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Abstract: In this paper, the issues of the quark mass hierarchies and the Cabbibo

Kobayashi Maskawa mixing are analyzed in a class of intersecting D-brane configurations

with Standard Model gauge symmetry. The relevant mass matrices are constructed taking

into account the constraints imposed by extra abelian symmetries and anomaly cancela-

tion conditions. Possible mass generating mechanisms including perturbative as well as

non-perturbative effects are discussed and specific patterns of mass textures are found

characterized by the hierarchies of the scales where the various sources contribute. It is

argued that the Cholesky decomposition of the mass matrices is the most appropriate way

to determine the properties of these fermion mass patterns, while the associated triangu-

lar mass matrix form provides a unified description of all phenomenologically equivalent

symmetric and non-symmetric mass matrices. An elegant analytic formula is derived for

the Cholesky triangular form of the mass matrices where the entries are given as simple

functions of the mass eigenstates and the diagonalizing transformation entries. Finally,

motivated by the possibility of vanishing zero Yukawa mass entries in several D-brane

and F-theory constructions due to the geometry of the internal space, we analyze in de-

tail all possible texture-zeroes mass matrices within the proposed new context. These new

texture-zeroes are compared to those existing in the literature while D-brane inspired cases

are worked out in detail.
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1 On the fermion mass problem

One of the most fascinating challenges in gauge theories of fundamental interactions today,

is the implementation of a natural mechanism providing a satisfactory explanation of the

observed hierarchical fermion mass spectrum and quark mixing. Concentrating on the

hadronic sector in particular, we know today experimentally with remarkable accuracy the

quark masses and the Cabbibo Kobayashi Maskawa (CKM) mixing which arises because the

Yukawa matrices are not diagonal in flavor space. This mixing determines the strengths of

the transitions between the various quark flavors explaining the observations related to the

– 1 –



J
H
E
P
0
1
(
2
0
1
0
)
0
1
6

CP-violation in the neutral Kaon system and other interesting processes involving quark

flavor physics.1

Since the birth of modern gauge theories and the establishment of the Standard Model,

the problem of mass hierarchy and flavor mixing have been tackled in many ways. Among

the various attempts, abelian and several discrete symmetries [2–9] were often “mobilized”

to discriminate fermion families, supplying thus the theory with more or less realistic

textures which reproduce the observed fermion mass spectrum.

It was subsequently shown that such U(1) family symmetries arise naturally in the

context of string models.2 As a result, a generic characteristic of these constructions is

that at the tree-level superpotential only one fermion generation (usually the third) of

Yukawa couplings is allowed. The remaining two fermion families obtain their masses from

higher order non-renormalizable (NR) terms when the various singlet or any other Higgs

fields appearing in the string spectrum obtain vacuum expectation values (vevs), breaking

thus the surplus U(1) symmetries and filling in the tree-level zeroes of the mass matrices

with subleading mass terms. As the latter are mainly correlated to the lighter generations

a consistent quark mass hierarchy arises in a natural way.

Searching for simplicity and maximal predictability on the fermion mass problem, a

purely phenomenological approach restricted to symmetric matrices only, revealed that

admissible fermion mass textures can be classified to five texture-zero mass matrices which

contain all relevant information and reproduce the low energy measurements [15]. All these

textures exhibit a hierarchical structure in the sense that the magnitudes of the non-zero

entries coupled to heavier generations are bigger than those coupled to the lighter ones.

D-brane models however have paved the way for new interesting possibilities. Re-

cently, a closer look at the phenomenological properties of the predicted superpotential

terms has revealed that completely novel structures of non-symmetric mass matrices may

appear [16–22].

In a wide class of these constructions this mainly happens because of constraints orig-

inating not only from U(1) symmetries, but also from restrictions imposed by tadpole and

other anomaly cancelation conditions. For example, in D-brane models built in the context

of the Standard Model symmetry, quark and lepton fields should be distributed between

equal numbers of N and N̄ representations. If we confine ourselves to cases of D-brane con-

figurations with the minimal SM spectrum, we find that the constraints are automatically

satisfied for the SU(3) color group, however, the implementation for the case of the SU(2)

doublets imposes additional restrictions on the Yukawa sector. These restrictions lead to

rather peculiar mass matrix structures where the magnitudes of the non-zero entries do

not follow a hierarchical pattern in the sense that was described above.

Some of these models may prove to be ephemeral, but, they undoubtedly indicate that

there are lots of surprises on the way, thus a detailed analysis towards a complete classifi-

cation of mass matrix textures consistent with the fermion masses and mixing is needed.

In the present paper, motivated by recent activity on D-brane phenomenological ex-

1For a recent review see [1].
2See for example, heterotic and in particular 4d-fermionic constructions [10]–[14].
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plorations related to the origin of fermion masses and their hierarchies, we elaborate on the

issue of fermion mass spectrum in SM D-brane variants and develop a method to construct

new viable mass textures, concentrating mainly on the quark sector. Our results, are more

general and can be applied to the charged lepton and the neutrino sector as well. We

treat symmetric and non-symmetric mass matrices on an equal footing, by working out the

triangular (Cholesky) form of the admissible mass matrices which encodes all the physi-

cal properties in a unique way. It is shown that all matrix elements can be analytically

expressed in terms of simple unique functions of the quark masses and the correspond-

ing elements of diagonalizing matrix. This latter (Cholesky) form of the 3 × 3 fermion

mass textures can be considered to act as a progenitor of equivalent classes of admissible

symmetric and non-symmetric matrices connected by orthogonal matrices acting on it.

We further pursue our approach by using the Cayley-Hamilton theorem to develop

a new more compact formalism for the orthogonal transformations that facilitates the

analysis of the diagonalizing matrices and reveals the geometrical nature of the multi-

plication properties on computations regarding the Cabbibo-Kobayashi-Maskawa mixing

and the quark mass spectrum. Thus geometrical treatment provides also the tools to

investigate cases where up and down quark matrices are misaligned and considerable ad-

justments are necessary to obtain the CKM mixing. This happens for example in F-theory

constructions [23, 24], when matter curves for up and down quarks intersect at different

points [25]–[27].

In the present analysis we will not deal with corrections attributed to renormalization

group evolution. Thus, for demonstration purposes, experimentally measured quantities

(like masses and mixing) at the electroweak scale will be used as if the mass matrices

were obtained at low energy scales. This is very reasonable for D-brane models with low

unification scale, however, more precise quantitative estimates for high unification scale

scenarios can be easily obtained by taking into account the radiative corrections which can

be easily parametrized in terms of one parameter only [15].

The present paper is organized as follows: In section 2 we derive the Yukawa super-

potential in the context of a Standard Model variant emerging from a simple D-brane

configuration and construct the quark mass matrices with the aforementioned character-

istics. A short exploration of the magnitude of the Yukawa terms with respect to their

particular origin is carried out and a new vector-like parametrization of the matrices is

proposed which facilitates the subsequent analysis. A characteristic case of the derived

quark mass textures is worked out is detail and the compatibility of the findings with the

low experimental energy data are discussed. In section 3 we introduce the Cholesky form of

the mass matrices and explore the mathematical properties which will enable us to classify

the admissible quark mass textures. We show how the triangular (Cholesky) form of a mass

matrix acts as a ‘progenitor’ of an equivalent class of symmetric and non-symmetric mass

matrices with the same ‘physical’ properties, i.e., the same eigenmasses and mixing. Then,

in section 4 we introduce a new parametrization of the orthogonal transformations and

use the analysis of the previous section to express analytically the entries of the triangular

matrix as functions of the mass eigenstates and the diagonalizing matrix elements. An

investigation on simplified phenomenologically viable texture-zero forms of the triangular
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matrix is made in section 5. A separate discussion is also devoted on comparison issues of

the present approach and the symmetric texture-zeroes in the existing literature. The con-

ditions on the parameter space in a class of texture-zeroes matrices to obtain consistency of

the D-brane inspired matrices and examples are worked out in detail in section 6. In section

7 we present our conclusions while in section 8 we include further details of our calculations.

2 Quark mass textures in a class of intersecting D-brane models

In order to demonstrate the existence of the novel class of mass matrices in this section

we proceed with the analysis of the Yukawa sector of one particular example based on the

simplest and most economical D-brane configuration which can incorporate the Standard

Model (SM) gauge symmetry. We should point out however, that the peculiar textures

derived here are by no means a narrow characteristic of this chosen model. Delving into

the variety of the D-brane SM constructions, one can find that this specific mass pattern

appears in a wide class of intersecting D-brane SM models [16, 17], in Gepner construc-

tions [18, 21] as well as in certain GUTs [20].

In all those D-brane analogues of the old successful gauge models, additional restric-

tions are imposed on the matter representations due to the tadpole and anomaly cancelation

conditions. More precisely, for any U(Nj) factor of the gauge symmetry GS =
∏

j U(Nj),

implied by a D-brane configuration, tadpole cancelation conditions demand equal number

of Nj and N̄j representations.

In the case of D-brane successors of the Standard Model gauge symmetry3 with minimal

quark and charged lepton sector, as far as the U(3) representations are concerned, this

requirement is automatically satisfied. Furthermore, in order to implement this condition

for the U(2) gauge factor, one has to discriminate between SU(2) doublet and anti-doublet

fields and ensure that equal numbers are predicted for both in the massless spectrum. As a

consequence, at least in the simplest and more appealing cases with the minimal spectrum,

not all quark doublet fields arise from the same intersection, and therefore matter fields

belonging to different generations definitely carry unrelated U(1) quantum numbers.

In this context, simple hierarchical symmetric textures which were usually discussed in

the literature are far from being realistic and one has to confront the mass texture problem

in a more general context. In this section we demonstrate this fact by giving one such

simple example implying representative quark mass textures of these constructions.

We assume a D-brane configuration [17] with three stacks (call them a, b, c) which

generate the U(3),U(2),U(1), gauge symmetries respectively (the relevant D-brane config-

uration is depicted in figure 1). These are sufficient to incorporate the Standard Model

gauge symmetry together with its minimal fermion and Higgs spectrum which is shown in

table 1. This consists of the three SM fermion generations, enlarged by the corresponding

right handed neutrinos and one pair of Higgs doublets. It can be checked that anomaly

cancelation conditions are also satisfied. Let Q′
p = (3, 2), p = 1, 2 and Q = (3, 2̄) the three

quark doublets and uc
j, d

c
j , j = 1, 2, 3 the right-handed partners. The tree-level quark and

3Examples of D-brane SM analogues with the required restrictions can be found in [28–30].
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Figure 1. A depiction of the U(3) × U(2) × U(1) D-brane configuration with strings representing

the SM states. For the sake of simplicity, a, b, c denote U(3), U(2) and U(1) branes respectively. In

this figure D-branes are not distinguished from their corresponding mirrors. Thus, the blue string

representing the quark doublet Q′ is stretched between the D6a and the mirror D6b∗ . Similarly,

one endpoint of the “dc-string” is attached on the mirror D6c∗ .

Inters. SU(3) × SU(2) Qa Qb Qc Y

ab 1 × Q (3, 2̄) 1 −1 0 1
6

ab∗ 2 × Q′ (3, 2) 1 1 0 1
6

ac 3 × uc (3̄, 1) −1 0 1 −2
3

ac∗ 3 × dc (3̄, 1) −1 0 −1 1
3

bc 3 × L (1, 2̄) 0 −1 1 −1
2

cc∗ 3 × ec (1, 1) 0 0 −2 1

bb∗ 3 × νc (1, 1) 0 −2 0 0

bc∗
1 × Hd(1, 2)

1 × Hu(1, 2̄)

0

0

1

−1

1

−1

−1
2
1
2

Table 1. The quantum numbers of the SM fermions in the U(3)×U(2)×U(1) brane configuration.

