
Classes of Four-Fold Table Quantif iers

Jan Rauch

Laboratory of Intelligent Systems, Faculty of Informatics and Statistics, University of
Economics, W. Churchill Sq. 4, 13067 Prague, Czech Republic rauch@vse.cz

A b s t r a c t . Four-fold table logical calculi are defined. Formulae of these
calculi correspond to patterns based on four-fold contingency tables of
two Boolean attributes. An FFT quantifier is a part of the formula, it
corresponds to an assertion concerning frequencies from four-fold table.
Several classes of FFT quantifiers are defined and studied. It is shown
that each particular class has interesting properties from the point of
view of KDD. Deduction rules concerning formulae of four-fold tables
calculi are demonstrated. It is shown that complex computation of sta-
tistical tests can be avoided by using tables of critical frequencies.

1 I n t r o d u c t i o n

Interest ing pat terns - assertions concerning analyzed database are the the core of
K D D process . Some of these assertions can be easily unders tood as formulae of a
suitable logical calculus. Names of relations and names of fields of the analyzed
da tabase belong to basic symbols of such calculus. There are interesting and
useful features of these calculi, e.g., deduct ion rules [7].

There is a group of impor tan t pat terns concerning two Boolean a t t r ibutes
derived f rom the analyzed database. The pat terns correspond to the relations of
the Boolean at tr ibutes. The pat terns are evaluated on the basis of a four-fold
table Tab.1. Here ~o and r are at tr ibutes, a is the number of objects (records
of the analyzed database) satisfying both ~o and r b is the number of objects
satisfying ~o and not satisfying r etc.

r -,r

c d

Table 1. Four-fold table of ~0 and r

An example of a pa t te rn based on the four-fold table is the association rule,
see [1]. At t r ibutes ~o and r with four-fold table (a, b, c, d) are associated by an
association rule with parameters conf and sup if and only if

a a
>conf A > s u p .

a + b - a + b + c + d -

204

Further examples are given, e.g., in [2], [8], [9].
Observat ional calculi are logical calculi formulae of which correspond to var-

ious assertions concerning analyzed data. They are defined and studied in [2],
see also [7]. A special case of observational calculi is defined in section 2. It is
a Four-Fold Table Predicate Calculus, further only F F T P C . The formulae of
F F T P C are of the form ~ ~ r where ~ and r are Boolean at tr ibutes. Symbol

is an FFT quantifier. It expresses the relation of a t t r ibutes p and r
The goal of this paper is to show tha t it is useful to unders tand the rela-

t ions of two Boolean at t r ibutes as formulae of F F T P C . Several classes of F F T -
quantifiers are defined in section 3, e.g., implicat ional or equivalence quantifiers.
Deduct ion rules concerning the formulae of F F T P C are studied in section 4. Ta-
bles of critical frequencies are discussed in section 5. They can be used to avoid
a complex computa t ion when testing pat terns of the form ~ --~ r

2 F o u r - f o l d T a b l e P r e d i c a t e C a l c u l i

We have to define a language of F F T P C , its models and values of formulae.

D e f i n i t i o n 1 . The t y p e o f F F T P C is an integer positive number T.

D e f i n i t i o n 2 . A l a n g u a g e o f t h e F F T P C o f t y p e T is given by:

1. B a s i c s y m b o l s :
Basic attributes A 1 , . . . , AT, propositional connectives A, V, -1, and
FFT quantifier .-,.

2. A t t r i b u t e s :
- If ~ is a basic at tr ibute, then ~ is an at tr ibute.
- I f ~ and ~b are at tr ibutes, then also ~ A r , ~ V r and - ~ are derived

attr ibutes.
- If ~ is a derived at tr ibute, then ~ is an at tr ibute.
- Usual conventions concerning parentheses are valid.

3. F o r m u l a e :
If ~ and r are a t t r ibutes and ~ is an F F T quantifier, then ~ ~ r is a
formula.

D e f i n i t i o n 3 . A m o d e l o f t h e F F T P C o f t y p e T is each {0, 1}-data mat r ix
with T columns.

D e f i n i t i o n 4 . We consider each model M with n rows to be the result of an
observat ion of n objects. The i-th observed object corresponds to the i-th row.
We say tha t the i-th o b j e c t h a s t h e b a s i c a t t r i b u t e A1 in M if value 1 is in
the first column of the i-th row of M . We say tha t the i-th object has derived
a t t r ibute A1 A A2 in M if value 1 is both in the first and in the second column
of the i-th row of M . Similarly for other basic and derived at tr ibutes.

