
A Comparison of Batch and Incremental Supervised
Learning Algorithms

Leonardo Carbonara 1, and Alastair Borrowman 2

1 Database Marketing Team, British Telecom,
PP411.7, 120 Holborn, London EC1N 2TE, UK

leonardo.carbonara@bt.com
2 Department of Computing Science, University of Aberdeen,

King's College, Aberdeen AB24 3UE
abj @csd.abdn.ac.uk

Abstract. This paper presents both a theoretical discussion and an experi-
mental comparison of batch and incremental learning in an attempt to indi-
viduate some of the respective advantages and disadvantages of the two ap-
proaches when learning from frequently updated databases. The paper claims
that incremental learning might be more suitable for this purpose, although a
number of issues remain to be resolved.

1 Introduction

An important problem in KDD is deriving data models from frequently updated
databases. Real-world databases, such as those held by credit card or telecommuni-
cations companies are constantly being enriched with new information, while old
data is discarded. Although supervised learning algorithms have been used exten-
sively to infer classification models from data, a number of issues still remain to be
resolved to make them cope effectively with rapidly changing data. These algo-
rithms can be divided into two distinct categories: incremental algorithms are able
to build and refine a model in a step-by-step basis by incorporating new training
cases into the model as they become available, whereas non-incremental algorithms
work in batch mode. Incremental learning systems include Utgoff's (1989) ID5R
and his more recent ITI (Utgoff, 1994), and Kalles & Morris's (1996) TDIDT.
Among the most renown non-incremental learning algorithms are Michalski's
(1980) AQ and Quinlan's (1993) C4.5.

Similarly to incremental learning systems, theory revision systems take as input
an approximately correct model of a domain, usually expressed as a set of rules, and
a set of training instances, and by means of a predefined set of refinement operators
revise the rules to make them consistent with the training set. Although these sys-
tems cannot be considered pure learning algorithms as they assume that an initial
model is provided, they share nevertheless with incremental learning algorithms the

265

ability to incorporate new data into an existing model. Hence, for the purpose of this
paper they will be treated as incremental learning systems. Theory revision systems
include Ginsberg's (1988) SEEK2, EITHER (Ourston & Mooney, 1991), PTR
(Koppel, et at., 1994), and Carbonara & Sleeman's (1996) STALKER.

The most appealing property of non-incremental learning algorithms is possibly
their ability to achieve high classification accuracy, due to the fact that processing a
batch of instances help them improve generalisation and avoid over-fitting. Incre-
mental learning, on the other hand, is desirable because knowledge revision is typi-
cally much less expensive than knowledge creation.

This paper presents a comparison of batch and incremental learning in an attempt
to individuate some of the advantages and disadvantages of these approaches when
learning from frequently updated databases. The paper is organised as follows. Sec-
tion 2 discusses some of the properties of the batch and incremental learning sys-
tems. Section 3 presents some experimental results comparing the performance of a
batch learning system, C4.5, an incremental learning system, ITI, and a theory revi-
sion system, STALKER. Section 4 summarises the results and gives some conclu-
sions.

2 Batch vs. Incremental Learning

It is commonly thought that batch algorithms achieve higher classification rates than
incremental learners, as, in general, batch learners seem to be less prone to problems
such as over-fitting. In fact, they can exploit their "global view" of the data to gen-
erate more robust classifiers. Incremental algorithms, on the other hand, follow a
more 'myopic ' approach as they attempt to incorporate each single instance into the
model. However, in the context of rapidly changing domains there are three major
problems that can be identified with the batch approach:
1. Abrupt transition between successive models. When inferring a classification

model from data, the learning algorithm selects the attributes to be included in
the model using some heuristic, e.g., Quinlan's information gain (Quinlan,
1986). This heuristic often depends on the distribution of the possible values of
the attributes across the instances. Since, when new cases are added to the ini-
tial database, this distribution might change, the new model derived from the
updated database can be based on different attributes from those used in the
original model. Hence, there is no clear and explicit relationship between two
successive models, and it becomes difficult to keep track of the evolution of the
model over time. Some methods that are being investigated to overcome this
problem include feature selection, discretization, and boosting.

2. Inconsistency over data. The fact that the subsequent models produced by a
batch algorithm are unrelated also means that cases which were correctly classi-
fied by an earlier model may be mis-classified by a subsequent model, and vice
versa. In other words, there is no assurance whatsoever that, moving from one
model to another, any kind of consistency over the data will be maintained. As
we shall see below, consistency is not always a desirable property. However,

266

there must be some way to monitor and control the inconsistencies introduced
so that the user is informed of the reasons why inconsistency is achieved on a
number of cases.

