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A b s t r a c t .  In this paper, we present a Data  Mining tool based on Ge- 
netic Programming which enables to analyze complex databases, in- 
volving several relation schemes. In our approach, trees represent ex- 
pressions of relational algebra and they are evaluated according to the 
way they discriminate positive and negative examples of the target con- 
cept. Nevertheless, relational algebra expressions are strongly typed and 
classical genetic operators, such as mutat ion and crossover, have been 
modified to prevent from building illegal expressions. The Genetic Pro- 
gramming approach that  we have developed has been modeled in the 
framework of constraints. 

1 I n t r o d u c t i o n  

In th is  pape r ,  we p ropose  a D a t a  Mining  tool  based on Genet ic  P r o g r a m m i n g .  
At  present ,  mos t  sys tems  rely on the  universa l  re la t ion a s sumpt ion  which hy- 
po thes izes  t h a t  a d a t a b a s e  is composed  of a unique re la t ion  scheme [FPSSU96].  
This  is not  real is t ic  for real  appl ica t ions ,  since this  leads  to a huge re la t ion  
which is h a r d l y  t r ac t ab le .  The  D a t a  Mining  t a sk  we address  in this  p a p e r  is a 
d i sc r imina t ion  t a sk  t ha t  can be s t a t ed  as follows. 

Given:  

�9 a d a t a b a s e  scheme 72~ over a set U of a t t r i b u t e s  

TZ = {r1(a11: d 1 1 , . . . ,  a l k l :  dlkl ) , . . . ,  rp(apl : d p l , . . . ,  ap% : dpk,,)}, where  
r i  is a re la t ion  of a r i ty  ki, aij is the  j t h  a t t r i b u t e  of the  re la t ion  r i  and  
dij is the  doma in  of the  a t t r i b u t e  aij, 
�9 a concept  to  learn  defined by: 

- a posi t ive  example  re la t ion  e + defined by the  schema : 

e + ( a l  : d l ,  a2 :d2 , . . .  an :dn) 
- a nega t ive  example  re la t ion  e -  defined by the  same schema as e +,  

find a SQL reques t  which recognizes the  posi t ive  examples  and  re jects  
the  nega t ive  ones. 

Table  1: The  Disc r imina t ion  Task  

As has been s t a t ed  in the  task,  we a im at ana lyz ing  complex  da t abases ,  
involving several  re la t ion  schemes and therefore,  we re lax the  classical  "uni- 
versa l  re la t ion  scheme as sumpt ion"  [FPSSU96].  To achieve this  and  cons ider ing  
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the size of the search space, we have chosen a Genetic Programming approach 
[Koz92, Koz94, SJB+93], that  enables to stochastically explore the search space. 
Genetic-based approaches have already been proposed for Da ta  Mining but, most 
of them use genetic algorithms encoding attribute-value representations [GSB97] 
and consequently, relying on the universal relation assumption. Some approaches 
[AVK95] have extended genetic algorithms to first order representations, but ex- 
amples are represented by conjunctions of atoms before execution, which allows 
to code them with strings of fixed length. In our case, examples are only given 
by a relation and we must find the relations that  are involved in the definition of 
the given concept. To our knowledge, the only Data  Mining approach based on 
Genetic Programming is described in [RE96], but it is applied to object-oriented 
databases. 

Let us first shortly recall the basic principles of Genetic Programming.  It  is 
an optimization method used for finding nearly optimal solution(s) to a prob- 
lem, given a fitness function. The hypotheses are coded by trees and are called 
individuals; initially, a population of individuals is randomly built and then new 
populations are iteratively generated from the previous one by applying one of 
the 3 following operations: 

- r e p r o d u c t i o n :  an individual of the generation i is added to the generation 
i + 1 ,  

- m u t a t i o n :  before an individual of the generation i is added to the generation 
i + 1, one of its sub-trees is replaced by a randomly generated sub-tree, 

- c r o s s o v e r :  given 2 individuals belonging to the generation i, 2 new individ- 
uals are added to the generation i + 1 obtained by exchanging one sub-tree 
of each initial individual. 