D e f i n i t i o n 5 . F r e q u e n c y Fr(~, M) o f a n a t t r i b u t e ~ i n a m o d e l M is
the number of objects having a t t r ibute ~.

205

D e f i n i t i o n 6 . A s s o c i a t e d f u n c t i o n F ~ o f t h e F F T q u a n t i f i e r ~ is a {0, 1}
- valued funct ion defined for all quadruples < a, b, c, d > of non-negat ive integer
numbers such t ha t a + b + c + d > 0 . We usually write only --~ (a, b, c, d)
ins tead of F ~ (a, b, e, d).

D e f i n i t i o n 7 . Let ~ ~ r be a fo rmula of an F F T P C q~. Let M be a mode l r
Then v a l u e Val(~ ~., r M) o f t h e f o r m u l a ~ ~ r i n t h e m o d e l M is defined
as the value

F ~ (F r (~ A r M) , F r (~ A ~ r M) , F r (- , ~ A r M) , F r (~ A - ~ , M))

If Val(~ ~ r M) = 1, then we say tha t ~ ~ r is true in M. If Vai(~ ~ r M) = O,
then ~ ,~ r is false in M.

T h e quadruple (a, b, c, d), where a = Fr(~ A r M), b = Fr(~ A--,r M),
c = F r (- ~ A r M) and d = Fr(--,~ A --,r M), is called the four-fold table of

the fo rmula ~ ,-- r in a model (da ta mat r ix) M . We shall wri te only F F T ins tead
of four-fold table.

3 C l a s s e s o f Q u a n t i f i e r s

Proper t ies of a fo rmula ~ ~ ~ depend on proper t ies of its associated funct ion
F ~ (a, b, c, d). We define the funct ion F ~ to make the pa t t e rn ~ ,-~ r interest ing
f rom the point of view of a da t abase user. One of the interest ing relat ions of at-
t r ibutes ~ and r is the relat ion ~ implies r An i m p o r t a n t quest ion is: " Which
quantifier expresses the relation of implication ?" A class of impl ica t iona l quan-
tifiers is defined in [2].

D e f i n i t i o n S . An F F T q u a n t i f i e r ,-, is i m p l i c a t i o n a l if

~-. (a, b, c, d) = l A a ' > a A b / < b implies ~ (a ' , b ' , c ' , d ') = 1

for non-negat ive integers a, b, c, d, a ~, b ~, c', d ~ such tha t a + b + c + d > 0 and
a ' + b ~ + c' + d' > 0.

T h e condi t ion a / > a and b' < b means tha t the four-fold table (a ' , b', c', d ~) is
" b e t t e r f rom the point of view of impl ica t ion" than the four-fold table (a, b, c, d)
(i-better , see [2]). I f (a, b, c, d) is an F F T of ~ ..~ r in model M and (a ' , b', c', d')
is an F F T of ~ ~ r in mode l M t, then the sentence "Be t t e r f rom the point
of view of impl ica t ion" means: In model M' are more objects sat isfying bo th
~v and r t han in M , and in model M' are fewer objects sat isfying ~ and not
sat isfying r t han in M . Thus it is reasonable to expect t ha t if fo rmula ~ ~ r is
t rue in mode l M, then it is also t rue in model M ~. This expec ta t ion is ensured
for impl ica t iona l quantif iers by definition 8.

Example 1. Quantif ier ~ p , , of founded implication for 0 < p _< 1 and s > 0 is
impl ica t ional , see [2]. I t is =~p,~ (a, b, c, d) = 1 if and only if ~-5+b --> P A a _> s .

206

E x a m p l e 2 . Quantifier ::v~ of lower cr i t ical imp l i ca t ion for 0 < p < 1,
0 < c~ < 1 and s > 0 is implicational, see [2]. It is

a+b (." ~ i[1 ~ x a + b - i , a + b) I
::~p,~,s (a , b , c , d) = 1 i f a n d o n l y i f E i! (a ~_-b-~ i) ! v <_ c~ A a >_ s .

