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Abstract. This paper presents both a theoretical discussion and an experi- 
mental comparison of batch and incremental learning in an attempt to indi- 
viduate some of the respective advantages and disadvantages of the two ap- 
proaches when learning from frequently updated databases. The paper claims 
that incremental learning might be more suitable for this purpose, although a 
number of issues remain to be resolved. 

1 Introduction 

An important problem in KDD is deriving data models from frequently updated 
databases. Real-world databases, such as those held by credit card or telecommuni- 
cations companies are constantly being enriched with new information, while old 
data is discarded. Although supervised learning algorithms have been used exten- 
sively to infer classification models from data, a number of issues still remain to be 
resolved to make them cope effectively with rapidly changing data. These algo- 
rithms can be divided into two distinct categories: incremental algorithms are able 
to build and refine a model in a step-by-step basis by incorporating new training 
cases into the model as they become available, whereas non-incremental algorithms 
work in batch mode. Incremental learning systems include Utgoff's (1989) ID5R 
and his more recent ITI (Utgoff, 1994), and Kalles & Morris's (1996) TDIDT. 
Among the most renown non-incremental learning algorithms are Michalski's 
(1980) AQ and Quinlan's (1993) C4.5. 

Similarly to incremental learning systems, theory revision systems take as input 
an approximately correct model of a domain, usually expressed as a set of rules, and 
a set of training instances, and by means of a predefined set of refinement operators 
revise the rules to make them consistent with the training set. Although these sys- 
tems cannot be considered pure learning algorithms as they assume that an initial 
model is provided, they share nevertheless with incremental learning algorithms the 
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ability to incorporate new data into an existing model. Hence, for the purpose of this 
paper they will be treated as incremental learning systems. Theory revision systems 
include Ginsberg's (1988) SEEK2, EITHER (Ourston & Mooney, 1991), PTR 
(Koppel, et at., 1994), and Carbonara & Sleeman's (1996) STALKER. 

The most appealing property of non-incremental learning algorithms is possibly 
their ability to achieve high classification accuracy, due to the fact that processing a 
batch of instances help them improve generalisation and avoid over-fitting. Incre- 
mental learning, on the other hand, is desirable because knowledge revision is typi- 
cally much less expensive than knowledge creation. 

This paper presents a comparison of batch and incremental learning in an attempt 
to individuate some of the advantages and disadvantages of these approaches when 
learning from frequently updated databases. The paper is organised as follows. Sec- 
tion 2 discusses some of the properties of the batch and incremental learning sys- 
tems. Section 3 presents some experimental results comparing the performance of a 
batch learning system, C4.5, an incremental learning system, ITI, and a theory revi- 
sion system, STALKER. Section 4 summarises the results and gives some conclu- 
sions. 

2 Batch vs. Incremental  Learning 

It is commonly thought that batch algorithms achieve higher classification rates than 
incremental learners, as, in general, batch learners seem to be less prone to problems 
such as over-fitting. In fact, they can exploit their "global view" of the data to gen- 
erate more robust classifiers. Incremental algorithms, on the other hand, follow a 
more 'myopic '  approach as they attempt to incorporate each single instance into the 
model. However, in the context of rapidly changing domains there are three major 
problems that can be identified with the batch approach: 
1. Abrupt transition between successive models. When inferring a classification 

model from data, the learning algorithm selects the attributes to be included in 
the model using some heuristic, e.g., Quinlan's information gain (Quinlan, 
1986). This heuristic often depends on the distribution of the possible values of 
the attributes across the instances. Since, when new cases are added to the ini- 
tial database, this distribution might change, the new model derived from the 
updated database can be based on different attributes from those used in the 
original model. Hence, there is no clear and explicit relationship between two 
successive models, and it becomes difficult to keep track of the evolution of the 
model over time. Some methods that are being investigated to overcome this 
problem include feature selection, discretization, and boosting. 