The last column is the Hypercharge Y = 1

6
Qa − 1

2
Qc while three previous ones refer to the U(1)

charges with respect to the a, b, c brane-stacks.

lepton Yukawa couplings of this construction are

W ⊃ λu
pj Q′

p uc
j Hu + (λd

j Q dc
j + λl

ij Li e
c
j)Hd (2.1)

In the first term, the indices i, j run over all three fermion generations, while p takes only

two values, not yet assigned to particular fermion generations. Thus, only two quark-

doublet flavors contribute through tree-level perturbative Yukawa couplings to the up-

quark mass matrix. The reason is that the additional U(1)a charges carried by the various

representations do not allow for a coupling involving the representation Q(3, 2̄). For the

same reason tree-level mass terms for the two quark doublets do not appear in the down

quark mass matrix, since the down right-handed quarks couple only to the remaining quark
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doublet. As can be inferred, there is a complementary texture zero structure of the up and

down quark mass matrices at the perturbative level, in the sense that the zero entries of

the first are non-zero in the second and vice versa. Of course this structure could not be

acceptable since it would definitely lead to a zero mass for one up and two down quarks,

thus additional contributions should be expected from other sources like those discussed

above. Thus, the zero entries are expected to be filled in by elements generated by some

other mechanism. The main sources are 1) an additional Higgs doublet pair, 2) NR-terms

obtained when singlet Higgs fields are introduced in the spectrum or 3) when stringy

instanton effects are taken into account.

If any of the above mechanisms is implemented, the following Yukawa terms could be

included to the superpotential

W ′ = λ′u
j Q uc

j H ′
u + λ′d

pj Q′
p dc

j H ′
d + · · · (2.2)

where the j and p indices in (2.2) span the flavor numbers exactly as in (2.1). These new

terms are sufficient to provide the missing entries in the quark mass matrices while dots

refer to other possible generated terms (i.e. Dirac-type neutrino masses etc) which do not

concern us here. The crucial observation however, is that the order of magnitude of these

new terms (2.2) is expected to differ from those of (2.1), since their origin is different.

Taking into account the tree-level perturbative and the additional terms (2.2), the up

and down quark mass textures are classified into three distinct classes depending on the

particular family assignment. Hence, the first class arises assuming that Q′(3, 2) accom-

modates the lightest generation so we have

mQ

〈Hu〉
=




κuηu

11 κuηu
12 κuηu

13

λu
21 λu

22 λu
23

λu
31 λu

32 λu
33



 ,
mD

〈Hd〉
=




λd

11 λd
12 λd

13

κdη
d
21 κdη

d
22 κdη

d
23

κdη
d
31 κdη

d
32 κdη

d
33



 (2.3)

where, for later convenience, we have written λ′
j
u = κuηu

1j and λ′d
pj = κdηd

pj with p = 2, 3

and j = 1, 2, 3. The remaining two possibilities are

mQ

〈Hu〉
=




λu

11 λu
12 λu

13

κuηu
21 κuηu

22 κuηu
23

λu
31 λu

32 λu
33



 ,
mD

〈Hd〉
=




κdη

d
11 κdη

d
12 κdη

d
13

λd
21 λd

22 λd
23

κdη
d
31 κdη

d
32 κdη

d
33



 (2.4)

and

mQ

〈Hu〉
=




λu

11 λu
12 λu

13

λu
21 λu

22 λu
23

κuηu
31 κuηu

32 κuηu
33



 ,
mD

〈Hd〉
=




κdη

d
11 κdη

d
12 κdη

d
13

κdη
d
21 κdη

d
22 κdη

d
23

λd
31 λd

32 λd
33



 . (2.5)

Thus, it is clear that all these mechanisms are expected to generate non-symmetric mass

matrices with rather peculiar structure. In particular the first additional contributions

could arise due to the second Higgs doublet pair which can appear in the intersection of

branes D6b and D6c with the quantum numbers shown in table 2. These contributions

could lead to smaller, comparable or even larger entries in the mass matrices, depending
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Inters. SU(3) × SU(2) Qa Qb Qc Y

bc
H ′

d(1, 2)

H ′
u(1, 2̄)

0

0

−1

1

1

−1

−1
2
1
2

Table 2. The additional Higgs doublets with their quantum numbers.

W-corrections κu κd Yukawa couplings

i) Perturbative: 〈H′
u〉

〈Hu〉
〈H′

d
〉

〈Hd〉 ηi
u,d ∼ λu,d

i

ii) Non-renormalizable: < 1 < 1 ηi
u,d ∼ λu,d

i

iii) Non-perturbative: 1 1 ηi
u,d ≪ λu,d

i

Table 3. The parameters entering the corrections to the superpotential i) from the additional

Higgs representations and ii) from NR-terms and iii) from instanton induced terms.

of course on the magnitude of the various Higgs vevs. On the contrary, the second and

third sources, namely, the NR or instanton sources will fill in the remaining entries with

rather suppressed contributions. To get a clear insight of the range of the various matrix

elements from these latter sources, we turn our attention to the parameters κu,d and the

scale of Yukawa couplings λ, η.

The non-renormalizable terms in particular are always suppressed by powers of Higgs

vevs divided by some large mass scale MS , being in general of the form

WNR ⊃ 1

MK
S

K∏

j

〈Φj〉 ηu
ab Qau

c
bHu +

1

ML
S

L∏

j

〈Φ′
j〉 ηd

ab Qad
c
bHd

= κu ηu
ab Qau

c
bHu + κd ηd

ab Qad
c
bHd

Since we expect 〈Φj〉, 〈Φ′
j〉 to be sufficiently smaller than MS , we conclude that in general

κu,d < 1 in this case. The simplest way to realize such terms in our particular construction

is to allow the appearance in the spectrum of an additional singlet pair Φ(0,2,0) + Φ̄(0,−2,0)

which can be represented by a string stretched in the intersection of D6b with its mirror

brane D6b∗ . Then, the following fourth order non-renormalizable terms are permitted by

the SM gauge and the three global U(1) symmetries

WNR =
〈Φ〉
MS

ηu
j Q uc

j Hu +
〈Φ̄〉
MS

ηd
pj Q′

p dc
j Hd (2.6)

which contribute exactly to the zero entries of the tree-level mass matrices discussed above.

Finally, we discuss in brief the non-perturbative contributions. It has been sug-

gested [31, 32] that in intersecting D-brane models, several missing tree-level Yukawa

couplings could be generated from non-perturbative effects. In the present model in par-

ticular, considering E2 instantons in type IIA string theory having appropriate number of

intersections with the D6-branes, non-perturbative terms of the form [17]

Wn.p. ∝ e−SEQ uc
j Hu + e−S

E′ Q′
p dc

j Hd (2.7)

– 7 –
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are induced, where the instanton action SE can absorb the U(1) charge excess of the

matter fields operator involved, so that the whole coupling is totally gauge invariant. The

induced couplings (2.7) involve an exponential suppression by the classical instanton action

Wn.p. ∝ exp{− 8π2VolE
g2

aVolD6a
} which, as can be seen, depends on the volume VolE of the cycle

wrapped by the instanton and is inversely proportional to the perturbative string gauge

coupling g2
a. Thus, as opposed to the tree-level λ-Yukawa couplings, the η couplings in the

non-perturbative case exhibit a significant suppression, therefore the corresponding lines

of the matrices are substantially suppressed with respect to the tree-level contributions

(λ couplings). We say in this case that the up and down quark mass matrices exhibit a

complementary structure in the sense that the small elements in the first matrix occupy

the entries where there are large ones in the second matrix and vice versa.

Let us finally point out that in the perturbative case, we have a variety of possibilities,

depending on the ratios of the Higgs vevs κu,d. We particularly mention the interesting

case κu > 1 and κd < 1 where the up and down quark mass matrices are ‘aligned’ in the

sense that both of them exhibit the same hierarchical structure. For example, in the first

set given in (2.3), large elements occupy the first matrix line of both up and down quarks,

while smaller entries are in the two remaining lines. For κu < 1 and κd > 1 the opposite is

true. The above remarks apply also analogously for the remaining two classes of textures

presented above.

2.1 On the structure of the D-brane inspired mass matrices

In the present section, motivated by the observations discussed previously in detail, we

introduce a compact formalism to be used for the D-brane inspired fermion mass textures

discussed in the previous section. Indeed, observing the structure of the mass matri-

ces (2.3)–(2.5), we deduce that the relative order of magnitude of elements on different

matrix lines is determined by the particular mechanism employed. Some of the entries

could of course be accidentally zero due to some kind of symmetry, hence leading to non-

symmetric texture-zero cases, but even then, the scale of the generating mechanism is still

set by the remaining non-zero elements of the particular line. This way, we find that the

analysis of the 3 × 3 fermion mass matrices of this specific kind is greatly simplified by

treating the elements of each matrix line as a three-component vector. In this case, it

is the magnitude of the vector rather than the individual coupling values that should be

correlated to the specific source from which these couplings emerge.

In order to set up our formalism and make our analysis as clear as possible, we start

with the up and down quark mass textures (2.3) of the previous section. Consider thus

the down quark mass texture where tree-level perturbative contributions are assumed for

the elements mD11
,mD12

,mD13
, while instanton induced or NR subleading terms or second

Higgs contributions fill the remaining elements of the mass matrix. We distinguish between

– 8 –
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the two kinds of contributions by using Latin and Greek letters respectively4

mD =




x11 x12 x13

ζ21 ζ22 ζ23

κ31 κ32 κ33



 · (2.8)

We represent the line elements as the following 3-component vectors,

~x = (x11, x12, x13)

~ζ = (ζ21, ζ22, ζ23)

~κ = (κ31, κ32, κ33) ·

According to our discussion, the magnitudes |~ζ| and |~κ| are expected to be defined at

some common scale which in general differs from that of |~x|. Since the matrices are non-

symmetric, for the diagonalization procedure we form the symmetric matrix M2
D = mDmT

D

which in vector like form is written as

M2
D = mDmT

D =




~x · ~x ~x · ~ζ ~x · ~κ
~x · ~ζ ~ζ · ~ζ ~ζ · ~κ
~x · ~κ ~ζ · ~κ ~κ · ~κ



 · (2.9)

Thus, in the case where ~x and ~ζ,~κ define two substantially different scales, the entries of the

matrix (2.9) can in general belong to three categories: In the case of instanton corrections

for example, we expect that |~x| ≫ |~ζ|, |~κ|, so that the largest element is M2
D11 ≡ |~x|2, with

the other two diagonal entries M2
D22 = |~ζ|2 > 0 and M2

D33 = |~κ|2 > 0 being substantially

smaller. The magnitudes of the off-diagonal elements determined by the inner products

~x · ~ζ, ~x · ~κ, are expected to lie at some intermediate scale at the most, while ~ζ · ~κ might

be even smaller. It is possible of course that some inner products are zero, i.e., ~ζ · ~κ = 0

etc which essentially implies that the two vectors are orthogonal. Certainly, as already

discussed in the previous section, the results are similar in the case of NR-contributions

however, the prospects are completely different if the entries ~ζ,~κ originate from a second

Higgs doublet. We will comment on this possibility in subsequent sections.

In a similar manner, we may write the up quark matrix

mU =




ξ11 ξ12 ξ13

y21 y22 y23

z31 z32 z33



 (2.10)

and since the matrix is also non-symmetric, we construct the matrix mUmT
U

M2
U = mUmT

U =





~ξ · ~ξ ~ξ · ~y ~ξ · ~z
~ξ · ~y ~y · ~y ~y · ~z
~ξ · ~z ~y · ~z ~z · ~z



 (2.11)

4For convenience we simplify the notation mD1j
→ x1j and so on. We restrict our analysis to real

mass matrices only. Our main conclusions are not affected while the generalization to complex matrices is

straightforward.
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with ~ξ = (ξ1, ξ2, ξ3) and so on. If we assume again that the corrections are small compared

to perturbative tree-level terms, then we expect |~x|, |~y| ≫ |~ξ| while the magnitudes of the

inner products, following analogous reasoning with that of the down quark mass matrix

discussion above, are anticipated to be at smaller scales. It is worth observing that the two

scales contained in the non-symmetric mass mU matrix yield three different scales in the

symmetric product mUmT
U , to which the three flavor-hierarchy can be naturally attributed.

A more involved analysis should be carried out if other sources are included.

2.2 D-brane inspired textures: a case study

In the previous sections we have seen that D-brane scenarios induce a variety of fermion

mass textures where the hierarchies of their entries depend on the particular mechanism

employed. Of course, not all of these textures can be compatible with the know data. In

the present section, we elaborate on the consistency of a specific pair of them with the

measured low energy data, while in the next sections we shall develop a more general and

novel formalism.

We start the analysis with the down quark mass matrix (2.9) and the assumption that

only one Higgs pair is included in the spectrum. In this case, there are only instanton or

NR-contributions to the tree-level zero entries, thus we expect that ~x · ~x ≫ ~x · ~ζ, ~ζ · ~ζ,~κ ·~κ.