$ ~ - a

Let us note tha t the formula 9 ::Vp,a,s r corresponds to the test (on the
level a) of the null hypothesis H0 : P (r _< P against the al ternat ive one
H1 : P (r > P. Here P (r is the condit ional probabil i ty of the validi ty of r
under the condit ion 9, see [2] for more details.

I t is easy to prove for an implicat ional quantifier ::~* tha t the value ::~*
(a, b, c, d) does not depend either on c or on d. Thus we shall write only ::V* (a, b)
instead of =~* (a, b, c, d) for each implicat ional quantifier =~*.

We call conditions like "a ~ > a and b ~ _< b" t r u t h p r e s e r v a t i o n c o n d i t i o n s ,
see [8]. The condit ion a I _> a and b ~ < b is a t r u t h p r e s e r v a t i o n c o n d i t i o n
f o r i m p l i c a t i o n a l q u a n t i f i e r s . Further classes of F F T quantifiers are defined
in [8], some of them using t ru th preservation conditions.

D e f i n i t i o n 9 . An F F T q u a n t i f i e r ,-- is d o u b l e i m p l i c a t i o n a l if

(a , b , c , d) = 1 A a ' > a Ab ' < b A c ' < c implies ~ (a ' , b ' , c ' , d ') = l

for non-negat ive integers a, b, c, d, a ~, b ~, c ~, d ~ such tha t a + b + c + d > 0 and
a ~ + b ~+ c ~ + d ~ > 0.

We can see a reason for such a definition in an analogy to proposi t ional logic.
If u and v are proposi t ions and both u --+ v and v -+ u are true, then u is
equivalent to v (-+ is a proposi t ional connective of implication). Thus we can
t ry to express the relation of equivalence of at t r ibutes 9 and r using "double
implicat ional" FFT-quant i f ier r such tha t

9 r 1 6 2 if and only if 9 = : ~ * r 1 6 2 9,

where ==~* is a suitable implicat ional quantifier. If we apply the t ru th preservation
condi t ion for implicat ional quantifier to 9 O* r we obta in a ' > a A b ~ < b.
If we apply it to r :=~* 9, we obtain a ' > a A c' _< c, (c is here instead of
b, see Tab . l) . This leads to t h e t r u t h p r e s e r v a t i o n c o n d i t i o n f o r d o u b l e
i m p l l c a t i o n a l q u a n t i f i e r s a ~ > a A b j < b A c ~ < c, see definition 9. Several
F F T quantifiers are defined according to this idea in [3], an example follows.

E x a m p l e 3. A quantifier r of f ounde d double impl i ca t ion for 0 < p < 1 and
s > 0 is double implicational , see [8]. It is r (a, b, c, d) = 1 if and only if

a > A a > s . a+-5+c - P

It is proved in [8] tha t quantifier r belongs to the class of Z-doub le
implicat ional quantifiers:

207

D e f i n i t i o n 10. An F F T quant i f ier ,,, is S - d o u b l e i m p l i c a t i o n a l if

(a , b , c , d) = 1 A a ' > _ a A b / + c ' _ < b + c implies ~ (a ~ , b , c , d) = l ' ' '

for non-negative integers a, b, e, d, a', b', c', d' such that a + b + c + d > 0 and
a I + b ' + c / + d ' > 0 .

It is obvious that each S-double implicational quantifier is also double im-
plicational. It follows from the definition that if a quantifier r belongs to S -
double implicational quantifiers, then the value :=~* (a, b, c, d) does not depend
on d. Thus we shall write only r (a, b, c) instead of r (a, b, c, d) for S-double
implicational quantifier r

We have a similar si tuation for equivalence quantifiers. If u and v are propo-
sitions and both u --+ v and -~u --+ -~v are true, then u is equivalent to v. Thus
we can try to express the relation of equivalence of attr ibutes ~ and r using an
"equivalence" FFT-quantifier =* such that

~ , - - * r if and only if ~ O * r 1 6 2

where ::~* is a suitable implicational quantifier. If we apply the t ruth preservation
condition for implicational quantifier to ~ O* r we obtain a' > a A b' < b, if
we apply it to- - ,~=~* -~r we o b t a i n d ' > d A c' < c, (cis here instead o f b
and d instead of a, see Tab. l) . This leads to the truth preservation condition for
equivalence quantifiers: a' > a A b' < b A c' < c A d' > d and consequently to the
definition of e q u i v a l e n c e q u a n t i f i e r s [8] (associational quantifiers according to
[2]). In [3] are defined several F F T quantifiers as equivalence quantifiers.