Cross-over 

Generation i 

Generation i+ 1 

Reproduction Mutation 

Fig. 1. Genetic operations (/k represent trees and sub-trees) 

The number of individuals in a population, the number of generations and the 
rate of each operation performed during a generation are fixed by parameters  
before learning. Moreover, for each genetic operation, individuals are chosen 
according to a probabili ty proportional to their fitness. 

The solution of the problem is given by the best individual that  has been 
built. Let us notice that  this result depends heavily on the values of the given 
parameters  and on the generation of the initial population. 
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For our  purpose,  we have chosen to represent individuals of the genetic pro- 
g ram by relational algebra expressions which enable to get results tha t  can be 
bo th  easily unders tood  by an expert  and easily t ransla ted into SQL requests for 
evaluation.  Nevertheless, this leads to an impor tan t  drawback from the point  of 
view of  Genetic  P rogramming :  relational algebra expressions are s t rongly typed,  
each node of a tree represents a relation with a fixed ari ty and predefined do- 
mains,  therefore crossover or muta t ion  operators  can lead to syntact ical ly  or 
semantical ly  incorrect  expressions. Let us consider for instance, a tree represent- 
ing a project ion on the a t t r ibute  age of the relation customer : a muta t ion  which 
changes the relation customer into the relation purchase leads to an incorrect  
tree. 

T y p e d  Genetic P r o g r a m m i n g  as defined by [Koz94] or by [Mon95] could not 
be used here, since a node of a tree represents a relation and its type  is a list 
of domains :  the probabil i ty to  r andomly  select two trees with the same type  is 
very low. 

We have developed a new Genetic P rog ra m m ing  approach and formalized it 
in the f ramework of constraints.  

The  paper  is organized as follows. In Section 2, we present how the D a t a  
Mining task, given in Table 1, has been formalized in a Genetic P r o g r a m m i n g  
framework.  Section 3 presents some experiments.  Section 4 concludes and dis- 
cusses futher  works. 

2 A cons tra in t  based m o d e l  

2 . 1  I n d i v i d u a l  R e p r e s e n t a t i o n  

A tree (also called an individual) is the basic s t ructure  of our  approach.  The  
language used to build trees defines the search space, i.e. the set of hypotheses  
the sys tem will be able to build. This language is syntact ical ly defined by: 

- a set T of terminals  which is included in the da tabase  relations set, T C T~. 
These terminals  label the leaves of the trees ; 

- a set N ' T  of non-terminals  which is composed of the following relational 
a lgebra opera tors  : (A~ represents a variable tha t  will refer to underlying 
at t r ibutes)  
- project ion 7r[A1,..., An], where n is the ari ty of e +, 
- selection a [ A 1 0 p  A2], where Op �9 {=,  > ,  <},  
- selection o r [A10p  V], where Op �9 {=,  >,  <}  and V is a value occurr ing in 
the database,  
- join N [A1, A2], 
- p roduc t  x.  
N [A1,A2] and x are the only operators  with arity 2 ; such nodes require 
two subtrees .The Ai are variables tha t  will refer to underlying at t r ibutes.  

Let  us notice tha t  a same result can be expressed by different trees, e.g. 
N [A1, A2]( r l , r2)  and ~[A1 = A2](r~ x r2). Such trees are not equivalent since 
applying muta t ion  and crossover opera tor  does not lead to the same individuals. 
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Each tree and each subtree represent a relation. For sake of simplicity, we 
refer to an attribute in a relation by an integer representing the position of 
that attribute in the underlying relation. It is called the attribute name or the 
attribute reference. 

To deal with the problem of semantically incorrect trees, we add a set of 
constraints to each node of the tree, constraints that must be satisfied to get 
semantically correct expressions. In a first step, the expressions Ai appearing 
in a tree represent variables that must be instantiated by attribute references 
in a second step. A tree will be correct, if the instantiation of the variables Ai 
satisfies the constraints associated to each node. 

