
J
H
E
P
0
1
(
2
0
1
2
)
0
0
2

Published for SISSA by Springer

Received: October 18, 2011

Accepted: December 12, 2011

Published: January 2, 2012

On Fayet-Iliopoulos terms and de Sitter vacua in

supergravity: some easy pieces

Francesca Catino,a Giovanni Villadorob and Fabio Zwirnera
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1 Introduction and conclusions

After several decades of extensive studies on simple and extended four-dimensional super-

gravities, and on the rôle of these theories as effective low-energy theories of superstring

or M-theory compactifications, the theoretical status of Fayet-Iliopoulos (FI) terms [1] in

supergravity [2–5] and its possible ultraviolet completions is still under discussion (for some

recent literature, see e.g. [6–12]).

Several N = 1 supergravity models with a gauged U(1) R-symmetry, associated with

a constant FI term, have been formulated [13–23], typically leading to Minkowski or de

Sitter (dS) vacua with a massive vector boson associated to the spontaneously broken U(1)

R-symmetry. Quantization of the FI parameter in supergravity was inferred in [24] and

discussed in more detail in [9–12].

In this paper we clarify some pending issues, keeping the formalism at a minimum and

using a number of explicit models for illustration.

In section 2 we first recall some well known facts about FI terms in N = 1 supergravity,

also to introduce our notation. We do not consider the so-called field-dependent FI terms,

which do not involve the gauging of an R-symmetry and are nothing else than U(1) D-terms

for a gauge symmetry that does not act linearly on the fields. We concentrate instead on

constant FI terms, associated with the gauging of an R-symmetry, and explain how we

should distinguish between genuine FI terms and impostors. Whenever there is no point

in field space where the U(1) R-symmetry is restored, the FI term can be shifted by an

arbitrary amount, in particular it can be defined away if present or introduced if absent,
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without changing the physical content of the theory. Such FI terms are thus impostors,

and cannot obey a quantization condition. This point is a direct consequence of the general

structure of supergravity and may be known to some,1 but to the best of our knowledge

an explicit and general supergravity formulation was never given in the literature. We

conclude the section by recalling the anomaly cancellation conditions, which are essential

for quantum consistency.

In section 3 we present two simple examples. First, we display a model with a FI

impostor. We start from the theory of a free massive U(1) vector superfield, with no

FI term, and write down explicitly the analytic chiral superfield redefinition and Kähler

transformation that map the theory into an equivalent one with an impostor FI term.

Second, we present an anomaly-free model with a genuine FI term, a classically stable

dS vacuum and no exact global symmetry. Depending on the choice of the parameters,

the vector field can be either massless or massive on the vacuum. The scalar potential is

positive definite and supersymmetry is always broken, except when the superpotential is

trivial. In that case the vacuum energy vanishes and the FI term induces a supersymmetric

mass for the vector supermultiplet. In the model, all physical masses and energy densities

can be made parametrically small with respect to the Planck scale, even if the FI term is

assumed to be quantized in Planck mass units. Interestingly, the relevant mass scale of the

model saturates the bound from the weak gravity conjecture of ref. [25].

Objects analogous to theN = 1 FI terms do also exist inN = 2 [26] and N = 4 [27–31]

supergravity: they play a crucial rôle in the construction of the only known classically

stable dS vacua in extended supergravity [26, 32, 33], whilst no stable dS vacuum has

been found so far in N > 2 supergravity. In section 4, we discuss two consistent N = 1

truncations of the simplest N = 2 model of [26], which contains three vector multiplets

and no hypermultiplet, and gauges SO(2, 1) × U(1), with the N = 2 FI term associated

with the U(1) factor.2 In one case, the U(1) part of the N = 2 potential is mapped into the

N = 1 F-term potential, whilst the truncation of the SO(2, 1) part of the N = 2 potential

generates a genuine FI-term contribution to the N = 1 potential. In the other case, both

contributions to the N = 2 potential are mapped into N = 1 potentials generated by FI

terms. In both cases, the truncated N = 1 theory is anomalous, but additional charged

chiral multiplets can be added while keeping the same vacuum, in analogy with the twisted-

sector fields of orbifold string constructions. In conclusion, the relation between the N = 2

and the N = 1 FI terms is not one-to-one but depends on the considered truncation. The

general rule, valid also for other examples, is that the FI term of the truncated N = 1

theory is associated, in the N = 2 theory, to the linear combination of the generator of the

compact subgroup of SO(2, 1), if gauged, and the component of the N = 2 FI terms that

survive the truncation, if any. On the other hand, the other components of the N = 2 FI

terms, if present, produce superpotential terms in the truncated theory.

