
A Relational Data Mining Tool
Based on Genetic Programming

Lionel M A R T I N , Fr6d6ric M O A L , Chr is te l V R A I N

LIFO, Universit~ d'Orlfians,
rue L~onard de Vinci, BP 6759, 45067 Orleans cedex 02, France

{martin,moal,cv} @lifo.univ-orleans.fr

A b s t r a c t . In this paper, we present a Data Mining tool based on Ge-
netic Programming which enables to analyze complex databases, in-
volving several relation schemes. In our approach, trees represent ex-
pressions of relational algebra and they are evaluated according to the
way they discriminate positive and negative examples of the target con-
cept. Nevertheless, relational algebra expressions are strongly typed and
classical genetic operators, such as mutat ion and crossover, have been
modified to prevent from building illegal expressions. The Genetic Pro-
gramming approach that we have developed has been modeled in the
framework of constraints.

1 I n t r o d u c t i o n

In th is pape r , we p ropose a D a t a Mining tool based on Genet ic P r o g r a m m i n g .
At present , mos t sys tems rely on the universa l re la t ion a s sumpt ion which hy-
po thes izes t h a t a d a t a b a s e is composed of a unique re la t ion scheme [FPSSU96].
This is not real is t ic for real appl ica t ions , since this leads to a huge re la t ion
which is h a r d l y t r ac t ab le . The D a t a Mining t a sk we address in this p a p e r is a
d i sc r imina t ion t a sk t ha t can be s t a t ed as follows.

Given:

�9 a d a t a b a s e scheme 72~ over a set U of a t t r i b u t e s

TZ = {r1(a11: d 1 1 , . . . , a l k l : dlkl) , . . . , rp(apl : d p l , . . . , ap% : dpk,,)}, where
r i is a re la t ion of a r i ty ki, aij is the j t h a t t r i b u t e of the re la t ion r i and
dij is the doma in of the a t t r i b u t e aij,
�9 a concept to learn defined by:

- a posi t ive example re la t ion e + defined by the schema :

e + (a l : d l , a2 :d2 , . . . an :dn)
- a nega t ive example re la t ion e - defined by the same schema as e +,

find a SQL reques t which recognizes the posi t ive examples and re jects
the nega t ive ones.

Table 1: The Disc r imina t ion Task

As has been s t a t ed in the task, we a im at ana lyz ing complex da t abases ,
involving several re la t ion schemes and therefore, we re lax the classical "uni-
versa l re la t ion scheme as sumpt ion" [FPSSU96]. To achieve this and cons ider ing

131

the size of the search space, we have chosen a Genetic Programming approach
[Koz92, Koz94, SJB+93], that enables to stochastically explore the search space.
Genetic-based approaches have already been proposed for Da ta Mining but, most
of them use genetic algorithms encoding attribute-value representations [GSB97]
and consequently, relying on the universal relation assumption. Some approaches
[AVK95] have extended genetic algorithms to first order representations, but ex-
amples are represented by conjunctions of atoms before execution, which allows
to code them with strings of fixed length. In our case, examples are only given
by a relation and we must find the relations that are involved in the definition of
the given concept. To our knowledge, the only Data Mining approach based on
Genetic Programming is described in [RE96], but it is applied to object-oriented
databases.

Let us first shortly recall the basic principles of Genetic Programming. It is
an optimization method used for finding nearly optimal solution(s) to a prob-
lem, given a fitness function. The hypotheses are coded by trees and are called
individuals; initially, a population of individuals is randomly built and then new
populations are iteratively generated from the previous one by applying one of
the 3 following operations:

- r e p r o d u c t i o n : an individual of the generation i is added to the generation
i + 1 ,

- m u t a t i o n : before an individual of the generation i is added to the generation
i + 1, one of its sub-trees is replaced by a randomly generated sub-tree,

- c r o s s o v e r : given 2 individuals belonging to the generation i, 2 new individ-
uals are added to the generation i + 1 obtained by exchanging one sub-tree
of each initial individual.