The set of constraints associated to a node is defined as follows : (arity and 
dom are functions which respectively give the arity of a relation and the domain 
of a given attribute reference k) 

A node Its  set o f  constraints 
7r[A, ..... ~,,](S) 

ff[AlOpV]( S) 
a[A1 opal] (S) 

M[A1,A2] (S1,$2) 

x (S l ,  S2) 
r i  

{1 <_ Ai <_ arity(S) I Vi e [1..n]} 
{1 <_ A1 <__ arity(S), dom(A1, S) = dora(V)} 
{1 <_ A1 < arity(S), 
1 <_ A2 <_ arity(S), dora(A1, S) = dora(A2, S)} 
{1 <_ A1 _< arity(S1), 1 <_ A2 <_ arity(S2), 
dom( A1, $1) = dora(A2, $2)} 

An individual is therefore a tree over T U AfT and a valuation ~) which 
associates an attribute reference to each variable Ai and which satisfies the con- 
straints over each of its node. This ensures that the relational algebra expression, 
represented by the tree is correct. In the following and without loss of generality, 
we suppose that each variable appearing in a tree t has been renamed in order to 
be unique. Consequently, satisfying the constraints of each node of t is equivalent 
to satisfying the set of all constraints of t. From a logical point of view, 0 is one 
of the solutions to the set of constraints of t. 

2.2 I n d i v i d u a l  g e n e r a t i o n  

The individual generation algorithm is a recursive function. A node is randomly 
generated and subtrees are generated for this node, until a tree and a satisfiable 
set of constraints is completely built. We use a constraint solving system which 
is supposed to be correct, i.e., not to reject satisfiable set of constraints. The 
major advantage of using a constraint solving system is that  the generation 
immediately stops when a partial tree leads to a deadlock. Once a tree has been 
completely constructed, the constraint solving system is called to get a set of 
correct instantiations of the variables of the tree. We then randomly choose one 
valuation, given a set v~ of instanciations variable = value. 

The result of the generation process is a pair (t, 0), where t is a tree over 
T U AfT which contains variables denoted by A1, �9 �9 Ak, and where ~ is a set 



134 

{A1 = re f l , . . . ,  Ak = r e f k } ,  where  re f i  are  references to  a t t r i b u t e s  of re la t ions  
t h a t  a p p e a r s  in t. 

Let  us not ice  t ha t  the  sys tem has some ini t ia l  cons t ra in ts ,  name ly  the  do- 
mains  of the  t a rge t  concept  given by the  re la t ion  e +. Such cons t ra in t s  mus t  
a lways  be  sat isf ied and  cannot  be relaxed.  

2 .3  C r o s s o v e r  a n d  m u t a t i o n  : a c o n s t r a i n t  s o l v i n g  p r o b l e m  

Let  us cons ider  an ind iv idua l  (t, ~)) and  a sub t ree  s of t. The  ma in  p rob l em when 
dea l ing  wi th  m u t a t i o n  and  crossover ope ra to r s  occurs  when rep lac ing  the  sub t ree  
s by ano the r  ind iv idua l  defined by the t ree s r and  the  va lua t ion  ~)~, (which comes 
from ano the r  ind iv idua l  in case of crossover,  or has been r a n d o m l y  gene ra t ed  in 
case of mu ta t i on )  given the t ree  t t, since the  new set of cons t ra in t s  thus  ob ta ined  
mus t  be st i l l  sat isf iable .  
No ta t ions :  

- ~ denotes  the  res t r i c t ion  of d to var iables  of s, 
- ~o denotes  the  res t r i c t ion  of ~ to the  rest  of the  t ree  (t - s), 
- ~)o is decomposed  into two sets: ~ol is res t r i c ted  to the  var iables  t ha t  do not  

refer to  a t t r i b u t e s  occur r ing  in the  sub t ree  s and  ~o2 is res t r i c ted  to  var iables  
which refer to  a t t r i b u t e s  occur r ing  in s (cf f igure 2). 

t 

00 =19ol U 002 

S ~ 

t ~ 

a~' o = 0 o l  U ]}02 

Fig .  2. Crossover and mutation: subtrees and valuations exchange 

The re  are  three  poss ible  cases : 

- Case 1: there  exis ts  a va lua t ion  0 t, which is consis tent  wi th  the  set of con- 
s t r a in t s  defined in t ~ and  which ex tends  0ol U v~,,; in o ther  words,  v ~t gives 
on ly  new values to the  var iables  occur r ing  in 002. The  resul t  is therefore  the  
ind iv idua l  (t ~, ~9'). 