2. Inconsistency over data. The fact that the subsequent models produced by a 
batch algorithm are unrelated also means that cases which were correctly classi- 
fied by an earlier model may be mis-classified by a subsequent model, and vice 
versa. In other words, there is no assurance whatsoever that, moving from one 
model to another, any kind of consistency over the data will be maintained. As 
we shall see below, consistency is not always a desirable property. However, 
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there must be some way to monitor and control the inconsistencies introduced 
so that the user is informed of the reasons why inconsistency is achieved on a 
number of cases. 

3. Time inefficiency: when dealing with very large collections of data which are 
constantly being updated, generating a new model from scratch every time new 
instances are received is a very inefficient way to revise the model. Sampling is 
a possible solution to this problem, although in the case of very skewed data 
interesting concepts which have little statistical support may not be identified. 

Incremental learning inherently solves the first two problems identified above: 
1. Smooth transition between successive models. Since the new model is not gener- 

ated from scratch using the now-augmented set of instances, but is a revision of 
the initial model, there is a clear relationship between the two models. By ana- 
lysing the changes implemented it is possible to know exactly how the initial 
model was modified to produce the revised model. 

2. Consistency over data. The incremental approach also assures that the changes in 
the model are truly incremental, i.e., the classification performance of the re- 
vised model is unaltered on the cases contained in the initial data set. 

Whether the incremental approach can also solve the third problem, i.e., the time 
inefficiency of the batch approach, needs to be investigated further. Batch algo- 
rithms such as C4.5 work in linear time in the number of cases processed. Incre- 
mental learners usually require more computational effort to incorporate each in- 
stance into an existing model. However, it is not necessary that the sum of the in- 
cremental costs be less than the batch cost, as every time the incremental algorithms 
only work on the updates. Hence, if the model needs to be updated frequently, the 
incremental approach should be less expensive. 

It has already be pointed out that the second property possessed by incremental 
learning, i.e. the ability to make changes to the model which are consistent with the 
previously seen instances may not always be desirable. This is the case when the 
concepts of interest depend on some hidden context that changes over time. Changes 
in the hidden context can induce more or less radical changes in the target concepts, 
producing what is generally known as concept drift (Schlimmer & Granger, 1986). 
Widmer & Kubat (1996) showed that incremental learners can be adapted to suc- 
cessfully detect, and react to, concept drift. Although it is not the purpose of this 
paper to investigate learning in the presence of concept drift, this is another reason 
why incremental learning may prove superior to the batch approach in rapidly 
changing domains. 

In this section some of the properties of incremental and batch learners have been 
presented and discussed. The main advantage of batch algorithms seems to be their 
superior classification power, while the incremental approach appears to be prefer- 
able when it is likely that new data will become available after the initial classifier 
has been built. Since this is a common occurrence in practical applications of ma- 
chine learning, where the continual collection of data is the norm, it is evident that 
incremental learners able to achieve high classification accuracy would constitute an 
appealing alternative to batch learners. In the next section, the results of some ex- 
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periments are presented which attempt to understand the proportion of the gap, if 
any, between the classification power of current batch and incremental algorithms. 

3. Some experiments comparing batch and incremental learning 
systems 

In this section the results of some experiments comparing the classification accuracy 
of the batch learning algorithm C4.5, the incremental learning algorithm ITI, and 
the theory revision system STALKER will be presented. C4.5 and ITI are two state- 
of-the art decision tree induction algorithms. STALKER has been shown to perform 
at comparable levels with other well known theory revision systems on a number of 
benchmark domains (Carbonara & Sleeman, 1996). Moreover, it uses an incre- 
mental algorithm to refine each incorrectly solved instance, its approach therefore 
being closer to pure incremental learners than other batch theory revision systems. 

C4.5 probably does not need any introduction as it is one of the most widely used 
algorithm for batch induction of decision trees. C4.5 produces an initial decision 
tree using the information gain metric to select the test at each decision node. The 
tree is then pruned to prevent overfitting. The final tree can also be converted into a 
collection of simplified rules. 

ITI (Utgoff, 1994) produces models of the data in the form of binary decision 
trees, that is each test at a decision node can be answered true or false. ITI can be 
used both in batch and incremental mode. 