1See, e.g., the example discussed in section 4.5 of [8], which is closely related to the example we will

discuss in section 3.1. We thank K. Dienes and B. Thomas for bringing their example to our attention.
2Complementary considerations on N = 2 FI terms and N = 1 truncations can be found in [34].
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2 Known and less known facts on FI terms in supergravity

2.1 U(1) D terms in N = 1 supergravity

The gauge-invariant two-derivative action for N = 1, D = 4 supergravity with chiral

multiplets Φi ∼ (zi, ψi, F i) and vector multiplets V a ∼ (λa, Aa
µ, D

a) is completely fixed by

three ingredients [35]. The first is the real and gauge-invariant Kähler functionG, which can

be written in terms of a real Kähler potential K and a holomorphic superpotential W as3

G = K + log |W |2 . (2.1)

The second is the holomorphic gauge kinetic function fab, which transforms as a symmetric

product of adjoint representations, plus a possible imaginary shift associated with anomaly

cancellation. Generalized Chern-Simons terms may also be needed [36, 37], but they will

not be relevant here, also because we will mostly focus on the simple case of a single Abelian

gauge group factor. The third are the holomorphic Killing vectors Xa = Xi
a(z)(∂/∂z

i),

which generate the analytic isometries of the Kähler manifold for the scalar fields that are

gauged by the vector fields. In most of what follows it will suffice to think of G, fab and Xa

as functions of the complex scalars zi rather than the superfields Φi (as done, for example,

in appendix G of [35]). However, whenever needed we will turn to superfield notation.

The gauge transformation laws and covariant derivatives for the scalars in the chiral

multiplets read

δzi = Xi
a ǫ

a , Dµz
i = ∂µz

i −Aa
µX

i
a , (2.2)

where ǫa are real parameters. The scalar potential is

V = VF + VD = eG
(

GiGi − 3
)

+
1

2
DaD

a , (2.3)

where Gi = ∂G/∂zi, scalar field indices are raised with the inverse Kähler metric Gik,

gauge indices are raised with [(Ref)−1]ab, and

Da = iGiX
i
a = iKiX

i
a + i

Wi

W
Xi

a . (2.4)

Gauge invariance of G requires that K and W be invariant up to a Kähler

transformation

K ′ = K +H +H , W ′ =W e−H , (2.5)

where H is a holomorphic function, thus it will not be restrictive to assume that K is gauge

invariant. If W is also gauge-invariant, eq. (2.4) reduces to the standard form

Da = iKiX
i
a . (2.6)

For a linearly realized gauge symmetry,

iKiX
i
a = −Ki (Ta)

i
kz

k ,

3Here and in the following, we work in the natural units of supergravity, where the reduced Planck mass

MP = 1/
√
8πGN is set equal to one.
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and we recover the standard expression of [38] for the D-terms. For example, in the case

of canonical Kähler potential, and fields zi with definite charges qi with respect to a single

U(1) gauge factor

K =
∑

i

|zi|2 , Xi = i qi zi , (2.7)

and the D-term (with an implicit lower index) reads

D = −
∑

i

qi |zi|2 . (2.8)

For an axionic realization, Xi
a = i qia, where q

i
a is a real constant, and we obtain what are

often called, with an abuse of language, field-dependent FI terms. A classic example [39],

which often arises in string compactifications, is

K = − log(S + S) , XS = i qS , (2.9)

which leads to

D =
qS

S + S
. (2.10)

If W is not gauge invariant, it must be

i
Wi

W
Xi

a = ξa , (ξa ∈ R) , (2.11)

so that the gauge non-invariance of W can be at most an overall phase with real parameter

ξa, for the Abelian factors U(1)a. The constants ξa correspond to gaugings of R-symmetries,

and give rise to the supergravity expression for the D-terms [2–5, 35]:

Da = iKiX
i
a + ξa . (2.12)