Cross-over

Generation i

Generation i+ 1

Reproduction Mutation

Fig. 1. Genetic operations (/k represent trees and sub-trees)

The number of individuals in a population, the number of generations and the
rate of each operation performed during a generation are fixed by parameters
before learning. Moreover, for each genetic operation, individuals are chosen
according to a probabili ty proportional to their fitness.

The solution of the problem is given by the best individual that has been
built. Let us notice that this result depends heavily on the values of the given
parameters and on the generation of the initial population.

132

For our purpose, we have chosen to represent individuals of the genetic pro-
g ram by relational algebra expressions which enable to get results tha t can be
bo th easily unders tood by an expert and easily t ransla ted into SQL requests for
evaluation. Nevertheless, this leads to an impor tan t drawback from the point of
view of Genetic P rogramming : relational algebra expressions are s t rongly typed,
each node of a tree represents a relation with a fixed ari ty and predefined do-
mains, therefore crossover or muta t ion operators can lead to syntact ical ly or
semantical ly incorrect expressions. Let us consider for instance, a tree represent-
ing a project ion on the a t t r ibute age of the relation customer : a muta t ion which
changes the relation customer into the relation purchase leads to an incorrect
tree.

T y p e d Genetic P r o g r a m m i n g as defined by [Koz94] or by [Mon95] could not
be used here, since a node of a tree represents a relation and its type is a list
of domains : the probabil i ty to r andomly select two trees with the same type is
very low.

We have developed a new Genetic P rog ra m m ing approach and formalized it
in the f ramework of constraints.

The paper is organized as follows. In Section 2, we present how the D a t a
Mining task, given in Table 1, has been formalized in a Genetic P r o g r a m m i n g
framework. Section 3 presents some experiments. Section 4 concludes and dis-
cusses futher works.

2 A cons tra in t based m o d e l

2 . 1 I n d i v i d u a l R e p r e s e n t a t i o n

A tree (also called an individual) is the basic s t ructure of our approach. The
language used to build trees defines the search space, i.e. the set of hypotheses
the sys tem will be able to build. This language is syntact ical ly defined by:

- a set T of terminals which is included in the da tabase relations set, T C T~.
These terminals label the leaves of the trees ;

- a set N ' T of non-terminals which is composed of the following relational
a lgebra opera tors : (A~ represents a variable tha t will refer to underlying
at t r ibutes)
- project ion 7r[A1,..., An], where n is the ari ty of e +,
- selection a [A 1 0 p A2], where Op �9 {=, > , <},
- selection o r [A10p V], where Op �9 {=, >, <} and V is a value occurr ing in
the database,
- join N [A1, A2],
- p roduc t x.
N [A1,A2] and x are the only operators with arity 2 ; such nodes require
two subtrees .The Ai are variables tha t will refer to underlying at t r ibutes.

Let us notice tha t a same result can be expressed by different trees, e.g.
N [A1, A2](r l , r2) and ~[A1 = A2](r~ x r2). Such trees are not equivalent since
applying muta t ion and crossover opera tor does not lead to the same individuals.

133

Each tree and each subtree represent a relation. For sake of simplicity, we
refer to an attribute in a relation by an integer representing the position of
that attribute in the underlying relation. It is called the attribute name or the
attribute reference.

To deal with the problem of semantically incorrect trees, we add a set of
constraints to each node of the tree, constraints that must be satisfied to get
semantically correct expressions. In a first step, the expressions Ai appearing
in a tree represent variables that must be instantiated by attribute references
in a second step. A tree will be correct, if the instantiation of the variables Ai
satisfies the constraints associated to each node.

The set of constraints associated to a node is defined as follows : (arity and
dom are functions which respectively give the arity of a relation and the domain
of a given attribute reference k)

A node Its set o f constraints
7r[A, ~,,](S)

ff[AlOpV](S)
a[A1 opal] (S)

M[A1,A2] (S1,$2)

x (S l , S2)
r i

{1 <_ Ai <_ arity(S) I Vi e [1..n]}
{1 <_ A1 <__ arity(S), dom(A1, S) = dora(V)}
{1 <_ A1 < arity(S),
1 <_ A2 <_ arity(S), dora(A1, S) = dora(A2, S)}
{1 <_ A1 _< arity(S1), 1 <_ A2 <_ arity(S2),
dom(A1, $1) = dora(A2, $2)}

An individual is therefore a tree over T U AfT and a valuation ~) which
associates an attribute reference to each variable Ai and which satisfies the con-
straints over each of its node. This ensures that the relational algebra expression,
represented by the tree is correct. In the following and without loss of generality,
we suppose that each variable appearing in a tree t has been renamed in order to
be unique. Consequently, satisfying the constraints of each node of t is equivalent
to satisfying the set of all constraints of t. From a logical point of view, 0 is one
of the solutions to the set of constraints of t.