3. Time inefficiency: when dealing with very large collections of data which are
constantly being updated, generating a new model from scratch every time new
instances are received is a very inefficient way to revise the model. Sampling is
a possible solution to this problem, although in the case of very skewed data
interesting concepts which have little statistical support may not be identified.

Incremental learning inherently solves the first two problems identified above:
1. Smooth transition between successive models. Since the new model is not gener-

ated from scratch using the now-augmented set of instances, but is a revision of
the initial model, there is a clear relationship between the two models. By ana-
lysing the changes implemented it is possible to know exactly how the initial
model was modified to produce the revised model.

2. Consistency over data. The incremental approach also assures that the changes in
the model are truly incremental, i.e., the classification performance of the re-
vised model is unaltered on the cases contained in the initial data set.

Whether the incremental approach can also solve the third problem, i.e., the time
inefficiency of the batch approach, needs to be investigated further. Batch algo-
rithms such as C4.5 work in linear time in the number of cases processed. Incre-
mental learners usually require more computational effort to incorporate each in-
stance into an existing model. However, it is not necessary that the sum of the in-
cremental costs be less than the batch cost, as every time the incremental algorithms
only work on the updates. Hence, if the model needs to be updated frequently, the
incremental approach should be less expensive.

It has already be pointed out that the second property possessed by incremental
learning, i.e. the ability to make changes to the model which are consistent with the
previously seen instances may not always be desirable. This is the case when the
concepts of interest depend on some hidden context that changes over time. Changes
in the hidden context can induce more or less radical changes in the target concepts,
producing what is generally known as concept drift (Schlimmer & Granger, 1986).
Widmer & Kubat (1996) showed that incremental learners can be adapted to suc-
cessfully detect, and react to, concept drift. Although it is not the purpose of this
paper to investigate learning in the presence of concept drift, this is another reason
why incremental learning may prove superior to the batch approach in rapidly
changing domains.

In this section some of the properties of incremental and batch learners have been
presented and discussed. The main advantage of batch algorithms seems to be their
superior classification power, while the incremental approach appears to be prefer-
able when it is likely that new data will become available after the initial classifier
has been built. Since this is a common occurrence in practical applications of ma-
chine learning, where the continual collection of data is the norm, it is evident that
incremental learners able to achieve high classification accuracy would constitute an
appealing alternative to batch learners. In the next section, the results of some ex-

267

periments are presented which attempt to understand the proportion of the gap, if
any, between the classification power of current batch and incremental algorithms.

3. Some experiments comparing batch and incremental learning
systems

In this section the results of some experiments comparing the classification accuracy
of the batch learning algorithm C4.5, the incremental learning algorithm ITI, and
the theory revision system STALKER will be presented. C4.5 and ITI are two state-
of-the art decision tree induction algorithms. STALKER has been shown to perform
at comparable levels with other well known theory revision systems on a number of
benchmark domains (Carbonara & Sleeman, 1996). Moreover, it uses an incre-
mental algorithm to refine each incorrectly solved instance, its approach therefore
being closer to pure incremental learners than other batch theory revision systems.

C4.5 probably does not need any introduction as it is one of the most widely used
algorithm for batch induction of decision trees. C4.5 produces an initial decision
tree using the information gain metric to select the test at each decision node. The
tree is then pruned to prevent overfitting. The final tree can also be converted into a
collection of simplified rules.

ITI (Utgoff, 1994) produces models of the data in the form of binary decision
trees, that is each test at a decision node can be answered true or false. ITI can be
used both in batch and incremental mode.

Theory revision is the task of automatically refining a domain theory usually ex-
pressed as a set of rules to make it consistent with a given set of training instances.
The theory revision system STALKER (Carbonara & Sleeman, 1996) generates a set
of alternative refinements to correct each incorrectly solved training case. These
alternative corrections are tested against all the previously seen instances to select
the one that achieves the highest classification accuracy. The best refinement is
implemented and the process repeated for the next training instance. Since testing
each alternative correction is computationally expensive, STALKER overcomes this
problem by converting rules and instances into a Truth Maintenance System (TMS),
which is then used to efficiently test the refinements.