The ξa are then the constant FI terms of supergravity, on which we will focus our attention

from now on. For example, in the linear case of eq. (2.7) and assuming q1 = −ξ, the

superpotential

W =M2 z1 (2.13)

gauges a suitable U(1) R-symmetry, modifying the D-term into

D = ξ −
∑

i

qi |zi|2 . (2.14)

Similarly, in the non-linear case of eq. (2.9) and assuming qS = ξ, the superpotential

W =W0 e
−S , (2.15)

where W0 is a non-vanishing S-independent factor, also gauges a U(1) R-symmetry, and

modifies the D-term into

D = ξ

(

1 +
1

S + S

)

. (2.16)
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To conclude, we recall the generic superfield expression of the N = 1 supergravity

Lagrangian with a gauged U(1) R-symmetry,4 in the compensator formalism (see, e.g. [40]):

L =
[

Φ0Φ0 e
−K/3

]

D
+
([

Φ3
0W

]

F
+ [fWW]F + h.c.

)

. (2.17)

In the above expression: Φ0 is the chiral compensator superfield, transforming as Φ0 →
Φ′
0 = Φ0 exp(ξΛ/3); K = K0 − ξ V , where K0 is a real and gauge-invariant function of

the chiral superfields Φ, of their conjugates Φ and of the real gauge vector superfield V ,

the latter transforming as V → V ′ = V − Λ − Λ; W is now an analytic function of the

chiral superfields Φ, transforming as W → W ′ = W exp(−ξΛ); f is the gauge kinetic

function (with implicit lower indices), analytic in the chiral superfields Φ; W is the chiral

supersymmetric field strength of V . Notice that having a FI term ξ corresponds to giving

charge ξ/3 to the compensator field Φ0 under the gauged U(1) R-symmetry.

2.2 Genuine FI terms and impostors

In this section we show how, in theories where the gauge boson of the U(1) R-symmetry

is massive everywhere in field space, the FI term associated with such vector field is not

well defined and can always be redefined away — a genuine FI term, whose value cannot

be shifted continuously, exists only when the theory allows the gauged U(1) R-symmetry

to be restored at least in one point in field space.

The general argument is quite simple and follows from the supergravity formalism

reviewed above. The supermultiplet of a massive vector contains the degrees of freedom

of a chiral supermultiplet besides those of a massless vector multiplet. In particular, the

superfield of a massive vector Vm can always be decomposed into

Vm = V + S + S , (2.18)

with a massless vector superfield V and a chiral superfield S transforming as

V → V ′ = V − Λ− Λ , S → S′ = S + Λ . (2.19)

The l.h.s. of eq. (2.18) can be thought of as the vector superfield in the unitary gauge

S = 0, while the r.h.s. is the gauge-invariant combination obtained from the unitary gauge

via the Stückelberg trick.

In theories where the vector field is massive everywhere in field space, the field S is

globally defined, since it corresponds to the superfield multiplet of the longitudinal mode.

On the other hand, in theories where the gauge symmetry is restored somewhere in field

space, S is not globally defined. In the points where the vector mass vanishes, the would-be

S field is not dynamical (there is no kinetic term) and corresponds to a pure gauge.

Consider a supergravity model with a non-vanishing FI term ξ, associated to a vector

superfield V gauging an R-symmetry that is broken everywhere in field space. In this case

4We neglect here additional gauge group factors, possible generalized Chern-Simons terms and constant

numerical factors that are not important for the present considerations.

– 5 –



J
H
E
P
0
1
(
2
0
1
2
)
0
0
2

there exists a globally defined chiral superfield S transforming as in eq. (2.19). We can

now perform a Kähler transformation using such field, namely

K ′ = K + α (S + S) , W ′ =We−αS (2.20)

with α an arbitrary real constant.5 In terms of K ′, the formula for the D term (2.12)

now reads

D = iKiX
i + ξ = iK ′

iX
i + α+ ξ ≡ iK ′

iX
i + ξ′ , (2.21)

from where we can see that in the new frame the FI term has been redefined. If we choose

α = −ξ, the FI term can be shifted away — in this theory the FI term is not well defined.

We obtain the same conclusion by looking at the superpotential. Indeed the charge of the

new superpotential W ′ will be shifted into −ξ − α, because of the extra contribution from

the S field. When α = −ξ, W ′ will be invariant, which again corresponds to no FI term.6

Notice that, since this FI term can be shifted by an arbitrary amount, it will not be

subjected to quantization conditions. Since theories of this type are equivalent to one with

a massive vector not associated to the R-symmetry, in this case we are not allowed to speak

of genuine FI terms — such FI terms are impostors.