For later convenience we define

r cos θ = −~x · ~ζ
~x · ~x

r sin θ =
~x · ~κ
~x · ~x

Using the fact that the orthogonal transformation does not alter the physical quantities,

we can arrange that the two vectors ~ζ and ~κ are orthogonal, ~ζ ·~κ = 0, while in order to keep

the algebra tractable, without loss of generality we assume a slightly simplified texture and

at first approximation we may put their magnitudes equal ~ζ · ~ζ = ~κ · ~κ = s2 to obtain

mDmT
D =




1 −r cos(θ) r sin(θ)

−r cos(θ) s2 0

r sin(θ) 0 s2



 m2
0 (2.12)

This matrix is to be diagonalized by an orthogonal matrix Vd, to give a diagonal matrix

with elements the mass eigenstates squared

V T
d (mDmT

D)Vd =
(
M2

D

)
diag.

=




m2

d 0 0

0 m2
s 0

0 0 m2
b



 (2.13)

The diagonalizing matrix is found to be

Vd ≈





−ms

mb
0 1 − m2

s

2m2

b

−
(
1 − m2

s

2m2

b

)
cos(θ) sin(θ) −ms

mb
cos(θ)

(
1 − m2

s

2m2

b

)
sin(θ) cos(θ) ms

mb
sin(θ)




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We can write a convenient approximate form for the preceding down quark matrix

mDmT
D ∼




1 −ξ cos θ ξ sin θ

−ξ cos θ ξ2 0

ξ sin θ 0 ξ2



m2
b

where ξ is a known function of down quark mass ratios (ξ ∼ 3.1 × 10−2) given in the

appendix.

Up to this point, we have analytically expressed the down quark entries of the first

texture (2.3) as functions of the mass eigenstates (down quark mass ratios) and the mixing.

Next, we can use this result and the known CKM matrix to derive the admissible up quark

mass matrix which should be compared with the findings of section 2. We may facilitate the

analysis by using the Wolfenstein parametrization [33] for the CKM matrix (see appendix

for conventions). Thus, having determined Vd while using the relation Vu = VdV
†
CKM

we construct first the diagonalizing matrix Vu of the up quarks. Assigning
(
m2

U

)
diag.

the

diagonal matrix with diagonal elements {m2
u,m2

c ,m
2
t }, we can use the relation

M2
U ≡ mUm†

U = V †
u

(
m2

U

)
diag.

Vu (2.14)

to determine analytically all up-quark entries. Putting

ǫ = A sin(θ)λ2 + ξ cos(θ)

ǫ′ = ξ sin(θ) − Aλ2 cos(θ)

where λ ≈ 0.2357 and A ∼ O(1) the well known parameters of the Wolfenstein parametriza-

tion of CKM, we obtain

mUmT
U ≈




1 −ǫ ǫ′

−ǫ ǫ2 ǫǫ′

ǫ′ ǫǫ′ ǫ′2



 m2
t (2.15)

From (2.15) we observe that the resulting up-quark mass matrix structure is compatible

with the aligned scenario discussed in the end of the previous section. As already explained,

this alignment can for example occur in the presence of a second Higgs pair. In other words,

the present analysis shows that in simple D-brane Standard Model scenarios with minimal

spectra, as in the case under consideration, instanton effects are not enough to reproduce

the known quark mass hierarchies in both, down and up quark sectors. In the particular

example we have worked out, it was shown that the very precise form of the CKM matrix

requires also the up-quark mass matrix to be aligned with that of the down quarks and this

can happen if additional contributions from a second Higgs doublet are included. Of course,

this specific example does not exhaust all the possibilities. In constructing D-brane models

with more complicated symmetries and matter spectra, rather involved Yukawa textures

appear, therefore, in the subsequent, we explore systematically general non-symmetric mass

matrices and classify the admissible cases.
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3 The Cholesky form of the mass matrix

The classification of all (symmetric and non-symmetric) admissible 3 × 3 mass matrices

which reconcile the known quark mass hierarchy and mixing is a rather hard task. For

example, the symmetric squared matrix mDmT
D discussed above could emerge from a va-

riety of symmetric or non-symmetric mD textures. To further pursue this issue and find

the admissible mD textures, we first rely on the observation that all eigenvalues of the

mass matrix squared are positive and the fact that any positive definite symmetric matrix

can be decomposed into a product of a lower triangular matrix times its transpose. The

lower triangular matrix can be identified with the mass matrix mD or mU respectively

(Cholesky decomposition). We will show that this triangular matrix contains all the nec-

essary information related to the fermion mass eigenstates and mixing angles of a whole

class of matrices. Indeed, once the triangular matrix is specified, an ‘equivalent’ class C
of matrices with the same ‘physical’ properties can be generated when we right multiply

the latter by an orthogonal matrix. More precisely, the eigenmasses and the eigenvectors

of corresponding mmT of matrices m ∈ C are the same. We call the triangular form of the

3 × 3 mass matrix a progenitor.

Next, we proceed with the derivation of some mathematical formulae relating the mass

matrices to their Cholesky progenitor and the corresponding orthogonal transformation.

From (2.13) we have seen that the general symmetric mass matrices to be diagonalized are

of the form

mmT = UM2
diag.U

T (3.1)

where the m matrix stands for the up or down quark case, while U is the corresponding

orthogonal transformation and M2
diag is the corresponding diagonalized (up or down) quark

matrix squared

M2
diag. =




m2

1 0 0

0 m2
2 0

0 0 m2
3



 · (3.2)

Since mmT is positive definite and symmetric there exists a Cholesky decomposition

MCMT
C = mmT (3.3)

where the Cholesky lower triangular form is written

MC =




a1 0 0

b1 b2 0

c1 c2 c3



 (3.4)

From (3.3) we have

m−1MCMT
C

(
mT

)−1
= I = m−1MC

(
m−1MC

)T
(3.5)

where I stands for the 3×3 unit matrix. From the last equality we deduce that the matrix

m−1MC is equivalent to an orthogonal matrix UM , i.e., the original matrix is connected

to its Cholesky form by the relation

m = MCUM (3.6)
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Note that to any equivalent class of matrices, there also exists an associated symmetric

matrix Ms (not uniquely defined) which satisfies the relation

MsMs = mmT

Since the latter can also be written as

m−1MsMs

(
mT

)−1
= m−1Ms

(
m−1Ms

)T
= I

we conclude that m−1Ms is also an orthogonal matrix, i.e., the associated symmetric mass

matrix is connected to the Cholesky form

m = MsU
T
s (3.7)

where Us is also orthogonal. Thus, equating (3.6) and (3.7) we get

m = MCUM = MsU
T
s (3.8)

These relations allow us to connect the symmetric matrix to the original one by

Ms = MCUMUs · (3.9)

We see that all mass textures (symmetric and non-symmetric) having the same physical

properties (mass eigenvalues and mixing) can be constructed by multiplying the Cholesky

matrix with an orthogonal matrix. The corresponding symmetric matrix Ms can be easily

constructed from the relation

Ms = UMdiag.U
T (3.10)

(it is in fact the square root of mmT ) where

Mdiag. =
√

M2
diag. =




±m1 0 0

0 ±m2 0

0 0 ±m3



 · (3.11)

Note also that

MC = UMdiag. (UMUsU)T (3.12)

i.e. a biorthogonal transformation diagonalizes MC .

Thus, we conclude that the problem is essentially the factorization of the square matrix

to a lower triangular form times an orthogonal matrix, which has a unique solution if the

elements of the main diagonal of MC are taken to be positive.

In the subsequent, we will be concerned mainly with real mass matrices, thus all diag-

onalizing matrices will be represented by orthogonal transformations. The generalization

to complex mass matrices can be easily done while our main findings and conclusions do

not change. Notice also that in this case the Cholesky form of the 3 × 3 matrix can be

conveniently visualized (see figure 2) in terms of the vector representation of the matrices

introduced in the previous section.
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Figure 2. The vector representation of the matrix elements. The three lines in the Cholesky

decomposition can be represented by three vectors: The coordinate system is chosen so that the

vector ~a = ax̂ lies on the x-axis, while ~b lies on the (x, y)-plane.

Summarizing, we emphasize that once the physical properties of the triangular matrix

have been explored, any other possible physically equivalent form (symmetric or non-

symmetric texture) can be obtained by means of an orthogonal transformation which in

standard parametrization reads

U =




cos α cos γ cos γ sin α sin γ

− cos β sinα − cos α sin β sin γ cos α cos β − sin α sinβ sin γ cos γ sin β

sin α sin β − cos α cos β sin γ − cos α sin β − cos β sin α sin γ cos β cos γ



 (3.13)

Indeed, since {MC U}
{
U T MT

C

}
= MCMT

C , we can generate equivalent forms by means of

the transformation Mx = MC U as already was proven above. Thus, the first line of Mx

for example becomes

Mx1 = {a1 cos α cos γ, a1 sinα cos γ, a1 sin γ}

while analogous, although more lengthy expressions hold for the other two lines too. We

therefore see that the orthogonal matrix rearranges the elements within a given line of the

mass matrix, but never mixes them with the elements of the other lines. Generally, if Mxi

is the i-th line (or a three-component vector in our notation), then the inner product is

MxiMxi while the orthogonal transformation does not alter the magnitude of the vector, so

Mx1 · Mx1 = |~a|2 = a2
1

Mx2 · Mx2 = |~b|2 = b2
1 + b2

2 (3.14)

Mx3 · Mx3 = |~c|2 = c2
1 + c2

2 + c2
3

Notice also that these quantities coincide with the diagonal elements of MCMT
C , which

implies that

|~a|2 + |~b|2 + |~c|2 = m2
1 + m2

2 + m2
3

Also, the product of the entries on the diagonal equals the product of the eigenmasses

a1b2c3 = m1m2m3
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For our purpose, the crucial observation here is that the magnitudes of the three

vectors ~a,~b,~c which represent the three lines of the matrix, remain unaltered under the

multiplication of MC by orthogonal transformations. Therefore, since any matrix can be

cast in triangular form by an orthogonal transformation, we can concentrate our analysis

in the latter. The peculiar form of the matrices derived in the previous section, where

each line of mass entries is related to a different mass generating mechanism, justifies an

analogous treatment.

Following the discussion above we attempt now to analytically construct MC from

a general mass matrix and correlate its elements to those of the corresponding triangular

form. This procedure essentially corresponds to the decomposition of a square matrix to its

triangular form times an orthogonal matrix (QL decomposition). To this end, we consider

the general 3 × 3 mass matrix

m =




m11 m12 m13

m21 m22 m23

m31 m32 m33



 (3.15)

Next we define the vectors ~ξj, j = 1, 2, 3

~ξj = (mj1,mj2,mj3) (3.16)

hence, the matrix can be written

m =




~ξ1

~ξ2

~ξ3



 (3.17)

To construct the Cholesky matrix we rely on the Gram-Schmidt orthogonalization

procedure and introduce the following orthogonal set

~ui = ~ξi −
i−1∑

j=1

(~ξi · êj) êj , i = 1, 2, 3 (3.18)

where we have defined the following three orthogonal unit vectors

êi =
~ui

|~ui|
, i = 1, 2, 3 (3.19)

Using the above formulae we can decompose the original matrix as follows



~ξ1

~ξ2

~ξ3



 =




~ξ1 · ê1 0 0
~ξ2 · ê1

~ξ2 · ê2 0
~ξ3 · ê1

~ξ3 · ê2
~ξ3 · ê3








ê1

ê2

ê3



 (3.20)

where the last column defines a orthogonal matrix

U =




ê1

ê2

ê3



 (3.21)
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whose elements are determined by (3.18) and (3.19). The formula (3.20) is an explicit

realization of (3.6) with U given by (3.21). Using this latter representation of the triangular

matrix, in the next section we will give simple analytic formulae of its non-zero entries as

functions of the mass eigenstates and the diagonalizing matrix elements.

4 The rotating matrices

We have seen that the triangular form of the mass matrix plays the rôle of the progen-

itor of all classes of symmetric as well as non-symmetric mass matrices with the same

physical properties. Once the triangular form of the mass matrix is determined, its multi-

plication with an orthogonal mass matrix U(α, β, γ) leads to an equivalent texture which,

depending on the specific choice of the angles α, β, γ of the U matrix may be symmetric

or non-symmetric or might have some simplified texture-zero form. All matrices obtained

through this procedure from the same progenitor result to the symmetric product mmT ,

thus they are characterized by the same diagonalizing orthogonal transformation and the

same eigenvalues.