Theory revision is the task of automatically refining a domain theory usually ex- 
pressed as a set of rules to make it consistent with a given set of training instances. 
The theory revision system STALKER (Carbonara & Sleeman, 1996) generates a set 
of alternative refinements to correct each incorrectly solved training case. These 
alternative corrections are tested against all the previously seen instances to select 
the one that achieves the highest classification accuracy. The best refinement is 
implemented and the process repeated for the next training instance. Since testing 
each alternative correction is computationally expensive, STALKER overcomes this 
problem by converting rules and instances into a Truth Maintenance System (TMS), 
which is then used to efficiently test the refinements. 

In the next subsection the method used to compare the three algorithms is de- 
scribed. The results of experiments with four domains from the UCI repository of 
machine learning databases are then presented. 

3.1. The evaluation method 

As already noticed, STALKER is not a pure incremental learning system as it needs 
to be given as input an initial set of rules to be refined. Hence, to compare its per- 
formance with the two other systems the following method has been used. An initial 
ruleset was produced with C4.5 using a subset of the training instances. This set of 
rules was then refined by STALKER using the remaining training instances. The 
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classification accuracy of the resulting ruleset was then compared to that of the 
ruleset produced by C4.5 using all the training instances. ITI was tested in a similar 
way, by generating an initial tree using the system in batch mode and then adding 
the remaining instances to the tree. However, the same results would have been 
obtained by generating the final tree from all the instances in batch mode, as ITI's 
tree transposition operator ensures that the incremental algorithm generates the same 
tree as it would have been produced with the batch algorithm. The ratio of batch and 
incremental instances was different in each subset to enable the investigation of the 
relationship between the accuracy of the final data model produced and the number 
of instances used to build the initial batch model. The ratio, or step, between the 
number of batch and incremental instances was decided upon based on the total 
number of training instances. A ratio was chosen which produced 4 or 5 subsets for 
each dataset considered. The results presented were averaged over ten independent 
trials. 

The three systems were tested on four datasets from the UCI Repository of Ma- 
chine Learning Databases (Merz & Murphy, 1996). A brief description of the do- 
mains and the results of the experiments follow. 

Tables 1 to 4 show the classification accuracy results for the experiments carried 
out with the above domains. The figures reported are: 
�9 Initial KB is the accuracy achieved by the ruleset produced by C4.5 with the 

'batch' subset of training data which was used as the initial theory for the 
STALKER experiments; 

�9 STALKER is the accuracy achieved by STALKER using the 'incremental' sub- 
set of training data to refine the Initial KB; 

�9 C4.5 is the classification performance of C4.5 on the full set of training data (this 
explains why the curve is a straight line); 

* ITI  B a t c h  represents the accuracy of the initial tree generated by ITI from the 
'batch' data; 

�9 ITI  I n c r e m e n t a l  is the accuracy of the final tree obtained by ITI by incorporat- 
ing into the initial tree the remaining 'incremental' training instances. As ITI is 
always able to accommodate all the training instances, this is also a straight line. 

Table 1. Classification accuracy for the Breast Cancer domain 

Data Split Initial Training Data 
100/500 
2001400 
300/300 
400/200 
500/100 

Data Split Initial 
! 00/500 

Training Data 
11"I Batch STALKER 

92.40 93.58 96.50 

93.90 95.04 97.43 

94.07 96.70 97,93 

94.85 97,99 98.05 

95.60 99.17 99.20 

Test Data 
TestData I 1TIBatch [ STALKER 

93.23[ 93.23[ 94.34 

ITI Incremental 
I00 

100 

I00 

I00 

I00 

IT1 Incremental 

C4.5 - 600 cases 

97.95 

97.95 

97.95 

97.95 

97.95 

C4.5 - 600 cases 

95.05 95.96 
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2001400 94,34 

3001300 94.24 

400/200 94.54 

5001100 94.54: 

93.43 95.95: 95.05 95.9~'-" 