On the contrary, in theories where there are points in field space where the gauged

R-symmetry is restored, we cannot use the field S to redefine the FI term. Only in this

case a proper FI term can be defined, we call such terms genuine FI terms.

2.3 Anomaly cancellation conditions

For a consistent effective theory, all gauge and gravitational anomalies associated with a

gauged U(1) must vanish: in particular, the cubic (AU(1)3), the gravitational (AU(1)) and

the mixed-gauge anomaly (AU(1)G2) if the full gauge group is U(1)× G.
To fix the notation, we assign the U(1) charges as7

Q[θ] = Q[λa] = Q[ψµ] = −ξ/2 , Q[W ] = −ξ , Q[zi] = qi , Q[ψi] = qi + ξ/2 , (2.22)

where θ is the anticommuting coordinate and ψµ is the gravitino.

In the above conventions, the fermionic contributions to the cubic and gravitational

anomalies are:

TrQ3 = 3 (Q[ψµ])
3 +

∑

a

(Q[λa])3 +
∑

i

(Q[ψi])3 , (2.23)

TrQ = −21 Q[ψµ] +
∑

a

Q[λa] +
∑

i

Q[ψi] , (2.24)

5In general, the Kähler transformation may be anomalous. However, we assume that the vector superfield

V is associated to an anomaly-free U(1) R-symmetry. Such symmetry can be exploited to redefine the fields

and make the full “Kahler transformation + field redefinition” anomaly-free.
6In the compensator formalism of eq. (2.17), the Kähler fransformation (2.20) corresponds to the redef-

inition Φ0 → Φ′

0 = Φ0 e
−αS/3, which shifts the compensator charge by α/3 and the value of the FI term

accordingly.
7The standard R-charge of the literature on global supersymmetry is R = −2Q.
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see [41, 42] for the gravitino contributions. These contributions must either vanish or cancel

possible Green-Schwarz (GS) contributions [43] coming from the variation of Im fab. All the

resulting conditions are model dependent, in particular: all of them depend on the matter

content; the GS contribution to AU(1) depends on higher derivative terms (R2); AU(1)G2

depends also on the details of G and its representations. However, there are in principle

strong combined constraints on the possible matter content and on the U(1) charges.

3 Examples

3.1 A model with a FI impostor

Consider a free massive vector superfield with the usual kinetic F-term and a mass term

appearing in the Kähler potential as

K =
1

2
M2 V 2

m or K =
1

2
(S + S +MV )2 , (3.1)

where the first expression refers to the unitary gauge (a discussion of this model, in global

supersymmetry and in the unitary gauge, can be found in section 4.5 of [8]), whilst the

second uses the Wess-Zumino gauge for V , with the longitudinal components of the massive

vector contained in the chiral superfield S. With respect to eq. (2.18), we have reabsorbed

the factor M in S, to have the latter superfield canonically normalized. For definiteness,

we can take a constant gauge kinetic function f0 = 1/g2 and a constant superpotential W0,

but we are allowed to take the limit W0 → 0 at the end of the calculations. Under gauge

transformations:

V → V − Λ− Λ , S → S +M Λ . (3.2)

The action described above corresponds to a massive Abelian vector superfield, with

no FI term.

We now perform a trivial field redefinition of the chiral superfield S,

S = T − ξ

2M
, (3.3)

where ξ is a real constant and T transforms as S under gauge transformations. The Kähler

potential now reads

K =
1

2
(T + T +MV )2 − ξ

M
(T + T +MV ) +

ξ2

2M2
, (3.4)

and after a Kähler transformation we have

K =
1

2
(T + T +MV )2 − ξV , W =W0 e

ξ2

4M2 e−
ξ
M

T . (3.5)

This is a theory of a massive vector superfield with a FI term, which consistently appears

both as a linear term in V in the Kähler potential and as a gauge non-invariance of the

– 7 –
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superpotential [see eq. (2.11)]. As a check of the equivalence of the two theories, we can

look at the expressions of the D terms in the two frames, according to eq. (2.4):

(i) D = iKS X
S = −M (S + S) , (3.6)

(ii) D = iKT X
T + i

WT

W
XT = ξ −M (T + T ) , (3.7)

which coincide after using eq. (3.3).