Therefore, the triangular matrix contains all the necessary information for the mixing

and mass eigenstates. Its usefulness emerges from the fact that all its entries can be

expressed as simple functions of the eigenmasses and the elements of the diagonalizing

matrix. In the basis where one of the quark matrices is diagonal, all the elements of the

other quark sector in its triangular form are uniquely determined in terms of the mass

eigenstates and the CKM mixing. When up and down quark matrices appear in non-

diagonal form, the elements of the triangular matrices are not uniquely determined. The

entries of each matrix can be expressed in terms of the eigenmasses and the angles of the

diagonalizing orthogonal matrix, whilst, only the elements of the product V †
u Vd of the two

transformations is constrained to be the CKM matrix. Therefore, as expected, a variety

of mass textures can result to the known CKM mixing. The triangular form of the mass

textures has the advantage of treating in a simple and economical way the problem of

classifying all the families of quark mass matrices compatible with the experimental data.

We now proceed by introducing a compact parametrization for the orthogonal matrices.

Define the antisymmetric 3 × 3 matrices

s1 =




0 0 0

0 0 1

0 −1 0



 , s2 =




0 0 1

0 0 0

−1 0 0



 , s3 =




0 1 0

−1 0 0

0 0 0



 · (4.1)

and a unit vector

n̂ = (n1, n2, n3) (4.2)

Using the Cayley-Hamilton theorem [34], we find that the exponential of the 3×3 matrices

proportional to the inner product n̂ · ~s is written

exp [αn̂−→s ] = 1 + sinα n̂ · −→s + (1 − cos α) (n̂ · −→s )
2

(4.3)
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or equivalently

exp [αn̂−→s ] = 1 + sin α n̂ · −→s + 2 sin2
(α

2

)
(n̂ · −→s )

2 · (4.4)

The general orthogonal matrix can therefore be written as

U = exp [αn̂ · −→s ] (4.5)

Indeed, since n̂·−→s is traceless, the determinant of U is unity and since n̂·−→s is antisymmetric

it ensures that UT U = 1. Therefore, the orthogonal matrix can be parametrized by the

angle α and the unit vector n̂ whose components constitute the directional cosines along

the ‘directions’ s1,2,3.

To make contact with the standard parametrization, let us consider the particular case

where the vector n̂ is aligned along a specific ‘axis’, i.e. let n̂ = (0, 0, 1). Then

U(α) = exp [α s3] ≡




cos(α) sin(α) 0

− sin(α) cos(α) 0

0 0 1





Analogous expressions hold for alignments to the remaining two axes.

For our subsequent analysis it is also useful to express the CKM matrix in the basis

s1, s2, s3. Plugging in the numerical values of its entries as they are measured by the

experiment (see appendix) we find that the CKM matrix can be written

VCKM = exp[φcn̂
−→s ] (4.6)

where the angle φc = 0.231505 and the unit vector components along the orthogonal

directions s1, s2, s3 are

n̂ =




0.179694

0.0177102

0.983564



 (4.7)

This result shows that the CKM matrix is predominantly a rotation around the third axis

s3. Since VCKM = V †
u Vd the combined effect of the up and down rotation matrices should

produce a rotation mostly around the third axis. In principle, for any choice of Vd there is

always a Vu orthogonal matrix that is consistent with VCKM , however we will see that the

observed quark mass hierarchy will reduce substantially these choices.

Our objective is to find the conditions on D-brane inspired mass matrices so that they

are consistent with the experimental data. Thus, given the CKM mixing and the predicted

form of the down (up) quark mass texture, we will use the above analysis to determine the

form of the corresponding up (down) quark matrix. Starting for example with the down

quark mass matrix, and the orthogonal matrix Vd which diagonalizes the down quarks, then

we need in this new formalism a convenient way to express the diagonalizing matrix of the

up quarks which is given by Vu = VdV
†
CKM . To express in a simple way the multiplication

of two arbitrary orthogonal matrices, we use the formula (4.5). Obviously, the resulting

matrix is also orthogonal, therefore it can be expressed in terms of a new unit vector and

a new angle. If we identify â with the unit vector related to the diagonalizing matrix
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of the up-quarks and b̂ with the unit vector associated to the corresponding one for the

down quarks, we can apply directly the Cayley-Hamilton formula for the multiplication

Vu = VdV
†
CKM , to obtain

â =
1

sin α
2

{
sin

β

2
cos

φc

2
b̂ − cos

β

2
sin

φc

2
n̂ − sin

φc

2
sin

β

2
b̂ × n̂

}
(4.8)

The angles are also related by the additional expression

cos
φc

2
= cos

α

2
cos

β

2
+ sin

α

2
sin

β

2
cos θ (4.9)

where cos θ = â · b̂, thus the CKM angle φc is directly expressed in terms of the relative

declination of the ‘rotational’ axes of the down and up quark diagonalizing matrices.

Let’s see two limiting cases that will be useful in our subsequent examples: If we choose

b̂ to be aligned with the CKM-axis b̂ = n̂ , then b̂ × n̂ = 0 and â is given as a combination

of the two remaining components on the r.h.s. of (4.8)

sin
α

2
â =

(
sin

β

2
cos

φc

2
− cos

β

2
sin

φc

2

)
n̂

This is satisfied if â = ±n̂, and

± sin
α

2
= sin

β − φc

2

i.e., if β − α = 2k π + φc. Choosing b̂ = −n̂, we find α − β = 2k π + φc.

A second limiting case arises if we choose ~a ·~b = 0. Then cos θ = 0 and the three angles

are related by the simple expression

cos
φc

2
= cos

α

2
cos

β

2
.

Before closing this section, let us point out for later convenience that the formula (4.8)

can be expressed in a more compact form. Indeed, if we redefine

â → ~a = â sin
α

2

b̂ → ~b = b̂ sin
β

2

and

n̂ → ~c = n̂ sin
φc

2
(4.10)

we rewrite (4.8) in the following simplified expression

~a = cos
φc

2
~b − cos

β

2
~c −~b × ~c (4.11)
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5 Analytical expressions

In the previous examples, we saw that that novel fermion mass textures with elements not

exhibiting the expected ‘hierarchical’ pattern may appear.

The elements on a given line of the mass matrix emerge from a specific source, thus,

each line is characterized in general by a different mass scale. This scale should be connected

to some appropriate (eventually invariant under some specific operation) quantity and not

to a single coupling which might be accidentally zero in a particular choice of basis. In this

case, it is sufficient to deal with the magnitudes of the vectors ~ξu,d
j , j = 1, 2, 3, or equiva-

lently, with the magnitudes of the lines of the corresponding triangular matrix (3.20). Then,

by expressing the elements of the triangular mass matrices as functions of the directional

cosines and the mass eigenvalues only, we can determine all the acceptable mass textures.

To proceed further we recall from the analysis of the previous sections that for a given

(in general) non-symmetric matrix m, we have mmT = MCMT
C , where MC is the Cholesky

from. In the present section we give analytic formulae for the triangular form MC with

its entries expressed only in terms of the eigenmasses of mmT and the elements of its

diagonalizing orthogonal matrix. Let us start with the evaluation of the entries of the

orthogonal transformation. Assuming the orthogonal transformation U(α) given by the

Cayley-Hamilton formula while redefining

â → sin
α

2
~a · (5.1)

we get the following simplified expression for the orthogonal matrix

U(α) = 1 + 2 cos
α

2
−→a · −→s + 2 (−→a · −→s )

2
(5.2)

where now the vector ~a is no logger a unit vector,

−→a 2 = a2
1 + a2

2 + a2
3 = sin2 α

2
(5.3)

It is useful to write the orthogonal matrix in expanded form. We get

U(α) =




cos α + 2a2

1 2
(
a3 cos α

2 − a1a2

)
2
(
a2 cos α

2 + a1a3

)

−2
(
a3 cos α

2 + a1a2

)
cos α + 2a2

2 2
(
a1 cos α

2 − a2a3

)

−2
(
a2 cos α

2 − a1a3

)
−2

(
a1 cos α

2 + a2a3

)
cos α + 2a2

3



 (5.4)

where a1,2,3 are not all independent since they satisfy (5.3). Therefore, U(α) is expressed

only in terms of three independent parameters as expected. We can now express analytically

the elements of the triangular matrix as functions of the orthogonal matrix entries uij and

– 19 –



J
H
E
P
0
1
(
2
0
1
0
)
0
1
6

the mass eigenstates as follows

−→
ξ 1 · −→e 1 =

√
u2

11m
2
1 + u2

12m
2
2 + u2

13m
2
3

−→
ξ 2 · −→e 2 =

√
u2

33m
2
1m

2
2 + u2

31m
2
2m

2
3 + u2

32m
2
1m

2
3

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

−→
ξ 3 · −→e 3 =

m1m2m3√
u2

33m
2
1m

2
2 + u2

31m
2
2m

2
3 + u2

32m
2
1m

2
3

−→
ξ 2 · −→e 1 =

u11u21m
2
1 + u22u12m

2
2 + u13u23m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

(5.5)

−→
ξ 3 · −→e 1 =

u11u31m
2
1 + u32u12m

2
2 + u33u13m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

−→
ξ 3 · −→e 2 = − u23u33m

2
1m

2
2 + u21u31m

2
2m

2
3 + u22u32m

2
1m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

√
u2

33m
2
1m

2
2 + u2

31m
2
2m

2
3 + u2

32m
2
1m

2
3

.

Thus, the triangular matrix elements are simple functions of the eigenmasses and the

orthogonal transformation entries. This analytic result simplifies remarkably the analysis

of classifying experimentally admissible mass matrices, while we note that several simple

textures can be found even by simple inspection of the above analytic structure.

We can use an alternative parametrization of the triangular matrix reliant on the

relations (5.5) as follows. We define the diagonal matrix of the squared mass eigenvalues

M =




m2

1 0 0

0 m2
2 0

0 0 m2
3



 (5.6)

and the vectors

~vi = (ui1, ui2, ui3) (5.7)

where uij are the elements of the diagonalizing matrix, thus ~vi · ~vj = δij . In this notation,

the nominator of the {21} entry of the triangular matrix is written

~ξ2 · ê1 ∝ ~v2M~v1 ≡ ~v1M~v2 =

3∑

i=1

u2im
2
i u1i (5.8)

Similarly, we find also also that the {31} entry is proportional to

~ξ3 · ê1 ∝ ~v3M~v1 ≡ ~v1M~v3 =

3∑

i=1

u3im
2
i u1i (5.9)

and the {32}

~ξ3 · ê2 ∝ ~v3M−1~v2 ≡ ~v2M~v3 =

3∑

i=1

u3im
−2
i u2i (5.10)
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In this notation, all entries are expressed in terms of inner products ~vjMn~vi, n = ±1, and

the triangular mass matrix takes the following elegant form

MC =





√
~v1M~v1 0 0

~v2M~v1√
~v1M~v1

√
~v3M−1~v3

~v1M~v1
m1m2m3 0

~v3M~v1√
~v1M~v1

− ~v3M−1~v1 m1m2m3√
(~v1M~v1)(~v3M−1~v3)

1√
~v3M−1~v3



 (5.11)

The form (5.11) of the triangular matrix will prove particularly useful for the classification

of the textures with zeroes discussed in the subsequent sections.

5.1 Mass textures with zeroes

In phenomenological investigations, a usual practice to minimize the number of arbitrary

mass parameters to those which suffice to determine the quark mass eigenstates, is to

seek viable texture-zero mass matrices. In this section we are going to explore in detail

this issue motivated also by the fact that in several cases of String and D-brane models,

negligible or even zero entries in Yukawa textures do persist even after the inclusion of non-

renormalizable or other contributions, because of remnant discrete or other symmetries left

over from the higher theory. This is also the case in F-theory constructions when some

matter fields are localized on different curves [24].

The analytic result obtained above for the Cholesky form of a matrix allows the clas-

sification of texture-zero mass matrices in a simple and elegant way. We first note that

the Cholesky form of the matrix is already a non-symmetric texture-zeroes Yukawa matrix

itself. Using suitable values for the angles (α, β, γ) of the orthogonal transformation (3.13)

we can obtain more texture-zero forms of the mass matrix mD. Up to possible signs, while

without assuming any further relation of the diagonalizing matrix and the mass matrix

entries, we find that in addition to (3.20) there are only four more non-symmetric texture

zero forms, namely



0 0 a1

0 −b2 b1

c3 −c2 c1



 ,




0 0 a1

−b2 0 b1

−c2 −c3 c1








0 a1 0

0 b1 b2

c3 c1 c2



 ,




0 a1 0

−b2 b1 0

−c2 c1 c3





These essentially correspond to simple rearrangements of the zeroes of the initial matrix

under trivial transformations.