94.04 95.65 95.05 95.96 

93.03 95.85 95.05 95.96 

93.83 95.851 95.05 95.961 

Table 2. Classification accuracy for the Splice domain 

Data Split Initial Training Data 

150/750 77.72 

300/600 83.15 

4501450 86,51 

600/300 88.47 

750/150 90.20 

D~a Split ln~i~ Test D~a 

1501750 76.70 

3001600 85.30 

450/450 88.70 

600/300 91.80 

750/150 92.10 

Training Data 

IT! B~ch 

82.368 

90.268 

93.102 

95.289 

97.881 

STALKER ITllncremental C4.5-900cases 

93.48 100 95.04 

94.37 100 95,04 

96,40 100 95.04 

95.97 100 95.04 

98.67 100 95.04 

Test Data 

ITI Batch 

78.60 

87.20 

87.20 

88.20 

90,50 

STALKER 

86.60 

91.00 

ITllncremental 

91.30 

C4.5 - 900 cases 

92.80 

91.30 92.80 

92. I 0 91.30 92.80 

94.20 91.30 92.80 

93.50 91.30 92.80 

Table 3. Classification accuracy for the Adult domain 

Training Data 

Data Split Initial Training Data 

200/800 79.33 

400/600 80.77 

600/400 8 ! .65 

8001200 82.40 

Initial Test Data 

ITI Batch STALKER ITI Incremental C4.5 - 1000 cases 

74.77 87.03 100 87.39 

79,43 92.00 100 87.39 

83.13 93.55 100 87.39 

86.20 94.60 100 87.39 
I 

Test Data 

1TI Batch STALKER 1T1 Incremental C4.5 - 1000 cases 

79.62 8 ! .80 81.44 83.22 

80.62 80.88 81.44 83.22 

Data Split 

200/800 

400/600 

600/400 

800/200 

79.32 

80.80 

81.36 81.30 82.20 81.44 83.22 

82.12 81.39 82.24 81.44 83.22 

Table 4. Classification accuracy for the Diabetes domain 

Trainlnl~ Data 

Data Split Initial Training Data ITI Batch STALKER 

100/500 70.76 72.90 75.80 

200/400 72.35 78.23 79.90 

1TI Incremental C4.5 - 600 cases 

100 81.97 

100 81.97 
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3001300 73.50 

400/200 75.40 

500/100 73.20 

Data Split Initial Test Data 

100/500 66.90 

2001400 69.23 

300/300 71.01 

400/200 73.33 

500/100 71.37 

84,47 81.63 100 81.97 

86,15 100 81,97 

100 81.97 

90.33 

94.77 86,90 

Test Data 

ITI Batch 

66.90 

67.56 

69.35 

67.62 

67.86 

STALKER ITI Incremental C4.5 - 600 cases 

69.52 67.98 72.44 

72.26 67.98 72,44 

72.14 67.98 72.44 

73.15 67.98 72.44 

73.45 67.98 72.44 

As can be seen from the tables above the three systems seem to achieve compa- 
rable levels of accuracy on all the domains considered. Perhaps the only domain 
where there is a noticeable difference is the Diabetes domain, ITI performing sig- 
nificantly worse than C4.5 and STALKER. 

STALKER is particularly sensitive to the accuracy of the initial KB which it is 
given to revise. This is somehow consistent with the minor tweaking assumption 
under which most theory revision systems work, i.e. the supposition that the initial 
KB is 'approximately' correct, and only needs minor tweaking rather than a major 
overhaul. This makes theory revision systems prefer 'minimal' refinements, i.e. 
corrections that are considered to be the least radical according to some metric (e.g., 
syntactical complexity). It is possible that this bias towards minimal revisions pre- 
vents such systems from making the more drastic changes that may be needed to 
refine very inaccurate theories. However, it must be noticed that, starting with an 
accurate KB, in two domains (Splice and Diabetes) STALKER outperforms the 
other two systems. In the Adult domain, on the other hand, a superior performance 
to C4.5 on the training data is not matched by a similar result on the test data, per- 
haps indicating over-fitting. 