In the next subsection the method used to compare the three algorithms is de-
scribed. The results of experiments with four domains from the UCI repository of
machine learning databases are then presented.

3.1. The evaluation method

As already noticed, STALKER is not a pure incremental learning system as it needs
to be given as input an initial set of rules to be refined. Hence, to compare its per-
formance with the two other systems the following method has been used. An initial
ruleset was produced with C4.5 using a subset of the training instances. This set of
rules was then refined by STALKER using the remaining training instances. The

268

classification accuracy of the resulting ruleset was then compared to that of the
ruleset produced by C4.5 using all the training instances. ITI was tested in a similar
way, by generating an initial tree using the system in batch mode and then adding
the remaining instances to the tree. However, the same results would have been
obtained by generating the final tree from all the instances in batch mode, as ITI's
tree transposition operator ensures that the incremental algorithm generates the same
tree as it would have been produced with the batch algorithm. The ratio of batch and
incremental instances was different in each subset to enable the investigation of the
relationship between the accuracy of the final data model produced and the number
of instances used to build the initial batch model. The ratio, or step, between the
number of batch and incremental instances was decided upon based on the total
number of training instances. A ratio was chosen which produced 4 or 5 subsets for
each dataset considered. The results presented were averaged over ten independent
trials.

The three systems were tested on four datasets from the UCI Repository of Ma-
chine Learning Databases (Merz & Murphy, 1996). A brief description of the do-
mains and the results of the experiments follow.

Tables 1 to 4 show the classification accuracy results for the experiments carried
out with the above domains. The figures reported are:
�9 Initial KB is the accuracy achieved by the ruleset produced by C4.5 with the

'batch' subset of training data which was used as the initial theory for the
STALKER experiments;

�9 STALKER is the accuracy achieved by STALKER using the 'incremental' sub-
set of training data to refine the Initial KB;

�9 C4.5 is the classification performance of C4.5 on the full set of training data (this
explains why the curve is a straight line);

* ITI B a t c h represents the accuracy of the initial tree generated by ITI from the
'batch' data;

�9 ITI I n c r e m e n t a l is the accuracy of the final tree obtained by ITI by incorporat-
ing into the initial tree the remaining 'incremental' training instances. As ITI is
always able to accommodate all the training instances, this is also a straight line.

Table 1. Classification accuracy for the Breast Cancer domain

Data Split Initial Training Data
100/500
2001400
300/300
400/200
500/100

Data Split Initial
! 00/500

Training Data
11"I Batch STALKER

92.40 93.58 96.50

93.90 95.04 97.43

94.07 96.70 97,93

94.85 97,99 98.05

95.60 99.17 99.20

Test Data
TestData I 1TIBatch [STALKER

93.23[93.23[94.34

ITI Incremental
I00

100

I00

I00

I00

IT1 Incremental

C4.5 - 600 cases

97.95

97.95

97.95

97.95

97.95

C4.5 - 600 cases

95.05 95.96

269

2001400 94,34

3001300 94.24

400/200 94.54

5001100 94.54:

93.43 95.95: 95.05 95.9~'-"

