not respect the full symmetry but the underlying action is invariant

and thus protected from dangerous corrections by the full gauge symmetry, we expect

the spontaneous breaking of supersymmetry to enhance control over the back-reaction of

the various branes and orientifolds. This is because the underlying action itself still does

respect the full unbroken supersymmetry. Furthermore, the backreaction of the supersym-

metric D7-branes with their gauge groups is fully accounted for in the language of F-theory

describing them as ADE-type singularities of the elliptic fibration of the F-theory 4-fold.

Here, we have developed a method towards a rigorous analytical understanding of

‘Kähler uplifting’ driven by the leading O(α′3) correction to the Kähler potential of the

volume moduli. Our derivation was carried out in the presence of an arbitrary number h2,1

of complex structure moduli. A large value of 3-cycles h2,1 = O(100) is a prerequisite to

use the associated 3-form fluxes for the required fine-tuning of the cosmological constant.

We have given an argument for the existence of meta-stable dS vacua in so-called ‘swiss

cheese’ type Calabi-Yau compactifications of negative Euler characteristic with an arbi-

trary number h1,1 of Kähler moduli. The interplay of perturbative and non-perturbative

effects in generating this dS minimum implies for one-parameter models with h1,1 = 1 that

here a structure of two terms with alternating signs is sufficient to approximate the vol-
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ume modulus scalar potential and its tunable dS vacuum. This contrasts with the ‘3-term

structure’ generically necessary in purely perturbatively stabilized situations [25, 29]. For

h1,1 > 1 a ‘3-term structure’ reappears for the additional h1,1 − 1 blow-up Kähler moduli

of a ‘swiss cheese’ Calabi-Yau.

Exploiting this ‘2-term structure’ (or, alternatively, the ‘3-term structure’ for h1,1 > 1),

we have shown that we can express the existence of the meta-stable dS vacuum for the

volume modulus in terms of a sufficient condition on the microscopic parameters. These

are consisting of the fluxes, the D7-brane configuration, h1,1, and the Euler number of the

Calabi-Yau governing the perturbative O(α′3)-correction, which are all in turn determined

by the underlying F-theory compactification on an elliptically fibred Calabi-Yau fourfold.

Thus, the result amounts to a sufficient condition for the existence of meta-stable dS vacua

in terms of purely F-theory geometric and topological data which can be satisfied for a

sizable subclass of all 4d N = 1 F-theory compactifications, instead of just single ‘lamp

post’ models.

Our sufficient condition survives both explicit inclusion of dilaton stabilization by fluxes

as well as an arbitrary number of complex structure moduli. Supersymmetry breaking hap-

pens predominantly in the volume modulus direction, and explicitly determine the shift of

the dilaton and all complex structure moduli away from their flux-stabilized supersymmet-

ric locus as suppressed by inverse powers of the volume of the Calabi-Yau. We have also

checked the longevity of the metastable vacuum under tunneling.

However, there are still some possible caveats. Possible mixing with KK modes may

not decouple fast enough with increasing volume of the Calabi-Yau in a given example to

avoid further tachyonic directions. The structure of the 1-loop determinants of the con-

densing gauge groups used for volume moduli stabilization is not known in general, and

it may display a dependence on the complex structure moduli which might be sufficiently

strong to possibly derail our perturbative treatment of complex structure stabilization in

some examples.

Finally, we have estimated the backreaction of the shifted dilaton and complex struc-

ture onto the volume modulus. The ensuing shift of the stabilized volume is generically

found to be small and suppressed by inverse powers of the volume.

In conclusion, we have given arguments towards a sufficient condition for the existence

of meta-stable dS vacua in terms of, ultimately, purely F-theory data which can be sat-

isfied for the sizable class of fluxed ‘swiss cheese’ type Calabi-Yau compactifications with

arbitrary h1,1 < h2,1.
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