Some other possible cases of over-fitting can be seen in the test results for Dia- 
betes experiments where for the 300/300 split and the 400/200 split, respectively, 
ITI 's and C4.5's initial trees are more accurate than the corresponding final trees. 

ITI has the desirable feature that trees built incrementally are always the same as 
the batch trees generated from the same data. This is achieved by means of its tree 
restructuring operators. However, this implies that extra work must be done to re- 
shape the incrementally built trees which can affect the system's time performance. 
In fact, in the above experiments the time taken by ITI to incrementally revise the 
initial trees is consistently higher than the time taken by C4.5 to build the final batch 
trees. (Note that both C4.5 and ITI are implemented in C, and were tested on the 
same machine.) Another appealing characteristic of ITI's is that it always accom- 
modates all training instance. This, however, can cause the trees generated by ITI to 
be exceedingly complex, which in turn can lead to over-fitting. In fact, ITI 's test 
results are always slightly less accurate than those for the other two systems. To 
overcome this problem pruning could be used to eliminate subtrees that overfit the 
data. Utgoff (1994) explains that no pruning technique was used in ITI to retain the 
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property that the same tree will be found for the same set of instances, independent 
of the order in which they are presented. Nevertheless, he suggests that a pruning 
method could be incorporated if, instead of actually discarding unwanted subtrees, 
one could mark nodes as 'virtually pruned'. Thus subtrees could be marked in and 
out of existence without the expense of destroying or reconstructing anything. When 
one arrives at a virtually pruned decision node, one treats it as a leaf, returning the 
corresponding class. 

We shall conclude this section with some notes on the time performance of the 
algorithms compared. A direct comparison of timings was not possible as the sys- 
tems were developed with different programming languages (C4.5 and ITI are writ- 
ten in C, while STALKER is implemented in Common Lisp). Hence, we shall limit 
this discussion to the computational complexity of the three algorithms. C4.5 is 
linear in the number of training instances processed. In the incremental learner ITI, 
the incremental cost is, in general, proportional to the number of nodes in the deci- 
sion tree. The tree generally grows to its approximate final size early in the training, 
with the rest of the training serving to improve the selection of the test at each node. 
Of concern is whether the incremental training cost continues to grow even after the 
size of the tree has more or less stabilised. Experimental results on a number of 
domains with both symbolic and numeric variables (Utgoff, 1994) seem to suggest 
that ITI ' s  training cost appears to be effectively independent of the number of 
training instances seen. In theory, however, this is not the case when numeric vari- 
ables are involved. For each numeric variable at each node, a sorted list of the val- 
ues observed is maintained, which is used to select the best test for that node. 
Hence, more training instances means a greater cost to maintain each such list. In 
the theory revision system STALKER, training time is split between generation of 
alternative refinements and testing of revised KBs against previously processed 
training instances. Refinement generation is a potentially exponential process when 
dealing with long rule chains, although in most cases takes a negligible amount of 
time. Testing of refined KBs with the Truth Maintenance System is in theory cubic 
in the number of cases, although experiments in a number of domains seem to sug- 
gest that the process is in fact quadratic in the number of cases represented in the 
TMS (Carbonara, 1996). In conclusion, it seems that C4.5 is more efficient than the 
other two incremental algorithms. However, as pointed out in Section 2, when 
dealing with frequently updated very large databases the cost of incrementally up- 
dating an initial model should be less than building the model from scratch every 
time. 

4. Conclusions 

This paper presented a comparison of incremental and batch learning algorithms. In 
the literature, batch learning is often praised for its ability to achieve high classifi- 
cation accuracy, but it is considered to be inefficient when applied to frequently 
updated, large databases. Not only should incremental learning obviate this short- 
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coming, but, as shown by the results of  an experimental comparison, can also 
achieve comparable levels of  accuracy to batch learning. Moreover, incremental 
learners also possess some other interesting properties, such as the ability to monitor 
changes in the data model and to detect concept drift, which are particularly desir- 
able when dealing with rapidly changing domains. 
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