Example 3. A quantifier =p of p-equivalence for 0 < p < 1 is equivalence quan-
tifier, see [8].I t isC:~p,s (a ,b ,e ,d) = 1 if and only if ~ > p A a >_ s. The
quantifier --p is also a S-equivalence quantifier [8].

Several further classes of implicational quantifiers are defined and studied in
[8], e.g., pure double implicational, typical double implicational, pure equivalence,
and typical S-equivalence. Each of these classes of F F T quantifiers contains
useful quantifiers. Some of them are implemented in the system PC-GUHA, see
[6]. Some impor tant features of FFT-quantifiers related to classes of F F T are
discussed in the following sections.

4 D e d u c t i o n r u l e s

A deduction rule is the relation of the form
Olll . ..~Ol n

'

where c~1,.. . , c~,/3 are formulae. This d e d u c t i o n r u l e is c o r r e c t if for each
model M holds: if c q , . . . , c ~ are true in M, then also)3 is true in M. We are
interested in correct deduction rules of the the form ~ where ~ ,~ r and

~ ,-~ ~b I are formulae of an F F TP C . Such deduction rules can be used, e.g., in
the following ways:

208

To r e d u c e t h e o u t p u t of a d a t a m i n i n g p r o c e d u r e : If formula p ~
is a part of a data mining procedure output (thus it is true in analyzed
data) and if ~ is a correct deduction rule, then it is not necessary to

put p~ ~ r into the output. The used deduction rule must be clear enough
from the point of view of the user of the data mining procedure. An example
of a simple deduction rule is dereduction deduction rule ~ ' r which is

~:=~*r X
correct for each implicational quantifier O* [2].

- To d e c r e a s e t h e n u m b e r o f a c t u a l l y t e s t e d f o r m u l a e : If formula ~ ~ r
is true in an analyzed model (data matrix) and if ~ is a correct deduction
rule, then it is not necessary to test ~ / ~ ~ .

Let us note that correct deduction rules (not only in the form of ~)
are used in the GUHA procedure PC-ASSOC, see, e.g., [4] or [6]. Anyway, it is
reasonable to ask when the deduction rule of the form ~ is correct. Several
results concerning this problem were achieved in [5]. We are going to show some
of them. We need several notions.

D e f i n i t i o n l l . Let ~ be an attribute. Then an a s s o c i a t e d p r o p o s i t i o n a l for -
m u l a ~r(~) to ~ is the same string of symbols as 9, but the particular basic
attributes are understood as the propositional variables.

Example 5. If A1 A A7 is a derived attribute, then 7r(A1 A AT) is propositional
formula A1 A A7 with propositional variables A1 and A7.

D e f i n i t i o n l 2 . Let ,-~ be an F F T quantifier. Then

1. ~ is a - d e p e n d e n t if there are non-negative integers a, a/, b, c, d such that
(a, b, c, d) r ~ (a', b, c, d). Analogously for b - d e p e n d e n t .

2. ,-~ is (b + c) - d e p e n d e n t if there are non-negative integers a, b, c, d, b/, c ~
such that b + c r b' + c' and ~ (a, b, c, d) r --~ (a, b', c', d). Analogously for
(a + d) - d e p e n d e n t .

D e f i n i t l o n 1 3 . Interesting quantifiers:

1. An i m p l l c a t i o n a l q u a n t i f i e r O* is i n t e r e s t i n g if O* is both a-dependent
and b-dependent, and if O* (0, 0) = 0.

2. A Z - d o u b l e i m p l i c a t i o n a l q u a n t i f i e r r is i n t e r e s t i n g if r is both
a-dependent and (b + c)-dependent, and if r (0, 0, 0) = 0.

3. A Z - e q u i v a l e n c e q u a n t i f i e r =* is i n t e r e s t i n g i f - * is (a + d)-dependent
and i f - * (0, b,c, 0) = 0 f o r b + c > 0 .

T h e o r e m 14. Correct deduction rules:

1. I f 0 " is an interesting implicational quantifier, then deduction rule ~ * r
is correct if and only if at least one of the following conditions a), b) is
satisfied (see also [7]):

a) Both (i) and (ii) are tautologies:

209

(1) A -+ A
(i i) A - + A

b) rr(~) -+ -,7r(r is a tautology.