2.2 I n d i v i d u a l g e n e r a t i o n

The individual generation algorithm is a recursive function. A node is randomly
generated and subtrees are generated for this node, until a tree and a satisfiable
set of constraints is completely built. We use a constraint solving system which
is supposed to be correct, i.e., not to reject satisfiable set of constraints. The
major advantage of using a constraint solving system is that the generation
immediately stops when a partial tree leads to a deadlock. Once a tree has been
completely constructed, the constraint solving system is called to get a set of
correct instantiations of the variables of the tree. We then randomly choose one
valuation, given a set v~ of instanciations variable = value.

The result of the generation process is a pair (t, 0), where t is a tree over
T U AfT which contains variables denoted by A1, �9 �9 Ak, and where ~ is a set

134

{A1 = re f l , . . . , Ak = r e f k } , where re f i are references to a t t r i b u t e s of re la t ions
t h a t a p p e a r s in t.

Let us not ice t ha t the sys tem has some ini t ia l cons t ra in ts , name ly the do-
mains of the t a rge t concept given by the re la t ion e +. Such cons t ra in t s mus t
a lways be sat isf ied and cannot be relaxed.

2 .3 C r o s s o v e r a n d m u t a t i o n : a c o n s t r a i n t s o l v i n g p r o b l e m

Let us cons ider an ind iv idua l (t, ~)) and a sub t ree s of t. The ma in p rob l em when
dea l ing wi th m u t a t i o n and crossover ope ra to r s occurs when rep lac ing the sub t ree
s by ano the r ind iv idua l defined by the t ree s r and the va lua t ion ~)~, (which comes
from ano the r ind iv idua l in case of crossover, or has been r a n d o m l y gene ra t ed in
case of mu ta t i on) given the t ree t t, since the new set of cons t ra in t s thus ob ta ined
mus t be st i l l sat isf iable .
No ta t ions :

- ~ denotes the res t r i c t ion of d to var iables of s,
- ~o denotes the res t r i c t ion of ~ to the rest of the t ree (t - s),
- ~)o is decomposed into two sets: ~ol is res t r i c ted to the var iables t ha t do not

refer to a t t r i b u t e s occur r ing in the sub t ree s and ~o2 is res t r i c ted to var iables
which refer to a t t r i b u t e s occur r ing in s (cf f igure 2).

t

00 =19ol U 002

S ~

t ~

a~' o = 0 o l U]}02

Fig . 2. Crossover and mutation: subtrees and valuations exchange

The re are three poss ible cases :

- Case 1: there exis ts a va lua t ion 0 t, which is consis tent wi th the set of con-
s t r a in t s defined in t ~ and which ex tends 0ol U v~,,; in o ther words, v ~t gives
on ly new values to the var iables occur r ing in 002. The resul t is therefore the
ind iv idua l (t ~, ~9').

- Case 2: there exists a va lua t ion ~ ' , which is consis tent wi th the set of con-
s t r a in t s defined in t ~ and which ex tends zg~, (but which does not ex t end ~)ol)-
I t is no longer poss ible to, even par t ia l ly , keep the previous va lua t ion V~ol.
T h e resul t is therefore the ind iv idua l (t ~, ~t).

135

- Case 3: the new tree t ~ has no solution, even when relaxing all the valuations.
In t ha t case, the opera tor applied to this individual with the subtree s' fails.

"~ [A1,A2]
.." "...