94.04 95.65 95.05 95.96

93.03 95.85 95.05 95.96

93.83 95.851 95.05 95.961

Table 2. Classification accuracy for the Splice domain

Data Split Initial Training Data

150/750 77.72

300/600 83.15

4501450 86,51

600/300 88.47

750/150 90.20

D~a Split ln~i~ Test D~a

1501750 76.70

3001600 85.30

450/450 88.70

600/300 91.80

750/150 92.10

Training Data

IT! B~ch

82.368

90.268

93.102

95.289

97.881

STALKER ITllncremental C4.5-900cases

93.48 100 95.04

94.37 100 95,04

96,40 100 95.04

95.97 100 95.04

98.67 100 95.04

Test Data

ITI Batch

78.60

87.20

87.20

88.20

90,50

STALKER

86.60

91.00

ITllncremental

91.30

C4.5 - 900 cases

92.80

91.30 92.80

92. I 0 91.30 92.80

94.20 91.30 92.80

93.50 91.30 92.80

Table 3. Classification accuracy for the Adult domain

Training Data

Data Split Initial Training Data

200/800 79.33

400/600 80.77

600/400 8 ! .65

8001200 82.40

Initial Test Data

ITI Batch STALKER ITI Incremental C4.5 - 1000 cases

74.77 87.03 100 87.39

79,43 92.00 100 87.39

83.13 93.55 100 87.39

86.20 94.60 100 87.39
I

Test Data

1TI Batch STALKER 1T1 Incremental C4.5 - 1000 cases

79.62 8 ! .80 81.44 83.22

80.62 80.88 81.44 83.22

Data Split

200/800

400/600

600/400

800/200

79.32

80.80

81.36 81.30 82.20 81.44 83.22

82.12 81.39 82.24 81.44 83.22

Table 4. Classification accuracy for the Diabetes domain

Trainlnl~ Data

Data Split Initial Training Data ITI Batch STALKER

100/500 70.76 72.90 75.80

200/400 72.35 78.23 79.90

1TI Incremental C4.5 - 600 cases

100 81.97

100 81.97

270

3001300 73.50

400/200 75.40

500/100 73.20

Data Split Initial Test Data

100/500 66.90

2001400 69.23

300/300 71.01

400/200 73.33

500/100 71.37

84,47 81.63 100 81.97

86,15 100 81,97

100 81.97

90.33

94.77 86,90

Test Data

ITI Batch

66.90

67.56

69.35

67.62

67.86

STALKER ITI Incremental C4.5 - 600 cases

69.52 67.98 72.44

72.26 67.98 72,44

72.14 67.98 72.44

73.15 67.98 72.44

73.45 67.98 72.44

As can be seen from the tables above the three systems seem to achieve compa-
rable levels of accuracy on all the domains considered. Perhaps the only domain
where there is a noticeable difference is the Diabetes domain, ITI performing sig-
nificantly worse than C4.5 and STALKER.

STALKER is particularly sensitive to the accuracy of the initial KB which it is
given to revise. This is somehow consistent with the minor tweaking assumption
under which most theory revision systems work, i.e. the supposition that the initial
KB is 'approximately' correct, and only needs minor tweaking rather than a major
overhaul. This makes theory revision systems prefer 'minimal' refinements, i.e.
corrections that are considered to be the least radical according to some metric (e.g.,
syntactical complexity). It is possible that this bias towards minimal revisions pre-
vents such systems from making the more drastic changes that may be needed to
refine very inaccurate theories. However, it must be noticed that, starting with an
accurate KB, in two domains (Splice and Diabetes) STALKER outperforms the
other two systems. In the Adult domain, on the other hand, a superior performance
to C4.5 on the training data is not matched by a similar result on the test data, per-
haps indicating over-fitting.

Some other possible cases of over-fitting can be seen in the test results for Dia-
betes experiments where for the 300/300 split and the 400/200 split, respectively,
ITI 's and C4.5's initial trees are more accurate than the corresponding final trees.

ITI has the desirable feature that trees built incrementally are always the same as
the batch trees generated from the same data. This is achieved by means of its tree
restructuring operators. However, this implies that extra work must be done to re-
shape the incrementally built trees which can affect the system's time performance.
In fact, in the above experiments the time taken by ITI to incrementally revise the
initial trees is consistently higher than the time taken by C4.5 to build the final batch
trees. (Note that both C4.5 and ITI are implemented in C, and were tested on the
same machine.) Another appealing characteristic of ITI's is that it always accom-
modates all training instance. This, however, can cause the trees generated by ITI to
be exceedingly complex, which in turn can lead to over-fitting. In fact, ITI 's test
results are always slightly less accurate than those for the other two systems. To
overcome this problem pruning could be used to eliminate subtrees that overfit the
data. Utgoff (1994) explains that no pruning technique was used in ITI to retain the

271

property that the same tree will be found for the same set of instances, independent
of the order in which they are presented. Nevertheless, he suggests that a pruning
method could be incorporated if, instead of actually discarding unwanted subtrees,
one could mark nodes as 'virtually pruned'. Thus subtrees could be marked in and
out of existence without the expense of destroying or reconstructing anything. When
one arrives at a virtually pruned decision node, one treats it as a leaf, returning the
corresponding class.