A less trivial and more appealing task is of course to minimize further the arbitrary

parameters of (3.20) by setting additional entries equal to zero yet reconciling the exper-

imental data. To this end, we proceed to a classification of all non-trivial zeroes of the

down-quark mass matrix setting successively in (5.5) the off-diagonal elements equal to

zero, i.e. ~ξj · êi = 0, and derive the conditions implied for the remaining non-zero matrix

elements. Having determined the specific forms of mD, we can use the results of each in-

dividual solution to determine the corresponding up quark texture. We first start with the
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observation that none of the three diagonal elements of the triangular matrix can be set

equal to zero since this would imply that at least one eigenmass is zero which contradicts

the data. Therefore, the only possible zeroes in a Cholesky matrix can be found in the

off-diagonal entries {21}, {31}, {32}.

5.1.1 The case of one diagonal quark mass matrix

We start with the simplest (trivial) possibility where all possible entries in the down-quark

Cholesky mass matrix are zero, i.e. a texture three-zeroes,

mD21
= mD31

= mD32
= 0

This implies that the down quark mass matrix is in diagonal form, therefore its diagonaliz-

ing matrix is the identity matrix Vd = I, whilst Vu = V †
CKM . Therefore the up-quark mass

diagonalizing orthogonal matrix has the form (3.20), its elements being uij =
(
V †

CKM

)

ij
.

Substituting the appropriate experimental values of masses and mixing, the numerical form

of the matrix is

mU ≈




0.293 0 0

−3.792 6.150 0

64.938 −158.029 0.342



 (5.12)

with all entries expressed in GeV. It is easy to see that the square roots of the eigenvalues

of the matrix mUmT
U are the up quark masses mu = 0.003,mc = 1.21,mt = 171GeV as

expected. Thus, in the basis where the down quark mass matrix is diagonal, all entries of

the up-quark mass matrix are non-zero, whilst the line-vectors ~ξu
j (in the notation (3.17)

of the matrix mU ) exhibit a hierarchical pattern5 in the sense that |~ξu
1 | < |~ξu

2 | < |~ξu
3 | and

this is true for a whole class of equivalent matrices which are obtained when orthogonal

transformations are acting on the progenitor from the right. Indeed, multiplying by any

orthogonal matrix from the r.h.s. , the measures of the vectors |~ξj | do not change. For

example, acting with an orthogonal transformation the first vector ~ξ1 becomes

~ξ′1 = {1.52781 cos(α) cos(γ), 1.52781 cos(γ) sin(α), 1.52781 sin(γ)} (5.13)

while it can be checked that |~ξ1| = |~ξ′1| and in the same manner |~ξ2,3| = |~ξ′2,3|. Thus, if

the down quark mass matrix is cast to diagonal form, the mass hierarchy and CKM imply

definite hierarchical structure

|~ξ1| : |~ξ2| : |~ξ3| ∼ ρ4 : ρ2 : 1

with ρ ∼ 0.2. We will see in the next sections that the hierarchy of the vectors |~ξi| can be

reversed if both matrices are non-diagonal but in limited regions of the parameter space in

order to achieve consistency with the CKM mixing.

5Because of the property (3.14) the magnitude of the ‘line-vector’ ~ξi in (3.17) is equal to that of the

corresponding line in the Cholesky matrix (3.20).
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5.1.2 Textures with two-zeros

We now turn to the non-trivial texture-zero cases with non-diagonal mass matrices. We

demand that the entry {21} is zero, thus we take ~ξ2 · ê1 = 0 which implies

u11u21m
2
1 + u22u12m

2
2 + u13u23m

2
3 = 0 (5.14)

We first try to satisfy the above condition without assuming a particular relation between

uij and the mass eigenvalues mi. Two possible solutions are

i) u12 = u21 = u13 = 0 or (5.15)

ii) u12 = u21 = u23 = 0 (5.16)

Starting with the first case, from u12 = u21 = 0 it follows from (5.4)

a3 cos
α

2
± a1a2 = 0

A) A simple (although not the only) way to satisfy the above is by choosing a2 = a3 = 0,

so that a1 = sin α
2 and the diagonalizing and Cholesky matrices assume the simplified

form

Ua =




1 0 0

0 cos α sin α

0 − sin α cos α



 MC =




x11 0 0

0 x22 0

0 x32 x33



 (5.17)

with x11 = m1, x22 = ±
√

m2
3 − δ2

32 cos2 α, x33 = m2m3/x22, and x32 = δ2
32 sin(2α)/(2x22),

where δ2
ji = (m2

j − m2
i ).

B) If we take the second case, then a1 = a3 = 0, so that a2 = sin α
2 and the matrices are

reduced to

Ua =




cos α 0 sin α

0 1 0

− sin α 0 cos α



 MC =




x11 0 0

0 x22 0

x31 0 x33



 (5.18)

with x11 =
√

m2
3 − δ2

31 cos2 α, x22 = m2, x33 = m1m3/x11, and x31 = δ2
31 sin(2α)/(2x11).

C) Next we assume that ~ξ3 · ê1 = 0. This implies one new case, a1 = a2 = 0 and the

following structure

Ua =




cos α sin α 0

− sin α cos α 0

0 0 1



 MC =




x11 0 0

x21 x22 0

0 0 x33



 (5.19)

with x11 = m2
2−δ2

21 cos α, x22 = ±m1m2/x11, x33 = m3 and x21 = δ2
21 sin(2α)/(2x11).

A detailed analysis of the texture two-zeroes is given in the appendix. There, it is

shown that all other possible solutions can be reduced to the above three cases by trivial
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transformations. We observe that when no specific relation between the eigenvalues mi and

the mixing entries uij is assumed, the triangular matrix cannot have only one vanishing

off-diagonal element. There are always two zeroes in the triangular matrix which are always

correlated to one of the three angles in the diagonalizing matrix (3.13).

For each of the above cases we can now compute the diagonalizing up-quark orthogonal

matrix and use this result to calculate the entries of the corresponding up quark mass

matrix. All elements of the two triangular matrices can be expressed in terms of one free

parameter, namely the angle α. This freedom is going to be used in the next subsection

to pin down quark mass patterns, in particular those which are compatible with specific

classes from D-brane configurations.

5.1.3 Textures with one zero

The case of triangular matrices with only one zero element is more involved. We have

seen in the previous subsection that whenever we demand one of the entries to be zero,

there is always a second zero element in the matrix unless a non-trivial relation between

uij and the mass eigenstates mi is imposed. In the following, we will derive and discuss in

detail these conditions for the case that the only zero is ~ξ2 · ê1 = 0. The analysis can be

easily extended to the other two non-diagonal elements of the triangular matrix and for

completeness is presented in the appendix. To proceed, we use the vector-like formalism of

the triangular matrix elements introduced in (5.11). Then, the {21} entry of the triangular

matrix is proportional to

~ξ2 · ê1 ∝ ~v2M~v1 ≡ ~v1M~v2 =
3∑

i=1

u2im
2
i u1i (5.20)

The requirement that the {21} element in the mass matrix is equal to zero, is now equivalent

to the orthogonality condition

~v2M~v1 = ~v1M~v2 = 0

The condition ~v2M~v1 = 0 implies that the vector M~v1 is orthogonal to ~v2 and therefore

can be expressed as a linear combination of ~v1, ~v3. Similarly ~v1M~v2 = 0 implies that M~v2

can be expressed in terms of ~v2, ~v3. We find

M~v1 = (~v1M~v1) ~v1 + (~v3M~v1) ~v3

M~v2 = (~v2M~v2) ~v2 + (~v3M~v2) ~v3

Both of the above can be solved for ~v3, giving

~v3 =
1

(~v3M~vk)
(M− ~vkM~vk) ~vk, k = 1or 2 (5.21)

or, in component form (Aji = ~vjM~vi =
∑3

i=1 ujlm
2
l uil)

u3j =
m2

j − Akk

A3k
ukj, k = 1, 2, j = 1, 2, 3 (5.22)
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Thus, the relations (5.22) are sufficient to ensure that at least the {21} element of the

triangular mass matrix is zero, while similar relations hold for the vanishing of the other

off-diagonal elements. By simple inspection of the above formula we find that if some ukj

on the right-hand side of (5.22) is set equal to zero, then the two-zeroes textures discussed

previously are recovered. Indeed, to make clear the argument, let us explore a particular

case setting u13 = 0. Putting k = 1 in the above, we find that this implies u33 = 0, while

due to u2
13 + u2

23 + u2
33 = 1 we get u23 = 1. Putting k = 2, we get

(m2
3 − A22)u23 = 0

Since u23 is non-zero, (u23 = 1), we get

m2
3 = A22 = u2

21m
2
1 + u2

22m
2
2 + u2

23m
2
3 (5.23)

which imposes the additional condition

u2
21m

2
1 + u2

22m
2
2 = 0

i.e., u21 = u22 = 0. We further find ~ξ3 · ê2 = 0, thus this case is reduced to textures with

two-zeroes.

In the same way, we can prove that if any of the elements uki, k = 1, 2, i = 1, 2, 3 is

set equal to zero, we arrive at one of the textures with two-zeroes discussed previously.

Therefore, distinct, texture zero-one cases are possible only when all ukj 6= 0, with

k taking the values 1 or 2 as above. This of course does not exclude that some of the

remaining entries u3j could not be zero. In the next section we will present one such

simple example of one zero texture mass matrix which is also compatible with D-brane

patterns discussed in section 3.

5.2 On the relation with the symmetric texture-zero matrices

It is worth exploring the connection of the above triangular texture-zero analysis with the

symmetric texture-zeroes already discussed in the literature sometime ago [15]. Using the

mathematical analysis presented in previous section, it is straightforward to bring the latter

into their corresponding triangular form. This calculation shows that from the set of the

five texture zero symmetric mass matrices only one pair can be identified with a two-zeroes

texture and one more with an one-zero texture of our analysis. In particular, we find the

following texture-zero triangular form

mU =




ε6 0 0

0 ε2
√

1 + ε8 0

ε2 1√
1+ε8

ε4√
1+ε8



 ,mD =




2ε4 0 0

2ε3 2ε3
√

1 + ε2 0

2ε3 1√
1+ε2

ε√
1+ε2



 (5.24)

which can be easily converted to one of the symmetric textures using the analysis of sec-

tion 2.

The remaining three textures of [15] — from the point of view of their progenitors —

correspond to the general form with non-zero off-diagonal entries and the zeroes appear
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only in a certain point of the parameter space. To make this point clear, let us define the

following triangular mass matrix for the down quarks

mD =




2ǫ4 0 0

2ǫ3 2ǫ3
√

ǫ2 + 4 0

4ǫ3 2√
ǫ2+4

ǫ√
ǫ2+4



 (5.25)

Diagonalizing the symmetric mDmT
D, while choosing ǫ ∼ .23, we find the mass eigenvalues

in good agreement with the values md,ms,mb. According to our discussion, there is an

equivalent class of mass matrices obtained by the following U -action on mD, mD U , where U

is any orthogonal matrix. If we restrict to the orthogonal matrices, U this is given by (3.13),

thus the parameter space is defined by the angles α, β, γ. Making the particular choice

α0 =
π

2
, β0 = cos−1

(
− ǫ√

ǫ2 + 4

)
, γ0 = 0 (5.26)

we construct the equivalent symmetric texture-zero form

MD = mD U(α0, β0, γ0) =




0 2ǫ4 0

2ǫ4 2ǫ3 4ǫ3

0 4ǫ3 1



 (5.27)

which is one of the texture-zeroes down quark mass matrices proposed in [15]. Therefore,

the zeroes in (5.27) are completely accidental and arise due to the particular choice (5.26).

An infinite number of equivalent mass matrices implies the same ‘physical’ quantities,

namely the mass eigenstates and the diagonalizing matrix.

The triangular form of the remaining four texture-zero symmetric quark mass matrices

are given in the appendix for completeness.

6 Examples of admissible D-brane textures

Our present analysis has been motivated by the peculiar patterns of mass matrices which

have appeared in certain D-brane configurations accommodating the Standard Model gauge

symmetry. In this section, we will give simple examples where some of these D-brane

inspired textures can appear, at least in some regions of the parameter space. Of course,

the possibilities of finding consistent textures do increase if we assume the most general

triangular mass matrices without imposing the rather restrictive conditions for zeroes.