/" l~ [A3>'def'li

/ I
/ X /
i :"

, r , r i(~'[A4='a'l
(int'date'string) i I \}

(real,stnng)

S ~

[AI,A2]

/ '"'"t '""

..... ~ [A3>'def'] i
/ i ./

...... I /
" / X~

(int,date,strl~ag)[0nt,real) I

Fig. 3. ~ol (A1 ---- 1, A3 = 3) remains valid (Case 1)

For instance, in Figure 3, the resulting valuation is cons t ruc ted with V~ol
which assigns to A1 the first a t t r ibu te of r l and to A3 the third a t t r ibu te of r l
and with a new valuation for A2 to the second a t t r ibute of r3 (the fact t ha t A4
is assigned the second a t t r ibute of r2 is no longer useful).

!AI~ S'

/ N [A2 = A31
! %.

r, i G A4='a'!
(date,string) I /

r 2 # ' "
I(int,string) I

[A 1]
y ...-"'"["

" N [A2 = A31 P / /

.. \

(datestring)l (real,date~

Fig. 4. ~)ol (A1 = 1, A2 = 2) must be changed. (Case 2)

Figure 4 illustrates the second case: the initial valuation ~ol is no longer
consistent, because A2 refers to a string at t r ibute, and there is no str ing in
the new tree s'. So, keeping this valuation makes the constraint (dom(A2) =
dora(A3)) on the join node not satisfiable. To solve this problem, we relax the
valuat ion V%l, and the new set of constraints becomes satisfiable with dom(A2) =
dora(A3) = date.

The last case is similar to the previous one, but even after relaxing t~ol, the
constra int set remains unsatisfiable.

In our application, a l ess ' random version of the muta t ion opera tor has also
been implemented: it allows to generalize or specialize an individual.

136

3 P r e l i m i n a r y resul ts

This approach has been implemented in C. The evaluation of individuals is
performed through a standard interface. According to the choice of the user,
either Oracle is called (by means of PRO*C) and requests are executed, or a
module implemented in SWI-PROLOG for data represented by ground atoms
is used. The fitness function has been defined so that it penalizes individuals
that cover negative examples. The usual genetic programming parameters are
the Reproduction rate (here set to 20%), the Crossover rate (60%) and the
Mutation rate (20%).

3.1 Micha l sk i ' s 10 t r a in s

This example [MMPS94] is a classical Machine Learning example. It has only a
few instances, but it allows to test the convergence of the algorithm in a relational
case : there are 8 relations (car, load, in-front, ccont, . . .) with redundancies.

The dataset is composed of 10 trains, and the goal is to discriminate between
5 trains (positive examples) going in the east direction and 5 trains (negative
examples) going in the west direction. The population contains 1000 individuals
and selection is restricted to the equality operator. The algorithm converges to
the following conjunctive definition for east trains :

SELECT rO. idtrain
FROM ccont rO, infront rl, load r2, load r3
WHERE (rO.idwagon=rl.idwagon) AND (r2. idwagon=rl.idwagon)

AND (r3. idwagon=rl, idwagon2) AND (r2. load_shape='triangle') ;

It is important to notice that this definition is a complete and consistent solution
and that it does involve several relations (and several occurrences of the same
one).

3.2 T h e m u s h r o o m s

This database [Sch87] has only one relation, called mush, which contains all data
about 8124 mushrooms. The mush relation has 22 attributes with discrete values.
The goal is to discriminate the edible mushrooms (4208) from the poisonous one
(3916).

Here the set of non-terminal is restricted to projection and constant selection
(since there is a single relation). The trees are linear, crossover and mutation
operators always succeed. Such an experiment enables to test the performance
of the system in an attribute/value case, with much more instances. Two con-
junctive solutions emerge, depending on the relative weight given to the number
of negative covered examples in the fitness function : 3408e+/120e - covered by
the first one (80%/3%), and 2496e+/0e - by the second one (59%/0%).

137

3.3 T h e 100 t r a i n s e x a m p l e

This example [MMPS94] is similar to the 10 trains example, but there are 100
unclassified trains, and about 300 cars. The dataset is a priori unclassified. We
have invented a concept and then tested how our system could learn the right
definition of this concept.