Of course the presence of other interactions and charged fields does not affect the proof.

The argument above can be run backwards, to show that the FI term can be reabsorbed via

a field redefinition and a Kähler transformation. Notice that the FI term generates from the

mass term (1/2)M2V 2
m in the Kähler potential. Equivalently, a FI term can be reabsorbed

by a field redefinition and a Kähler transformation only when such term is present.

3.2 An anomaly-free model with genuine FI term

We formulate now an explicit model that provides an existence proof of theories with

the following properties: (i) presence of a genuine FI term; (ii) cancellation of all gauge

anomalies; (iii) existence of a locally stable vacuum with all scalar field stabilized at tree

level; (iv) absence of exact global symmetries; (v) all physical masses and energy densities

parametrically small with respect to the Planck scale, even when the FI term is assumed to

be quantized in Planck mass units. The chosen example has also the following features: the

vacuum has positive energy; the gauged U(1) R-symmetry can be chosen to be either broken

or unbroken on the vacuum; there exists a limit where also supersymmetry is recovered on

the vacuum.

The model contains one vector supermultiplet, associated with the U(1) R-symmetry

that generates the constant FI term ξ, and 24 chiral supermultiplets, transforming linearly

under the gauged U(1): one (Φ+) with charge q+ = +ξ and 23 (Φi=1...23
− ) of charge q− = −ξ.

The corresponding fermions have then charges Q[ψ+] = 3 ξ/2 and Q[ψi
−] = −ξ/2. It is

immediate to check that the anomaly cancellation conditions of eqs. (2.23) and (2.24) are

identically satisfied.

We discuss first the model with canonical Kähler potential,

K0 = |z+|2 +
23
∑

i=1

∣

∣zi−
∣

∣

2
, (3.8)

‘minimal’ superpotential with the appropriate charge,8

W0 =M2 z1− , (3.9)

where M is a real mass parameter, and constant gauge kinetic function,

f0 =
1

g2
. (3.10)

8In the case of a general linear superpotential, W0 =
∑

23

i M2

i zi−, we can always move to the form of W0

given in eq. (3.9) by a suitable rotation in the space of the zi− fields, which leaves K0 and f0 invariant.

– 8 –
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In such a case, the D-term of eq. (2.12) reads

D = ξ

(

1 +
23
∑

i=1

∣

∣zi−
∣

∣

2 − |z+|2
)

. (3.11)

The scalar potential of eq. (2.3) has

VF = eK0 M4

[

1 +
∣

∣z1−
∣

∣

2

(

23
∑

i=1

∣

∣zi−
∣

∣

2
+ |z+|2 − 1

)]

, (3.12)

and

VD =
g2 ξ2

2

(

1 +
23
∑

i=1

∣

∣zi−
∣

∣

2 − |z+|2
)2

. (3.13)

Notice that VF ≥M4 and D ≥ 0. For M = 0, VF is identically vanishing and VD can relax

to a supersymmetric Minkowski vacuum with unbroken supersymmetry and spontaneously

broken U(1) gauge symmetry. For M 6= 0, the full potential V is strictly positive definite

and always admits classically stable dS vacua.

For g ξ < M2, the U(1) gauge symmetry is unbroken, 〈W0〉 = 〈z+〉 = 〈zi−〉 = 0, the

vacuum energy density is 〈V 〉 =M4 + g2 ξ2/2 and the squared masses for the scalar fields

(z1−, z
2...23
− , z+) are (g2ξ2, M4 + g2ξ2, M4 − g2ξ2), respectively. They are all positive and

of the order of the Hubble scale.

For g ξ > M2, the U(1) gauge symmetry is spontaneously broken, the field z+ develops

a VEV v satisfying the equation M4 ev
2

= g2 ξ2 (1− v2). In this case the vacuum energy is

〈V 〉 = 1
2g

2ξ2(1− v2)(3− v2), which is always positive except for M = 0 where it vanishes.

The squared masses for the scalar fields (z1−, z
2...23
− ,Re z+) are all positive and given by

(g2ξ2(1 − v2), 2g2ξ2(1 − v2), 2g2ξ2v2(2 − v2)), respectively, while Im z+ is eaten by the

vector boson, which has a mass
√
2gξv. The masses are again of the order of the Hubble

scale, except in the supersymmetric limit (M → 0 and v → 1), where the de Sitter curvature

goes to zero while the vector superfield remains massive, eating the chiral superfield Φ+ in

a supersymmetric way.