However, a complete analysis is beyond the scope of this paper. Instead, our aim is to

illustrate how the new formalism applies in representative examples. We will concentrate

in the case of texture-zero triangular forms and try to find some of the D-brane inspired

textures that reconcile the experimental data.

6.1 The two-zeroes case

Once we have determined the texture with two-zeroes and the diagonalizing matrix of

the down quarks, we can use the relations given in the previous section to construct the
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corresponding up quark mass texture. As an example of the method, we start with the down

quark matrix such that the rotation is around the first axis, so the vector is ~b = (b1, 0, 0),

with b1 = sin β
2 . The diagonalizing matrix is




1 0 0

0 cos β sinβ

0 − sin β cos β



 (6.1)

and the down quark matrix is found to be

mD =





md 0 0

0
√

m2
s cos2 β + m2

b sin2 β 0

0
(m2

b
−m2

s) sin(2β)

2
√

m2
s cos2 β+m2

b
sin2 β

mbms√
m2

s cos2 β+m2

b
sin2 β





i.e., a two-zeroes triangular texture as expected. Using (4.11) we can determine the vector

components of the diagonalizing matrix Vu

a1 = − cos
β

2
c1 + cos

φc

2
sin

β

2
(6.2)

a2 = − cos
β

2
c2 + sin

β

2
c3 (6.3)

a3 = − cos
β

2
c3 − sin

β

2
c2 (6.4)

where the numerical values of the components ci, i = 1, 2, 3 are calculated using (4.10)

and (4.7). First, we consider the particular case where the up-quark mass matrix is rotated

on the orthogonal direction, i.e., we demand the vector ~a to take the form ~a = (0, a2, a3).

Imposing a1 = 0 while using (4.11) we find

tan
β

2
= +

c1

cos φc

2

≡ n1 tan
φc

2
(6.5)

a2 = − cos β
2

cos φc

2

{
c2 cos

φc

2
− c1c3

}
(6.6)

a3 = − cos β
2

cos φc

2

{
c3 cos

φc

2
+ c1c2

}
(6.7)

The angle entering the up-quark diagonalizing matrix is also fixed in this case and given by

sin
α

2
=

√
sin2 φc

2
− c2

1 ≡ sin
φc

2

√
1 − n2

1 (6.8)

Equations (6.6)–(6.8) determine completely all the entries of the up-quark mass matrix.

Therefore, in the case of diagonalizing matrices which fulfil the ‘orthogonality condition’

~a · ~b = 0, all entries of the up and down quark triangular mass matrices are completely

determined. From (6.8) we deduce that the angle α is of the order of the Cabbibo angle

and therefore the elements of the up-quark matrix exhibit also a hierarchical structure in

the sense described above.
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Figure 3. The ratios ρu,d
23

of the two magnitudes |~ξu,d
2

| =
√

m2

2j and |~ξu,d
3

| =
√

m2

3j for the up

(gray curve) and down quark (black curve) triangular matrices as a function of the angle β.

To examine the more general case we relax the condition a1 = 0, therefore (6.5)–(6.6)

are no longer valid in this case. The appropriate formulae for the elements of the vector ~a

are given by (6.2)–(6.4). The two angles α, β of the up and down diagonalizing matrices

are connected through the relation

a2
1 + a2

2 + a2
3 = sin2 α

2
(6.9)

with ai given by (6.2)–(6.4) thus, the only free parameter is the down quark angle β. It

can be checked that for arbitrary values of the free parameter β all entries of the triangular

up-quark mass matrix are non-zero, whenever the corresponding down quark texture has

two zeroes as in the present case. Texture zeros for the up-quarks in this case are obtained

only for specific values of the angle β.

Next, we define the ratios ρ23 = |~ξ2|
|~ξ3|

for the up and down triangular quark mass

matrices which, in terms of the triangular mass matrix entries are given by

ρu,d
23 =

√√√√ (mu,d
21 )

2
+ (mu,d

22 )
2

(mu,d
31 )2 + (mu,d

32 )
2
+ (mu,d

33 )
2

These are plotted in figure 3 as a function of the only free parameter, namely the angle

β. For small angle regions, β ≤ π
4 both textures exhibit a hierarchy |~ξ2| ≤ |~ξ3| which

is reversed for large values of β. Furthermore, we observe that textures with two-zeroes

have the tendency to be aligned, so up and down quark mass matrices show the same

hierarchy in their ‘vector like’ pattern. For small ranges around β ∼ π
4 the two vectors

have comparable magnitudes. This latter case could fit the first set of textures obtained

in our D-brane scenario, if for example we arrange the Higgs vevs so that κd ≫ 1 and

κu ≪ 1. We also observe that using the free parameter β we can obtain zero textures for

the up-quark matrix by demanding that some of the off-diagonal mU -entries are zero.

We may elaborate the remaining two cases of the down quark textures with two-zeroes

and obtain structures similar to the other two mass matrices obtained in the D-brane

construction of section 3. In table 4 examples of texture-zeroes are presented for all three

cases and in figure 4 the ratios similar to those of fig 3 are depicted.
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Case β mU mD

A π
1.952





0.293 0 0

65.036 158.149 0

1.264 0 0.0134









0.005 0 0

0 4.247 0

0 −0.165 0.125





π
1.928





0.293 0 0

65.048 158.119 0

0 −3.073 0.0133









0.005 0 0

0 4.243 0

0 −0.248 0.125





π
53.86





0.293 0 0

0 3.073 0

65.048 158.118 0.684









0.005 0 0

0 0.277 0

0 3.786 1.915





B π
1.973





7.226 0 0

0 0.249 0

−168.576 27.791 0.342









0.120 0 0

−0.003 0.005 0

0 0 4.25





π
200





0.253 0 0

−1.174 7.130 0

0 −170.851 0.342









0.005 0 0

0.0420 0.112 0

0 0 4.25





C π
2





170.851 0 0

−7.129 1.170 0

0 0.271 0.003









4.25 0 0

0 0.12 0

0.003 0 0.005





Table 4. Examples of the three cases A, B, C of the two-zeroes down quark (Cholesky) mass

textures. The specific values of the free parameter β result also to up quark textures with one

zero. β-angle values around π
2

inverse the hierarchy. In particular, |ξu
2
| > |ξu

3
| > |ξu

1
| in A,

|ξu
3
| > |ξu

1
| > |ξu

2
| in B and |ξu

1
| > |ξu

2
| > |ξu

3
| in C.

Π

2

Β

15

25

Ρ
12

u,d

Ρ12
u

Ρ12
d

Π

2

Β

Ρ
13

u,d

Ρ13
u

Ρ13
d

Figure 4. The ratios ρu,d
12

and ρu,d
13

as in figure 3.

6.2 One-zero textures

Next, we investigate the consistency conditions in a simple example with one-zero texture.

We have seen in the previous section that one-zero triangular mass matrices are possible

provided that certain relations are imposed between the elements of the diagonalizing and
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the mass matrices. For example, imposing (5.22), we obtain ~ξ2 · ê1 = 0 i.e., a one-zero

texture. We have further stressed that to avoid any other zero off-diagonal entry we must

demand u1j 6= 0 and u2j 6= 0. To obtain the simplest admissible one-zero texture, let us

assume however, that one of the remaining entries of the orthogonal matrix is zero, i.e.,

u3j = 0 for some j. From (5.22) we have m2
j = Akk which implies the relation

u2
kl =

m2
j − m2

i

m2
l − m2

j

u2
ki (6.10)

with i 6= j 6= l 6= i and k = 1, 2. Since u2
kl, u

2
ki are always positive, and the mass hierarchies

are m3 > m2 > m1, the relation is valid only for i = 1, j = 2, l = 3. Thus we get

u13 = tan φ0 u11 (6.11)

u23 = tan φ0 u21 (6.12)

and

tan φ0 =

√
m2

2 − m2
1

m2
3 − m2

2

(6.13)

Working out the details, we find

Vd =




cos θ cos φ0 − sin θ − cos θ sin φ0

cos φ0 sin θ cos θ − sin θ sin φ0

sinφ0 0 cos φ0



 (6.14)

where θ an arbitrary angle. In the notation of section 5, this can be considered as a

combined rotation of two orthogonal matrices

U(θ) = exp[~vθ · ~s] , U(φ0) = exp[~vφ0
· ~s] (6.15)

with ‘vectors’

~vθ =

(
0,− sin

θ

2
, 0

)
~vφ0

=

(
0, 0,− sin

φ0

2

)

In the same notation, the corresponding ‘vector’ of the combined matrix (6.14) is computed

adapting appropriately the formula (4.11) for the convolution U(θ)U(φ0)

~vd(θ, φ0) =

(
− sin

θ

2
sin

φ0

2
,− cos

θ

2
sin

φ0

2
,− sin

θ

2
cos

φ0

2

)
(6.16)

For arbitrary (θ, φ) the geometrical locus of the tip of this vector is plotted in figure 5.

Given the down quark mass hierarchies and the formula (6.13) the angle φ takes only a

specific value φ0 and the ‘motion’ of the vector tip is constrained along the curve φ = φ0.

We conclude that, unless the free parameter θ is close to θ ∼ 2nπ, n = 0, 1, 2..., the ~vd

indicates a rotation mainly around the third axis. The corresponding ‘vector’ of the up-

quark diagonalizing matrix can be computed using again the very same formula (4.11)
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Θ0

Φ

0

1

v
Ó
HΘ,ΦL

Figure 5. Part of the two-dimensional surface spanned by the vector ~v3(θ, φ). Down quark masses

fix one parameter φ = φ0 and the two dimensional surface reduces to the thick curve.

2 4 6 8 10 12
Θ

-1.0

-0.5

0.5

1.0

vu3,vd3

vd3

vu3

Figure 6. The third components of the vectors of the up and down diagonalizing matrices in the

representation (5.2) as a function of the free parameter in the one-zero texture example of the text.

where now the combining vectors are the CKM and ~vd. The third components of both

vectors vd, vu for φ = φ0 are plotted in figure 6. The down quark mass matrix is

mD =




m2 0 0

0 m2 0

− cos θ
√

(m2

2
−m2

1
)(m2

3
−m2

2
)

m2
− sin θ

√
(m2

2
−m2

1
)(m2

3
−m2

2
)

m2

m1m3

m2



 (6.17)

For the limiting values θ = 0, π
2 of the only free parameter θ we recover specific patterns

of the texture with two zeroes of the previous analysis. We find the following hierarchy of

the vector magnitudes,

|~ξd
1 | = |~ξd

2 | = m2 ≪ |~ξd
3 | =

√
m2

3 − m2
2 + m2

1

while as expected they satisfy the relation |~ξd
1 |2+|~ξd

2 |2+|~ξd
3 |2 = m2

1+m2
2+m2

3. It is straight-

forward to use the developed formalism and derive the corresponding analytic expressions

for the up-quarks. It can be checked that consistency with the experimental data requires

also the same hierarchy between the third |~ξu
3 | and the other two |~ξu

1,2| vectors for the up-
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-2 -1 1 2
Θ

0.02

0.03

0.04

0.05

ÈΞ1,2È�ÈΞ3È

ÈΞ2È�ÈΞ3È

ÈΞ1È�ÈΞ3È

Figure 7. The ratios |~ξ1|

|~ξ3|
and |~ξ2|

|~ξ3|
of the up-quark “line-vector” magnitudes in the one zero texture

as function of the free parameter θ.

quark mass matrix, however, for ranges of θ the ratio
|~ξu

1
|

|~ξu
2
| could be reversed. To demonstrate

this, we plot the ratios
|~ξu

1
|

|~ξu
3
| ,

|~ξu
2
|

|~ξu
3
| in figure 7 as a function of the free parameter θ.

In this example, we dealt with an one-zero mD- texture while we restricted further

the investigation imposing also the condition u32 = 0 on the corresponding diagonalizing

matrix. It is also worth investigating whether the number of parameters in the up-quark

mass matrix can be minimized. Since we have one free parameter, we might choose an

appropriate value to generate a texture zero case for the up quarks too. This way, for

example, choosing θ ∼ − π
3.135 we get

mU ≈




8.58841 0 0

0 0.909606 0

−169.892 17.458 0.0827412





mD ≈




0.12 0 0

0 0.12 0

−2.30052 3.56712 0.177083





VCKM =




0.974184 0.225585 0.00877843

−0.225755 0.973331 0.0407647

0.000651602 −0.0416941 0.99913





i.e., a one-zero texture, with zero entry m21 = 0. The up-quark structure resembles that

of case (2.4) obtained in the context of D-brane scenarios. The compatibility of the down

quark mass matrix would be possible in the presence of a second Higgs doublet H ′
d with

appropriate vev so that κd > 1.