We shall conclude this section with some notes on the time performance of the
algorithms compared. A direct comparison of timings was not possible as the sys-
tems were developed with different programming languages (C4.5 and ITI are writ-
ten in C, while STALKER is implemented in Common Lisp). Hence, we shall limit
this discussion to the computational complexity of the three algorithms. C4.5 is
linear in the number of training instances processed. In the incremental learner ITI,
the incremental cost is, in general, proportional to the number of nodes in the deci-
sion tree. The tree generally grows to its approximate final size early in the training,
with the rest of the training serving to improve the selection of the test at each node.
Of concern is whether the incremental training cost continues to grow even after the
size of the tree has more or less stabilised. Experimental results on a number of
domains with both symbolic and numeric variables (Utgoff, 1994) seem to suggest
that ITI ' s training cost appears to be effectively independent of the number of
training instances seen. In theory, however, this is not the case when numeric vari-
ables are involved. For each numeric variable at each node, a sorted list of the val-
ues observed is maintained, which is used to select the best test for that node.
Hence, more training instances means a greater cost to maintain each such list. In
the theory revision system STALKER, training time is split between generation of
alternative refinements and testing of revised KBs against previously processed
training instances. Refinement generation is a potentially exponential process when
dealing with long rule chains, although in most cases takes a negligible amount of
time. Testing of refined KBs with the Truth Maintenance System is in theory cubic
in the number of cases, although experiments in a number of domains seem to sug-
gest that the process is in fact quadratic in the number of cases represented in the
TMS (Carbonara, 1996). In conclusion, it seems that C4.5 is more efficient than the
other two incremental algorithms. However, as pointed out in Section 2, when
dealing with frequently updated very large databases the cost of incrementally up-
dating an initial model should be less than building the model from scratch every
time.

4. Conclusions

This paper presented a comparison of incremental and batch learning algorithms. In
the literature, batch learning is often praised for its ability to achieve high classifi-
cation accuracy, but it is considered to be inefficient when applied to frequently
updated, large databases. Not only should incremental learning obviate this short-

272

coming, but, as shown by the results of an experimental comparison, can also
achieve comparable levels of accuracy to batch learning. Moreover, incremental
learners also possess some other interesting properties, such as the ability to monitor
changes in the data model and to detect concept drift, which are particularly desir-
able when dealing with rapidly changing domains.

Acknowledgments

T h e work presented in this paper was supported by the Data Mining Research Proj-
ect and was carried out at the BT Labs, Ipswich. The authors wish to thank Gavin
Meggs for his useful comments on an earlier version of this paper.

References

Carbonara, L. and Sleeman, D. (1996). Improving the Efficiency of Knowledge Base Re-
finement. In Proceedings of the 13th International Conference on Machine Learning (pp.
78-86), Bari, Italy: Morgan Kauffman.

Clark, P. & Nibblet, T. (1989). The CN2 induction algorithm. Machine Learning, 3, 261-283.
Ginsberg, A. (1988). Automatic Refinement of Expert System Knowledge Bases. Morgan

Kaufmann, San Mateo, California.
Kalles, D. & Morris, T. (1996). Efficient Incremental Induction of Decision Trees. Machine

Learning, 24, 231-242.
Koppel, M., Feldman, R., & Segre, A.M. (1994). Bias-Driven Revision of Logical Domain

Theories. Journal of Artificial Intelligence Research, 1, 159-208.
Michalski, R.S. & Chilauski, R.L. (1980). Learning by being told and learning from exam-

ples: An experimental comparison of the two methods of knowledge acquisition in the
context of developing an expert system for soybean disease diagnosis. Policy Analysis
and Information Systems, 4, 125-160.

Merz, C.J., & Murphy, P.M. (1996). UCI Repository of machine learning databases
[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of Califor-
nia, Department of Information and Computer Science.

Ourston, D. and Mooney, R. (1991). Changing the Rules: A comprehensive approach to
Theory Refinement. In Proceedings of the 8th National Conference on Artificial Intelli-
gence (pp. 815-820), Cambridge, MA: MIT Press.

Quinlan, J.R. (1986). Induction of Decision Trees. Machine Learning 1, 81-106.
Quinlan, J.R. (1993). C4.5: Programs for machine learning. San Mateo, California: Morgan

Kauffman.
Schlimmer, J.C. & Granger, R.H. (1986). Incremental Learning from Noisy Data. Machine

Learning, 1,317-354.
Utgoff, P.E. (1989). Incremental Induction of decision trees. Machine Learning, 4, 161-186.
Utgoff, P.E. (1994). An Improved Algorithm for Incremental Induction of Decision Trees. In

Proceedings of the 11 'h International Conference on Machine Learning, New Brunswick,
N J, Morgan Kauffman.

Widmer, G. & Kubat, M. (1996). Learning in the Presence of concept Drift and Hidden
Contexts. Machine Learning, 23, 69-101.