The simple model described above has a large amount of global symmetries, since the

canonical Kähler potential K0 is invariant under U(24)×U(1)R, gauge interactions break

U(24) to U(23)×U(1)×U(1)R, superpotential interactions inW0 break U(23)×U(1)×U(1)R
into U(22) × U(1) × U(1)′R. However, it is relatively simple to break all the residual

global symmetries by introducing higher-dimensional operators into the Kahler potential

(K = K0 + ∆K) and the superpotential (W = W0 + ∆W ), with modifications such as

∆K = aī z
i
− z

̄
− |z+|2 and ∆W = bij z

i
− z

j
−z+. Since all the scalar fields have positive

squared masses at tree level, the presence of the higher-dimensional operators does not

destabilize the vacuum if their coefficients are small enough, aī, bij ≪ 1.

All the physical masses and energy densities are controlled by the two parameters M2

and gξ. Even if we assume that the FI term ξ is quantized in units of the Planck mass,

by choosing small values for M and g the spectrum of the theory is parametrically below

the Planck scale. Interestingly for ξ ∼ O(1) in Planck units the relevant mass scale gξ

– 9 –
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matches the cut-off scale expected from the weak gravity conjecture (WGC) of [25]. The

model above avoids violating the sharp bound from the WGC since it always contains at

least one charged particle with mass m . gMP l. However the absence of an hierarchy

between the relevant mass scale of the model and the expected cut-off may signal some

deep inconsistency at the quantum gravity level and explain the absence of explicit string

theory constructions with genuine FI terms. Alternatively, new physics at the scale gξ may

act as an innocuous spectator, leaving the supergravity Lagrangian with the FI term as a

consistent truncation of the whole theory. We are not aware of sharp arguments against

any of the two possibilities.

Notice finally that our model is not in conflict9 with the results of ref. [7], since in the

rigid limit none of the matter fields is charged under the gauged U(1): the interactions

of the gauged U(1) are a supergravity phenomenon, as in many other examples of gauged

supergravity theories.

4 N = 1 truncations of N = 2 models with classically stable dS vacua

The only known models with extended supersymmetry and classically stable dS vacua are

the N = 2 models constructed by Fré, Trigiante and Van Proeyen (FTVP) in [26] and

some simple N = 2 extensions based on the same ingredients [32, 33]. One of their crucial

ingredients is the presence of a N = 2 FI term, corresponding to an arbitrary constant in

the moment map. It is interesting to study the features of the N = 1 models obtained from

the FTVP models by consistent truncations, to understand the relation between FI terms

in N = 2 and N = 1 supergravity. We will focus on the first and simplest of the three

FTVP examples, with three vector multiplets, a U(1) FI term and no hypermultiplets. The

other two examples do not add qualitatively important ingredients to the truncated N = 1

theories and will not be discussed here: the interested reader will find more details in [44].

Following [26], we considerN = 2 gauged supergravity with three vector multiplets and

no hypermultiplets. The three complex scalar fields in the vector multiplets parameterize

the special Kähler manifold

SU(1, 1)

U(1)
× SO(2, 2)

SO(2)× SO(2)
. (4.1)

For a suitable choice of field coordinates (S, y0, y1), the Kähler potential reads

K = − log(S + S)− log

(

Y

2

)

, Y = 1− 2(|y0|2 + |y1|2) +
∣

∣y20 + y21
∣

∣

2
. (4.2)

The gauge group is G = SO(2, 1) × U(1). We denote by e0 the coupling constant of the

non-compact non-Abelian factor SO(2, 1), and by e1 the parameter controlling the N = 2

FI term of the compact U(1) factor: it will not be restrictive to take both of them positive.

9We thank Z. Komargodski for discussions on this point.
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Denoting with Aa
µ the four vector bosons [a = 1, 2, 3 for SO(2, 1), a = 4 for U(1)], the

components of the four Killing vectors along the three complex scalar fields are:

XS
1 =XS

2 =XS
3 =XS

4 =0 , (4.3)

Xy0
1 = − i

2
e0 (1+y

2
0−y21) , Xy0

2 =
1

2
e0 (1−y20+y21) , Xy0

3 = i e0 y0 , Xy0
4 = 0 , (4.4)

Xy1
1 = −i e0 y0 y1 , Xy1

2 = −e0 y0 y1 , Xy1
3 = i e0 y1 , Xy1

4 = 0 . (4.5)

In N = 2 supergravity, the object that plays the rôle of FI term is the triholomorphic

momentum map Px
a (x = 1, 2, 3), which is constant in the absence of hypermultiplets.