2. I f <ez* is an interesting ~-double implieational quantifier, then deduction rule
~<**~ is correct if and only if at least one of the following conditions a),

b) is satisfied:
a) Both (i) and (ii) are tautologies:

(i) A - + A

(ii) 7r(~') A -wr(r V -~Tr(~') A 7r(r -+ rr(~) A -~7r(r V -,~r(~) A 7r(r
b) (i): ~r(~) -+ ~7r(r or (ii): 7r(r -+ --wr(~) are tautologies.

3. If--* is an interesting ~-equivalence quantifier, then deduction rule ~-*~P
is correct if and only i f (Tr(~) A 7r(r V-~Tr(;) A-,Tr(r --+ (Tr(; ') A 7r(r V
~r (~ ') A ~r (r is a tautology.

Proof. Let us outl ine the proof of a theorem concerning correct deduct ion rules
for impl ica t iona l quantifiers, see point 1. We have to prove:

A) : I f 1.a is satisfied, then deduct ion rule ~ * r is correct.
q o J ~ * r '

B): I f 1.b is satisfied, then deduct ion rule ~ is correct.

C) : If nei ther 1.a nor 1.b are satisfied, then deduct ion rule ~ is not correct.

We suppose: M is a model , ~ O * r is a formula , and (a, b, c, d) is a cont ingency
table of p O* r in M , analogously for ~ ' =~* r and (a ~, b ~, d , d').

A): Let Val(~ :::,* r M) = 1. I t means =** (a, b) = 1. The condi t ion 1.a(i)
implies a < a', the condit ion 1.a(ii) implies b' <_ b. Thus it is also =V* (a', b') = 1,
see the definit ion 8 of the impl ica t ional quantifier.

B): If rr(p) --+ -,~r(r is a tautology, then it is a = 0 for each model M. The
quantif ier =~* is an interest ing impl ica t ional quantifier, thus O * (0, 0) = 0. I t
implies O * (0, b) = 0 for each b (see definition 13 of the interest ing impl ica t iona l
quantifier) . Thus Val(~ ~ * r M) = 0 for each model M. I t means t ha t the
assertion: [f V a l (~ ~ * r = 1 then Val(~' 0 " r = 1 is true.

C): We suppose t ha t nei ther 1.a nor 1.b are satisfied. We have to find a mode l
M such tha t Val(~ O * r M) = 1 and VaI(p' O* r M) = 0. I f nei ther 1.a nor
1.b are satisfied, then D) or E) are satisfied:

D) : Nei ther 1.a(i) nor 1.b are satisfied.
E): Neither 1.a(ii) nor 1.b are satisfied.

D) : T h e impl ica t ional quantifier o * is a-dependent , thus there are A, /3 such
t ha t ==>* (A, B) = 1. The condit ion 1.a(i) is not satisfied, thus there is an objec t
o, such t ha t o has the a t t r i bu te q0 A r and o has not the a t t r ibu te qo' A r Let
M be a mode l with A objects o (a d a t a ma t r i x with A identical rows, each of
t h e m equal to a row corresponding to the row of o). I t means a -= A, b = 0
and also a ~ = 0, b ~ >_ 0. The quantifier O* is impl ica t ional and ==~* (A, B) = 1,
thus also =V* (A, 0) = 1. Further , a ' = 0 and =>* (0, 0) = 0 (=~* is interest ing

210

implicational) , thus also o * (a I, b I) = O. It means tha t Val(~ =:~* r M) = 1
and Val(~ I =~* r M) -- 0.

E): The quantifier =~* is b-dependent, thus there are non-negat ive integers
A, B, B 1 such tha t :=~* (A, B) = 1 and ==~* (A, B ') = 0. The condit ion 1.a(ii)
is not satisfied, thus there is an object which has the a t t r ibute 9 / A _,r and
has not the a t t r ibute ~ A ~ r Let us call it object of type B. The condi t ion 1.b
is not satisfied, thus there is an object which has both the a t t r ibute p and the
a t t r ibu te r Let us call it object of type h. Let M be a model with A objects of
type h and B objects of type B. Values of at t r ibutes impor tan t for comput ing
Val(~ ~ * r M) and Val(~ I ~ * r M) and consequences for cont ingency tables
(a, b, c, d) and (a' , 51, c', d 1) are in Tab. 2. Symbol means tha t we do not know

line attribute A objects of type h B objects of type B consequence
1 ~ A r X: T by definition a _> A
2 ~' A r B, see Y a' < A
3 ~ A -~r V -~o A r F, see X F by definition b = 0
4 ~' A -~r V -,~o' A r Y: T by definition b' > B