- Case  2: there  exists  a va lua t ion  ~ ' ,  which is consis tent  wi th  the  set of con- 
s t r a in t s  defined in t ~ and  which ex tends  zg~, (but  which does not  ex t end  ~)ol)- 
I t  is no longer  poss ible  to,  even par t ia l ly ,  keep the  previous  va lua t ion  V~ol. 
T h e  resul t  is therefore  the  ind iv idua l  (t ~, ~t). 
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- Case 3: the new tree t ~ has no solution, even when relaxing all the valuations.  
In  t ha t  case, the opera tor  applied to  this individual with the subtree s'  fails. 

"~ [A1,A2] 
.." "... 

/" l~  [A3>'def'li 

/ I ...... 
/ X / .  ....... 
i :" 

, r ,  r . . . .  i(~'[A4='a'l 
(int'date'string) i I \} 

(real,stnng) 

S ~ 

[AI,A2] 

/ '"'"t '"" 

..... ~ [A3>'def'] i 
/ i ./ 

...... I / .... 
" / X~ .... 

(int,date,strl~ag)[0nt,real) I 

Fig.  3. ~ol (A1 ---- 1, A3 = 3) remains valid (Case 1) 

For instance, in Figure 3, the resulting valuation is cons t ruc ted  with V~ol 
which assigns to A1 the first a t t r ibu te  of r l  and to A3 the third a t t r ibu te  of r l  
and with a new valuation for A2 to the second a t t r ibute  of r3 (the fact t ha t  A4 
is assigned the second a t t r ibute  of r2 is no longer useful). 

!AI~ S' 

/ N [A2 = A31 
! %. 

r, i G A4='a'! 
(date,string) I / 

r 2  # ' "  
I(int,string) I 

[A 1 ] 
y ...-"'"[" 

" N [A2 = A31 P / / 

.. .... \ 

(datestring)l (real,date~ 

Fig.  4. ~)ol (A1 = 1, A2 = 2) must be changed. (Case 2) 

Figure 4 illustrates the second case: the initial valuation ~ol is no longer 
consistent,  because A2 refers to a string at t r ibute,  and there is no str ing in 
the new tree s'. So, keeping this valuation makes the constraint  (dom(A2)  = 
dora(A3)) on the join node not  satisfiable. To solve this problem, we relax the 
valuat ion V%l, and the new set of constraints  becomes satisfiable with dom(A2)  = 
dora(A3) = date. 

The last case is similar to the previous one, but  even after relaxing t~ol, the 
constra int  set remains unsatisfiable. 

In our application, a l ess ' random version of the muta t ion  opera tor  has also 
been implemented:  it allows to generalize or specialize an individual. 
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3 P r e l i m i n a r y  resul ts  

This approach has been implemented in C. The evaluation of individuals is 
performed through a standard interface. According to the choice of the user, 
either Oracle is called (by means of PRO*C) and requests are executed, or a 
module implemented in SWI-PROLOG for data represented by ground atoms 
is used. The fitness function has been defined so that it penalizes individuals 
that cover negative examples. The usual genetic programming parameters are 
the Reproduction rate (here set to 20%), the Crossover rate (60%) and the 
Mutation rate (20%). 

3.1 Micha l sk i ' s  10 t r a in s  

This example [MMPS94] is a classical Machine Learning example. It has only a 
few instances, but it allows to test the convergence of the algorithm in a relational 
case : there are 8 relations (car, load, in-front, ccont, . . .)  with redundancies. 