All the three possible cases m21 = 0,m31 = 0,m32 = 0 can be obtained choosing

appropriate values of the free parameter θ and are presented respectively in tables 5, 6

and 7. Although these matrices look ostensibly different, they encode however the same

physical content, i.e., they lead to the same eigenvalues of mU,DmT
U,D and predict the

correct CKM mixing matrix.
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θ mU mD

− π
3.135





8.59 0 0

0 0.91 0

−169.9 17.46 0.08









0.12 0 0

0 0.12 0

−2.30 3.57 0.177









1.04 0.62 −8.50

0.62 0.65 0.12

−8.50 0.12 170.58









0.09 0.05 −0.07

0.05 0.041 0.10

−0.07 0.10 4.25





Table 5. Case of one-zero up- and down quark (Cholesky) mass textures mu
21

= md
21

= 0 and

“reversed hierarchy” for the up-quarks |~ξu
1,3| > |~ξu

2
|. Their corresponding symmetric forms are

shown in the second line.

θ mU mD

− π
13.8





6.20 0 0

5.88 1.26 0

−170.79 0 0.08









0.12 0 0

0 0.12 0

−4.14 0.96 0.18









0.23 0.21 −6.19

0.21 1.461 −5.83

−6.19 −5.83 170.58









0.014 0.025 −0.117

0.025 0.114 0.028

−0.117 0.028 4.247





Table 6. Case of one-zero up- and down quark (Cholesky) mass textures mu
32

= md
21

= 0 and “

hierarchy” for the up-quarks |~ξu
1
| ∼ |~ξu

2
| ≪ |~ξu

3
|. Their corresponding symmetric forms are shown

in the second line.

π
5.384





0.91 0 0

−0.87 8.54 0

0 −170.79 0.08









0.12 0 0

0 0.12 0

−3.54 −2.34 0.18









0.66 −0.63 −0.03

−0.63 1.02 −8.50

−0.03 −8.50 170.58









0.04 −0.05 −0.10

−0.05 0.09 −0.075

−0.10 −0.07 4.25





Table 7. Cases of one-zero mass textures with md
21

= 0 and mu
31

= 0 and their corresponding

symmetric forms.

7 Conclusions

In this work we have examined the problem of fermion mass generation in a wide class of

effective low energy models emerging from intersecting D-brane configurations where the

Yukawa superpotential terms are subject to additional constraints coming from surplus

U(1) symmetries and anomaly cancelation conditions. We have shown that correct masses

for all fermion generations are only obtained when additional Higgs doublets, higher order
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corrections, or, substantially suppressed non-perturbative effects are taken into account.

We have worked out in detail the spectrum of a representative model with Standard Model

gauge symmetry enlarged by abelian factors and have observed that the fermion mass

matrices exhibit a characteristic pattern which appears in a wide class of models obtained

in the context of D-brane scenarios. We have investigated specific patterns of quark mass

matrices and analyzed in detail the conditions imposed by phenomenological constraints

on the various mass generating mechanisms. Furthermore, we have developed a compact

formalism which leads to a unified treatment of all viable symmetric and non-symmetric

fermion mass textures. In particular, we showed that the Cholesky decomposition captures

the features of a whole class of mass matrices related to the former by an orthogonal matrix.

The entries of the corresponding triangular mass matrix can be analytically determined

in terms of the eigenmasses and the diagonalizing matrix and can be used to explore

equivalent classes of symmetric and non-symmetric quark mass matrices compatible with

current data. We have further shown that the triangular matrices can admit extra zeroes,

minimizing thus the number of arbitrary parameters. Finally,we have commented on the

relation between our approach and the symmetric texture-zero quark mass matrices existing

in the literature.
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A The CKM matrix

In this appendix we will provide a few more details on the derivation of the CKM matrix

in the basis s1, s2, s3 discussed in section 4.

For the sake of clarity of our calculations, first we review in brief the conventions

used with respect to the diagonalizing matrices of the up and down quarks. We find also

convenient to adopt here the Wolfenstein parametrization of the CKM matrix.

Let the weak and mass eigenstates of the up-quarks be related by the orthogonal

matrices V L,R
u

u0
L = V L

u uL

u0
R = V R

u uR

The relevant Yukawa terms are written

ū0
LmUu0

R = ūLV L†
u mUV R

u uR

= ūLmdiag.
U uR (A.1)

and similarly for the down quarks. Thus, the diagonal mass matrices are given in terms of

the orthogonal transformations V L,R
u and V L,R

d respectively as follows

mdiag.
U = V L†

u mUV R
u (A.2)

mdiag.
D = V L†

d mDV R
d (A.3)
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Since
(
V L†

u mUV R
u

)†
= V R†

u m†
UV L

u we get

(
mdiag.

U

)2
=

(
V L†

u mUV R
u

)(
V R†

u m†
UV L

u

)

= V L†
u mU m†

UV L
u (A.4)

and similarly for the down quark matrix mD . Thus

mU m†
U = V L

u

(
mdiag.

U

)2
V L†

u

mD m†
D = V L

d

(
mdiag.

D

)2
V L†

d

The current is written

Jµ
W = ū0

Lγµd0
L = ūLV L†

u γµV L
d dL

≡ ūLγµVCKMdL (A.5)

where the CKM matrix is defined

VCKM = V L†
u V L

d (A.6)

Using the Wolfenstein parametrization, the CKM matrix is expressed as follows

VKM =




1 − λ2

2 λ Aλ3(ρ − ı η)

−λ 1 − λ2

2 Aλ2

Aλ3(1 − ρ − ı η) −Aλ2 1



 (A.7)

with λ ∼ 0.2257 and A, ρ, η are order one parameters.

The numerical values of the CKM entries are given by [35]

VCKM =




0.97419 0.2257 0.00359

−0.2256 0.97334 0.0415

0.00874 −0.0407 0.999133



 . (A.8)

Taking the logarithm of VCKM we get

ln VCKM =




0 0.2277 −0.012

−0.2277 0 0.0417

0.0041 −0.0415 0



 . (A.9)

ln VCKM is not exactly antisymmetric reflecting the fact that VCKM is not exactly orthog-

onal because of experimental uncertainties. We may choose

(
ln V ′

CKM

)
=




0 0.2277 −0.012

−0.2277 0 0.0416

0.012 −0.0416 0



 (A.10)
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giving

V ′
CKM =




0.9741 0.2259 −0.0072

−0.2254 0.9733 0.0426

0.0166 −0.0399 0.9991



 (A.11)

or

(
lnV ′

CKM

)
=




0 0.2277 −0.0041

−0.2277 0 0.0416

0.0041 −0.0416 0



 (A.12)

giving

V ′
CKM =




0.9742 0.2258 0.0007

−0.2256 0.9733 0.0417

0.0088 −0.0408 0.9991



 (A.13)

a clearly better choice, suitable for our numerical investigations. This way the CKM matrix

can be written as

ln VCKM = 0.0416s1 − 0.0041s2 + 0.2277s3 (A.14)

or

ln VCKM = φcn̂
−→s (A.15)

where φc = 0.231505 and

n̂ =




0.179694

0.0177102

0.983564



 · (A.16)

The angle φc and the unit vector n̂ encompass all the information of the CKM matrix.

From a ‘geometric’ perspective, the CKM can be viewed as rotations around three axes

defined along the components of n̂. From (A.16) we can observe that the rotation is

predominantly around the third axis, reflecting the fact that the large mixing is between

the first two generations.

B Cholesky form of the symmetric zero-textures

The five symmetric texture-zero mass matrices for the up and down quarks or ref. [15]

admit the following Cholesky form

1.

mU =





√
2ε6 0 0

ε4
√

2ε6 0

0 0 1



 , mD =





2ε4 0 0

2ε3 4ε3
√

1 + 1
4ε2 0

4ε3 1
q

1+ 1

4
ε2

ε

2
q

1+ 1

4
ε2



 (B.1)

2.

mU =




ε6 0 0

0 ε2
√

1 + ε8 0

ε2 1√
1+ε8

ε4√
1+ε8



 , mD =




2ε4 0 0

2ε3 2ε3
√

1 + ε2 0

2ε3 1√
1+ε2

ε√
1+ε2



 (B.2)
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3.

mU =





√
2ε4 0 0

0 ε4 0

1 0
√

2ε4



 , mD =





2ε4 0 0

2ε3 4ε3
√

1 + 1
4ε2 0

4ε3 1
q

1+ 1

4
ε2

1
2

ε
q

1+ 1

4
ε2




(B.3)

4.

mU =





√
2ε6 0 0√
3ε4 ε2

√
1 + 2ε8 0

ε2 1√
1+2ε8

√
2ε4√

1+2ε8



 , mD =




2ε4 0 0

2ε3 2ε4 0

0 0 1



 (B.4)

5.

mU =




ε4 0 0
1√
2
ε2

√
2ε4 0

1 1√
2
ε2 ε4



 , mD =




2ε4 0 0

2ε3 2ε4 0

0 0 1



 (B.5)

C Textures with two-zeroes

In this section we will derive the complete list of triangular texture with two-zeroes with

their corresponding orthogonal diagonalizing matrices. As we have seen in the text, the

orthogonal matrix is given by

Ua = exp [an̂ · −→s ] = 1 + sin a n̂ · −→s + (1 − cos a) (n̂ · −→s )
2 · (C.1)

where n̂ is a unit vector and ~s = (s1, s2, s3) with si the matrices given in (4.1). The

matrices (4.1) satisfy the algebra

[si, sj] = εijksk (C.2)

and their eigenvalues are ±i and 0. For computational purposes we also notice that

(n̂ · −→s )
3

= −n̂ · −→s (C.3)

and the ‘commutation’ relation
[−→a · −→s ,

−→
b · −→s

]
=

(−→a ×−→
b

)
· −→s (C.4)

We have redefined also the vector n̂

n̂ → sin
a

2
n̂ ≡ −→n · (C.5)

and the new vector −→n assumes the components (a1, a2, a3) where now

−→n 2 = a2
1 + a2

2 + a2
3 = sin2 α

2
· (C.6)

The orthogonal matrix Uα is finally written

Uα = 1 + 2 cos
α

2
−→n · −→s + 2 (−→n · −→s )

2
(C.7)
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while in expanded form we get

Uα =




cos α + 2a2

1 2
(
a3 cos α

2 − a1a2

)
2
(
a2 cos α

2 + a1a3

)

−2
(
a3 cos α

2 + a1a2

)
cos α + 2a2

2 2
(
a1 cos α

2 − a2a3

)

−2
(
a2 cos α

2 − a1a3

)
−2

(
a1 cos α

2 + a2a3

)
cos α + 2a2

3



 . (C.8)

In addition to the cases discussed in the text, zero elements are generated whenever we

have

a1 = ± cos
α

2
(C.9)

a2 = ±a3 =

√
−1

2
cos α (C.10)

plus permutations. It is obvious that because of the square root we need cos α < 0. The

matrix Uα acquires four zero elements and one element equal to ±1 . From the remaining

four elements only two are independent and equal

ρ1 = 1 + 2 cos α (C.11)

ρ2 = 2
√

2 cos
α

2

√
− cos α · (C.12)

Note that since cos α < 0, the range of ρ1 = [−1, 1] while

ρ2
1 + ρ2

2 = 1 (C.13)

i.e. the 2 × 2 submatrix is orthogonal, thus we may put ρ1 = cos θ, ρ2 = sin θ.

Below we give a list all the cases that generate zeroes together with the corresponding

Uα and MMT matrices. To simplify the forthcoming formulae we define the matrix

M =




m2

1 0 0

0 m2
2 0

0 0 m2
3



 (C.14)

Also, the sign symbols appearing bellow correspond to the signs of a1 a2 and a3 respectively.