In this model, it is zero for a = 1, 2, 3 directions, while Px
4 is a constant tri-vector with

modulus e1.

In the absence of hypermultiplets, the scalar potential can be written as the sum V =

V1+V3, where V1 and V3 are related with the square of the supersymmetry transformation

of the gauginos and of the gravitinos, respectively. Explicitly, the two contributions to the

scalar potential read:

V1 =
e20

2ReS

P+
2 (y)

P−
2 (y)

, V3 =
e21

2ReS
| cos θ + i S sin θ|2 , (4.6)

where

P−
2 (y) = Y , P+

2 (y) = 1− 2|y0|2 + 2|y1|2 +
∣

∣y20 + y21
∣

∣

2
, (4.7)

and the angle θ is a constant free parameter that describes the magnetic rotation of one

gauge group factor with respect to the other. In the following, it will not be restrictive to

assume 0 < θ < π/2. The potential is minimized for

〈S〉 = e0
e1

1

sin θ
+ i cot θ , 〈y0〉 undetermined , 〈y1〉 = 0 , (4.8)

and the vacuum energy density is independent of 〈y0〉 and given by

V0 ≡ 〈V〉 = e0 e1 sin θ = e21 sin2 θ 〈ReS〉 > 0 . (4.9)

On the vacuum, two of the four vector fields, associated with the two non-compact gener-

ators of SO(2, 1), become massive, absorbing two Goldstone degrees of freedom from the

scalar field y0, and the other two vectors remain massless.

The spectrum is most easily computed around the vacuum with 〈y0〉 = 0. In such a

case, the massive vectors are precisely (A1
µ, A

2
µ), with mass m2

V = V0/4, whilst the massless

vectors are (A3
µ, A

4
µ). The two physical complex scalars S and y1 have masses m2

S = 2V0
and m2

1 = V0, and we are in the presence of a classically stable dS vacuum, with completely

broken N = 2 supersymmetry and vanishing Lagrangian mass terms for the gravitinos.

The rules for consistently truncating gauged N = 2 supergravities to N = 1 can

be found in [45, 46]. We must set to zero one of the two supersymmetry transformation

parameters, and project out from the N = 2 gravitational multiplet one of the two gravitini

and the graviphoton, to obtain the N = 1 gravitational multiplet. Each of the three vector

multiplets of N = 2 contains one vector boson, two spin-1/2 fermions and one complex
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scalar, and can be truncated to either a N = 1 chiral multiplet or to a N = 1 vector

multiplet. Starting from three vector multiplets inN = 2, and applying the rules of [45, 46],

we find that there are two different consistent truncations to N = 1: the first with nV = 1

vector multiplets and nC = 2 chiral multiplets; the second with nV = 2 vector multiplets

and nC = 1 chiral multiplets. Truncations with nV = 0, nC = 3 and nV = 3, nC = 0

are inconsistent, because the massive vector bosons (including the graviphoton) associated

with the two non-compact generators of SO(2, 1) must be always truncated away, and their

Goldstone degrees of freedom are contained in the complex scalar y0. We now discuss

the two consistent truncations in turn: because of the spontaneously broken non-compact

gauge invariance, it will not be restrictive to concentrate for simplicity on the vacuum with

〈y0〉 = 0. We will see that the FI term of the truncated N = 1 theory is associated, in

the N = 2 theory, to the linear combination of the generator of the compact subgroup of

SO(2, 1), if gauged, and the component of the N = 2 FI terms that survive the truncation,

if any. On the other hand, the other components of the N = 2 FI terms, if present, produce

superpotential terms in the truncated theory.