The dataset is composed of 10 trains, and the goal is to discriminate between 
5 trains (positive examples) going in the east direction and 5 trains (negative 
examples) going in the west direction. The population contains 1000 individuals 
and selection is restricted to the equality operator. The algorithm converges to 
the following conjunctive definition for east trains : 

SELECT rO. idtrain 
FROM ccont rO, infront rl, load r2, load r3 
WHERE (rO.idwagon=rl.idwagon) AND (r2. idwagon=rl.idwagon) 

AND (r3. idwagon=rl, idwagon2) AND (r2. load_shape='triangle' ) ; 

It is important to notice that this definition is a complete and consistent solution 
and that it does involve several relations (and several occurrences of the same 
one). 

3.2 T h e  m u s h r o o m s  

This database [Sch87] has only one relation, called mush,  which contains all data 
about 8124 mushrooms. The mush  relation has 22 attributes with discrete values. 
The goal is to discriminate the edible mushrooms (4208) from the poisonous one 
(3916). 

Here the set of non-terminal is restricted to projection and constant selection 
(since there is a single relation). The trees are linear, crossover and mutation 
operators always succeed. Such an experiment enables to test the performance 
of the system in an attribute/value case, with much more instances. Two con- 
junctive solutions emerge, depending on the relative weight given to the number 
of negative covered examples in the fitness function : 3408e+/120e - covered by 
the first one (80%/3%), and 2496e+/0e - by the second one (59%/0%). 
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3.3 T h e  100 t r a i n s  e x a m p l e  

This example [MMPS94] is similar to the 10 trains example, but there are 100 
unclassified trains, and about 300 cars. The dataset is a priori unclassified. We 
have invented a concept and then tested how our system could learn the right 
definition of this concept. 

We have chosen the following partially defined concept: 
the positive examples e§ are defined by the relation "SELECT rl. idtrain 

FROM car r l  WHERE (rl.position = 1) AND (rl.wheels = 3)" (16 trains), 
the negative examples e -  are defined by "SELECT rl. idtrain FROM car rl ,  

car r2 WHERE (rl.wheels r 3) AND (rl.idtrain = r2.idtrain) AND (r2.shape 
= 'rectangle') AND (r2.rooLshape = 'flat')" (38 trains). 

Here, the population contains 250 individuals. Since the target concept is a 
"simple" conjunctive one, the best solution is reached after five generations in 
average. 

4 C o n c l u s i o n  

The experiments show that the system that we have developed is able to handle 
several relations, even on quite important collections of data. Further experi- 
ments must still be achieved to test the efficiency on very large collection of 
data and to improve the quality of the fitness function. 

The method proposed in this paper brings two kinds of contribution: 
a formalization of the search space in terms of relational algebra, 
an exploration of such a search space by a Genetic Programming approach. 

The first point has already been studied in [BR97]. Nevertheless, the two 
approaches differ: in [BR97], a normal form of relational algebra expression is 
used and the algorithm relies on an exhaustive evaluation of all possible products 
of relations in the database. 

The approach that we have chosen associates to each node of a tree a set 
of internal constraints, which defines the space of all correct individuals. When 
dealing with a particular problem, the user usually has knowledge about the 
solution, or knowledge about what is not a solution. This is usually coded by 
biases. A first method to express biases is to restrict the set TUAfT ,  but this can 
be too drastic and this does not allow to express fine knowledge. Another method 
would be to extend the set of constraints with external constraints, defined by 
the user and associated to the root of each tree. For instance, limiting the height 
of the trees would be simply written by adding the constraint height(t) < 7 
at the root of a tree t (where height is a function recursively defined over the 
nodes). This approach has two major interests: 

- extensibility: this would allow the user to define new biases over the initial 
search space, 

- simplicity: this would provide us with an unified way to express the search 
space (constraint trees) and biases over it. 

Neverthess, we must now study the class of biases that can be represented 
by constraints. 
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Another important point is learning disjunctive concepts. For the time being, 
we have focused on conjunctive concepts, and a parallel architecture, splitting 
the whole population into subpopulations (islands), was mainly used to promote 
species formation, i.e. the emergence of different solutions. We would like to use 
such an architecture for learning disjunctive concepts, as done in the system Gnet 
[GSB97]. The final solution will be the union of some of the best conjunctive 
ones. 
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