This way we get (cos θ → c, sin θ → s):

• a1 a2 a3

[
+ + +

]
, U =




c 0 s

−s 0 c

0 −1 0





UMUT =




c2m2

1 + s2m2
3 cs

(
m2

3 − m2
1

)
0

cs
(
m2

3 − m2
1

)
c2m2

3 + s2m2
1 0

0 0 m2
2





[
+ + −

]
, U =




c −s 0

0 0 1

−s −c 0




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UMUT =




c2m2

1 + s2m2
2 0 cs

(
m2

2 − m2
1

)

0 m2
3 0

cs
(
m2

2 − m2
1

)
0 c2m2

2 + s2m2
1





[
+ − +

]
, U =




c s 0

0 0 1

s −c 0





UMUT =




c2m2

1 + s2m2
2 0 s c

(
m2

1 − m2
2

)

0 m2
3 0

c s2

(
m2

1 − m2
2

)
0 c2m2

2 + s2m2
1





[
+ − −

]
, U =




c 0 −s

s 0 c

0 −1 0





UMUT =




c2m2

1 + s2m2
3 c s

(
m2

1 − m2
3

)
0

c s
(
m2

1 − m2
3

)
c2m2

3 + s2m2
1 0

0 0 m2
2





[
− + +

]
, U =




c s 0

0 0 −1

−s c 0





UMUT =




c2m2

1 + s2m2
2 0 c s

(
m2

2 − m2
1

)

0 m2
3 0

c s
(
m2

2 − m2
1

)
0 c2m2

2 + s2m2
1





[
− + −

]
, U =




c 0 s

s 0 −c

0 1 0





UMUT =




c2m2

1 + s2m2
3 c s

(
m2

1 − m2
3

)
0

c s
(
m2

1 − m2
3

)
c2m2

3 + s2m2
1 0

0 0 m2
2





[
− − +

]
, U =




c 0 −s

−s 0 −c

0 1 0





UM UT =




c2m2

1 + s2m2
3 cs

(
m2

3 − m2
1

)
0

cs
(
m2

3 − m2
1

)
c2m2

3 + s2m2
1 0

0 0 m2
2





[
− − −

]
, U =




c −s 0

0 0 −1

s c 0




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UMUT =




c2m2

1 + s2m2
2 0 cs

(
m2

1 − m2
2

)

0 m2
3 0

cs
(
m2

1 − m2
2

)
0 c2m2

2 + s2m2
1





• a2 a1 a3

[
+ + +

]
, U =




0 0 1

−s c 0

−c −s 0





UMUT =




m2

3 0 0

0 c2m2
2 + s2m2

1 cs
(
m2

1 − m2
2

)

0 cs
(
m2

1 − m2
2

)
c2m2

1 + s2m2
2





[
+ + −

]
, U =




0 −s c

0 c s

−1 0 0





UMUT =




c2m2

3 + s2m2
2 cs

(
m2

3 − m2
2

)
0

cs
(
m2

3 − m2
2

)
c2m2

2 + s2m2
3 0

0 0 m2
1





[
+ − +

]
, U =




0 s c

0 c −s

−1 0 0





UMUT =




c2m2

3 + s2m2
2 cs

(
m2

2 − m2
3

)
0

cs
(
m2

2 − m2
3

)
c2m2

2 + s2m2
3 0

0 0 m2
1





[
+ − −

]
, U =




0 0 1

s c 0

−c s 0





UMUT =




m2

3 0 0

0 c2m2
2 + s2m2

1 c s
(
m2

2 − m2
1

)

0 cs
(
m2

2 − m2
1

)
c2m2

1 + s2m2
2





[
− + +

]
, U =




0 s −c

0 c s

1 0 0





UMUT =




c2m2

3 + s2m2
2 cs

(
m2

2 − m2
3

)
0

cs
(
m2

2 − m2
3

)
c2m2

2 + s2m2
3 0

0 0 m2
1




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[
− + −

]
, U =




0 0 −1

s c 0

c −s 0





UMUT =




m2

3 0 0

0 c2m2
2 + s2m2

1 cs
(
m2

1 − m2
2

)

0 cs
(
m2

1 − m2
2

)
c2m2

1 + s2m2
2





[
− − +

]
, U =




0 0 −1

−s c 0

c s 0





UMUT =




m2

3 0 0

0 c2m2
2 + s2m2

1 cs
(
m2

2 − m2
1

)

0 cs
(
m2

2 − m2
1

)
c2m2

1 + s2m2
2





[
− − −

]
, U =




0 −s −c

0 c −s

1 0 0





UMUT =




c2m2

3 + s2m2
2 cs

(
m2

3 − m2
2

)
0

cs
(
m2

3 − m2
2

)
c2m2

2 + s2m2
3 0

0 0 m2
1





• a3 a1 a2

[
+ + +

]
, U =




0 c s

−1 0 0

0 −s c





UMUT =




c2m2

2 + s2m2
3 0 cs

(
m2

3 − m2
2

)

0 m2
1 0

cs
(
m2

3 − m2
2

)
0 c2m2

3 + s2m2
2





[
+ + −

]
, U =




0 1 0

−c 0 s

s 0 c





UMUT =




m2

2 0 0

0 c2m2
1 + s2m2

3 cs
(
m2

3 − m2
1

)

0 cs
(
m2

3 − m2
1

)
c2m2

3 + s2m2
1





[
+ − +

]
, U =




0 1 0

−c 0 −s

−s 0 c




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UMUT =




m2

2 0 0

0 c2m2
1 + s2m2

3 cs
(
m2

1 − m2
3

)

0 cs
(
m2

1 − m2
3

)
c2m2

3 + s2m2
1





[
+ − −

]
, U =




0 c −s

−1 0 0

0 s c





UMUT =




c2m2

2 + s2m2
3 0 cs

(
m2

2 − m2
3

)

0 m2
1 0

cs
(
m2

2 − m2
3

)
0 c2m2

3 + s2m2
2





[
− + +

]
, U =




0 −1 0

c 0 s

−s 0 c





UMUT =




m2

2 0 0

0 c2m2
1 + s2m2

3 cs
(
m2

3 − m2
1

)

0 cs
(
m2

3 − m2
1

)
c2m2

3 + s2m2
1





[
− + −

]
, U =




0 −c −s

1 0 0

0 −s c





UMUT =




c2m2

2 + s2m2
3 0 cs

(
m2

2 − m2
3

)

0 m2
1 0

cs
(
m2

2 − m2
3

)
0 c2m2

3 + s2m2
2





[
− − +

]
, U =




0 −c s

1 0 0

0 s c





UMUT =




c2m2

2 + s2m2
3 0 cs

(
m2

3 − m2
2

)

0 m2
1 0

cs
(
m2

3 − m2
2

)
0 c2m2

3 + s2m2
2





[
− − −

]
, U =




0 −1 0

c 0 −s

s 0 c





UMUT =




m2

2 0 0

0 c2m2
1 + s2m2

3 cs
(
m2

1 − m2
3

)

0 cs
(
m2

1 − m2
3

)
c2m2

3 + s2m2
1




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D One zero textures

If we want the triangular matrix to have one zero element we must address the following

geometrical problem. Given an orthonormal basis in the 3-d space −→a ,
−→
b and −→c = −→a ×−→

b

and a matrix M (diagonal in our case) we must satisfy the condition

−→a M
−→
b = 0· (D.1)

If this relation is to hold true we must have

M
−→
b =

(−→
b M

−→
b

)−→
b +

(−→c M
−→
b

)−→c (D.2)

or [
M −−→

b M
−→
b

]−→
b =

(−→c M
−→
b

)−→c · (D.3)

Furthermore, in order to check whether the vector −→c admits also zero components we must

investigate the relation

M =
−→
b M

−→
b · (D.4)

This relation in components gives

b2
2

(
m2

1 − m2
2

)
= b2

3

(
m2

3 − m2
1

)
(D.5)

b2
1

(
m2

2 − m2
1

)
= b2

3

(
m2

3 − m2
2

)
(D.6)

b2
1

(
m2

3 − m2
1

)
= b2

2

(
m2

2 − m2
3

)
· (D.7)

Taking into account the charged fermion mass hierarchy m3 > m2 > m1, we observe that

only the second line (D.6) can be satisfied so that only c2 can vanish.

Returning to (D.3) and taking the ratios of its components we obtain

c1

c2
=

m2
1 −

−→
b M

−→
b

m2
2 −

−→
b M

−→
b

b1

b2
≡ a12

b1

b2
(D.8)

c2

c3
=

m2
2 −

−→
b M

−→
b

m2
3 −

−→
b M

−→
b

b2

b3
≡ a23

b2

b3
(D.9)

c1

c3
=

m2
1 −

−→
b M

−→
b

m2
3 −

−→
b M

−→
b

b1

b3
≡ a13

b1

b3
· (D.10)

in a self-explanatory notation. Solving for c1, c2 we get

c2 = a23
b2

b3
c3 (D.11)

c1 = a13
b1

b3
c3 (D.12)

We observe that the orthogonality condition

b1c1 + b2c2 + b3c3 = 0 (D.13)
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is satisfied automatically provided that

b2
1 + b2

2 + b2
3 = 1 · (D.14)

Also, we find that

c2
1 + c2

2 + c2
3 = c2

3

[
1 +

a2
23b

2
2 + a2

13b
2
1

b2
3

]
= 1 (D.15)

so that the c3 component can be expressed as a function of the mass eigenstates and the

vector
−→
b as follows

c3 = ± b3√
a2

13b
2
1 + a2

23b
2
2 + b2

3

· (D.16)

The remaining two components c1,2 follow immediately, thus we finally get:

c1 = a13
b1√

a2
13b

2
1 + a2

23b
2
2 + b2

3

(D.17)

c2 = a23
b2√

a2
13b

2
1 + a2

23b
2
2 + b2

3

(D.18)

c3 = ± b3√
a2

13b
2
1 + a2

23b
2
2 + b2

3

· (D.19)

Depending on the sign of c3, the vector −→a =
−→
b ×−→c equals

a1 =
(1 − a23) b2b3√

a2
13b

2
1 + a2

23b
2
2 + b2

3

(D.20)

a2 =
(a13 − 1) b1b3√

a2
13b

2
1 + a2

23b
2
2 + b2

3

(D.21)

a3 =
(a23 − a13) b1b2√
a2

13b
2
1 + a2

232b
2
2 + b2

3

(D.22)

or

a1 = − (1 + a23) b2b3√
a2

13b
2
1 + a2

23b
2
2 + b2

3

(D.23)

a2 =
(1 + a13) b1b3√

a2
13b

2
1 + a2

23b
2
2 + b2

3

(D.24)

a3 =
(a23 − a13) b1b2√
a2

13b
2
1 + a2

23b
2
2 + b2

3

· (D.25)

Thus the formulae for the ai, ci components constitute the general solution to the one-zero

texture expressed by the condition (D.1).

Going back to the definitions of the triangular (Cholesky) matrix (3.20), we distinguish

the following three cases with respect to the three off-diagonal entries:

i) To apply the above formulae for a zero {21} element in the triangular matrix

−→
ξ 2 · −→e 1 =

u11u21m
2
1 + u22u12m

2
2 + u13u23m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

(D.26)
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we make the identifications

−→a = [u11, u12, u13] (D.27)
−→
b = [u21, u22, u23] (D.28)
−→c = [u31, u32, u33] · (D.29)

At the same time, the only allowed zero element in the orthogonal matrix is u32, in accor-

dance with (D.6).

ii) For a zero {31} element

−→
ξ 3 · −→e 1 =

u11u31m
2
1 + u32u12m

2
2 + u33u13m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

(D.30)

we make the following substitutions in our general results

−→a = [u11, u12, u13] (D.31)
−→
b = [u31, u32, u33] (D.32)
−→c = − [u21, u22, u23] · (D.33)

The zero element of the orthogonal matrix in this case according to (D.6) is u22 = 0.

iii) Finally, the application for the {32} element

−→
ξ 3 · −→e 2 = − u23u33m

2
1m

2
2 + u21u31m

2
2m

2
3 + u22u32m

2
1m

2
3√

u2
11m

2
1 + u2

12m
2
2 + u2

13m
2
3

√
u2

33m
2
1m

2
2 + u2

31m
2
2m

2
3 + u2

32m
2
1m

2
3

. (D.34)

implies that

−→a = [u21, u22, u23] (D.35)
−→
b = [u31, u32, u33] (D.36)
−→c = [u11, u12, u13] · (D.37)

while for this particular case we also have to substitute

m2
1 → m2

2m
2
3 (D.38)

m2
2 → m2

1m
2
3 (D.39)

m2
3 → m2

1m
2
2· (D.40)

The only possible zero element of the orthogonal matrix in this case is u12.

Open Access. This article is distributed under the terms of the Creative Commons
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