4.1 Truncation with nV = 1 and nC = 2

The first possibility for a consistentN = 1 truncation preserves oneN = 1 vector multiplet,

containing the vector A3
µ associated with the compact SO(2) ∼ U(1) generator inside

SO(2, 1), and two N = 1 chiral multiplets, containing the scalar fields S and y1. The

Kähler potential is obviously the one of eq. (4.2) evaluated for y0 = 0. The N = 1 gauge

kinetic function is f = S, as can be read directly from the N = 2 theory. For consistency,

the scalar potential of the N = 1 theory must also coincide with the scalar potential of

eqs. (4.6) and (4.7), evaluated for y0 = 0. An interesting feature of the truncated N = 1

theory is how such a potential is generated as the sum of an F-term contribution and a

D-term contribution,

V = VF + VD , VF = V3 , VD = V1|y0=0 , (4.10)

generated by the superpotential (defined as usual up to an irrelevant constant phase factor)

W = i e1 y1 (cos θ + i S sin θ) . (4.11)

It is curious that the N = 2 FI term associated with the U(1) factor of the N = 2

gauge group and with the constant e1 is mapped into the N = 1 F-term potential, whilst

the N = 2 potential term associated with the non-compact SO(2, 1) factor and with the

non-Abelian gauge coupling constant e0 generates a N = 1 FI term ξ = −e0 in the

auxiliary field:

D3 = iKy1 X
y1
3 + i

Wy1

W
Xy1

3 = −e0
1 + |y1|2
1− |y1|2

. (4.12)

As expected, the N = 2 vacuum and (truncated) spectrum are reproduced also in the

standard N = 1 formalism: supersymmetry is broken on a dS background but the U(1)

gauge boson has vanishing mass.
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4.2 Truncation with nV = 2 and nC = 1

The second and last possibility for a consistent N = 1 truncation preserves two N = 1

vector multiplets, containing A3
µ and A4

µ, and only one N = 1 chiral multiplet, the one

containing S. This time the N = 1 Kähler potential is just K = − log (S + S), and the

N = 1 superpotential vanishes, W = 0. Instead, the gauge kinetic function, which again

can be read directly from the N = 2 theory, takes the non-trivial form:

fab =





S 0

0
S

cos θ (cos θ + i S sin θ)



 , (a = 3, 4) . (4.13)

Again, the scalar potential of the N = 1 theory must coincide with the scalar potential of

eqs. (4.6) and (4.7), evaluated for y0 = 0 and y1 = 0. This time, the N = 1 potential is

generated entirely as a D-term contribution:

V = VD = V3 + V1|y0=0 =
1

2ReS

(

e20 + e21 |cos θ + i S sin θ|2
)

, (4.14)

thanks to a N = 1 FI term associated with each of the two U(1) factors:

D3 = −e0 , D4 = −e1 . (4.15)

In other words, both the N = 2 FI term, associated with U(1) and the constant e1, and the

other N = 2 potential term, associated with the non-compact SO(2, 1) and the constant e0,

generate constant N = 1 FI terms, ξ3 = −e0 and ξ4 = −e1. As required by the consistency

of the truncation, the N = 2 vacuum and (truncated) spectrum are reproduced also in the

standard N = 1 formalism, in particular supersymmetry is broken on a dS background but

the two U(1) gauge bosons have vanishing masses.

4.3 Anomalies in the truncated theory

While the original N = 2 theory does not contain chiral fermions, thus all anomaly-

cancellation conditions are automatically satisfied, truncating it to N = 1 may give rise to

an anomalous fermion spectrum. Indeed, we can easily check that this is the case for both

truncations considered in the previous subsections.

In the first case, we have a single U(1) and two chiral multiplets (S, y1) with charges

qS = 0 and qy1 = e0, thus Q[ψS ] = −e0/2, Q[ψ1] = e0/2 and

TrQ3 =
1

2
e30 6= 0 , T r Q = −10 e0 6= 0 . (4.16)

In the second case, the only chiral multiplet S is neutral under both U(1) factors, thus the

anomalies are the same for both and are again proportional to those in eq. (4.16).

Inspired by orbifold string constructions, where potential anomalies of the truncated

theories are cancelled by twisted sectors localized at the orbifold fixed points, we may think

of supplementing the field content of the truncated theories by additional charged multi-

plets, to achieve anomaly cancellation while keeping the same vacuum. A simple addition

that recovers anomaly freedom while keeping the same vacuum consists of n2 = 5 chiral

multiplets Φi
2 of charge qi2 = 0 and n3 = 125 chiral multiplets Φi

3 of charge qi3 = (3/5) e0.
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