Table 2. Values of attributes for case E

the corresponding value, X : and Y: are labels. Symbol T means tha t an object
of a corresponding type has a corresponding a t t r ibute (symbol F means "has
not") . It is O* (A , B) = 1, a > A and b = 0, thus also O* (a,b) = 1. Further,
it is o * (A , B I) = 0, a / < A and b' > B t, thus o * (a,b/) = 0. This finishes the
proof. []

5 Tables of critical frequencies

T h e o r e m 15. Let 0 " be an irnplicational quantifier. Then there is a non-negative
and non-decreasing function Tb~ . with value Tb~ . (a) E {0, 1 , 2 , . . . } U {oo}
such that it is

0 " (a, b) = 1 if and only if b < Tb=~. (a)

for all integers a > 0 and b >_ O.

Proof. We define Tb~ . (a) = min{e I O* (a, e) = 0}, see the definition of impli-
cat ional quantifiers. [:3

We call funct ion Tb~ . a table of critical frequencies for implicational quanti-
tier 0 * . It is used in the G U H A procedure P C - A S S O C [7]. It is impor t an t t ha t
the funct ion Tb~ , makes it possible to use a simple test of inequali ty instead of a
ra ther complex computa t ion . E.g., we can use inequali ty b < T b ~ (a) instead

5-~a+b ~ p i (1 _ p)a+b-i of condit ion L,i=a i.(a+b-i). <_ a A a > s for quantifier ~p,a,~ of

211

lower critical implication, see example 2. An other form of the table of crit-
ical frequencies for implicational quantifier is defined in [2]. Further tables of
critical frequencies for Z-double implicational quantifiers and for Z-equivalence
quantitiers are defined in [8].

6 C o n c l u s i o n s

We have defined several classes of FFT quantifiers. Deduction rules and tables
of critical frequencies have been discussed as useful tools for dealing with some
patterns in the KDD process. We have shown that properties of these tools are
closely related to classes of FFT quantifiers.

There are further useful classes of FFT quantifiers, e.g., symmetrical quanti-
tiers, a,d-symmetrical quantifiers, strong double implieational quantifiers, strong
double equivalence quantifiers and F-quantifiers (with the same behaviour as
Fisher's test), see [2], [5], [8].

This work is supported by grant 47160008 of the Ministry of Education and
by grant 201/96/1445 of the Grant Agency of the Czech Republic.

R e f e r e n c e s

1. Aggraval, R. et al: Fast Discovery of Association Rules. In Fayyad, U. M. et al.:
Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press,
1996. 307-328

2. Hs P., Havrs T.: Mechanising Hypothesis Formation - Mathematical Foun-
dations for a General Theory. Berlin - Heidelberg - New York, Springer-Verlag, 1978,
396 p.

3. Hs P. - Havrs T., Chytil M.: Metoda GUHA. Praha, Academia, 1983, 314
p. (in Czech)

4. Hs P., Sochorovs A., Zvhrovs J.: GUHA for personal computers. Computa-
tional Statistics & Data Analysis 19, (1995) 149-153

5. Rauch, J.: Logical foundations of mechanizing hypotheses formation from databases
(in Czech). Thesis, Mathematical Institute of Czechoslovak Academy of Sciences
Prague, 1986, 133 p.

6. Rauch, J.: GUHA as a Data Mining Tool. In: Practical Aspects of Knowledge Man-
agement. Schweizer Informatiker Gesellshaft Basel, 1996

7. Rauch, J.: Logical Calculi for Knowledge Discovery in Databases. In Principles
of Data Mining and Knowledge Discovery, (J. Komorowski and J. Zytkow, eds.),
Springer Verlag, Berlin, 47-57, 1997.

8. Rauch, J.: Four-Fold Table Calculi. LISp, Technical Report LiSp9710 (in Czech),
1998

9. Zembowicz R. - Zytkow J.: From Contingency Tables to Various Forms of Knowledge
in Databases. In Fayyad, U. M. et al.: Advances in Knowledge Discovery and Data
Mining. AAAI Press/ The MIT Press, 1996. s. 329 - 349.