We have chosen the following partially defined concept:
the positive examples e§ are defined by the relation "SELECT rl. idtrain

FROM car r l WHERE (rl.position = 1) AND (rl.wheels = 3)" (16 trains),
the negative examples e - are defined by "SELECT rl. idtrain FROM car rl ,

car r2 WHERE (rl.wheels r 3) AND (rl.idtrain = r2.idtrain) AND (r2.shape
= 'rectangle') AND (r2.rooLshape = 'flat')" (38 trains).

Here, the population contains 250 individuals. Since the target concept is a
"simple" conjunctive one, the best solution is reached after five generations in
average.

4 C o n c l u s i o n

The experiments show that the system that we have developed is able to handle
several relations, even on quite important collections of data. Further experi-
ments must still be achieved to test the efficiency on very large collection of
data and to improve the quality of the fitness function.

The method proposed in this paper brings two kinds of contribution:
a formalization of the search space in terms of relational algebra,
an exploration of such a search space by a Genetic Programming approach.

The first point has already been studied in [BR97]. Nevertheless, the two
approaches differ: in [BR97], a normal form of relational algebra expression is
used and the algorithm relies on an exhaustive evaluation of all possible products
of relations in the database.

The approach that we have chosen associates to each node of a tree a set
of internal constraints, which defines the space of all correct individuals. When
dealing with a particular problem, the user usually has knowledge about the
solution, or knowledge about what is not a solution. This is usually coded by
biases. A first method to express biases is to restrict the set TUAfT , but this can
be too drastic and this does not allow to express fine knowledge. Another method
would be to extend the set of constraints with external constraints, defined by
the user and associated to the root of each tree. For instance, limiting the height
of the trees would be simply written by adding the constraint height(t) < 7
at the root of a tree t (where height is a function recursively defined over the
nodes). This approach has two major interests:

- extensibility: this would allow the user to define new biases over the initial
search space,

- simplicity: this would provide us with an unified way to express the search
space (constraint trees) and biases over it.

Neverthess, we must now study the class of biases that can be represented
by constraints.

138

Another important point is learning disjunctive concepts. For the time being,
we have focused on conjunctive concepts, and a parallel architecture, splitting
the whole population into subpopulations (islands), was mainly used to promote
species formation, i.e. the emergence of different solutions. We would like to use
such an architecture for learning disjunctive concepts, as done in the system Gnet
[GSB97]. The final solution will be the union of some of the best conjunctive
ones.

R e f e r e n c e s

[AVK951

[BR97]

[FPSSU96]

[GSB971

[Koz92]

[Koz94]

[MMPS94]

[Mon95]

IRE96]

[Sch87]

[SJB+93]

S. Augier, G. Venturini, and Y. Kodratoff. Learning first order logic rules
with a genetic algorithm. In Proceedings of the First International Con-
ference on Knowledge Discovery FJ Data Mining (KDD'95), pages 21 26,
Canada, August 1995.
Hendrik Blocked and Luc De Raedt. Relational knowledge discovery in
databases. In Stephen Muggleton, editor, Proceedings of the 6th Interna-
tional Workshop on Inductive Logic Programming (ILP-96), volume 1314
of LNAI, pages 199-211, Berlin, August 26-28 1997. Springer.
U. M. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, ed-

itors. Advances in Knowledge Discovery and Data Mining. MIT Press,
Mento Park, 1996.
A. Giordana, L. Saitta, and G. Lo Bello. A coevolutionary approach to
concept learning. In Zbigniew W. Rag and Andrzej Skowron, editors, Pro-
ceedings of the l Oth International Symposium on Foundations of Intelligent
Systems (ISMIS-97), volume 1325 of LNAI, pages 257-266, Berlin, October
15-18 1997. Springer.
J. R. Koza. Genetic Programming On the programming of computers by
means of natural selection. MIT Press, Cambridge, Massachusetts, 1992.
J. R. Koza. Genetic Programming H Automatic Discovery of Reusable Pro-
grams. MIT Press, Cambridge, Massachusetts, 1994.
D. Michie, S. Muggleton, D. Page, and A. Srinivasan. To the international
computing community: A new East-West chMlenge. Technical report, Ox-
ford University Computing laboratory, Oxford,UK, 1994.
David J. Montana. Strongly typed genetic programming. Evolutionary
Computation, 3(2):199 230, 1995.
Tae-Wan Ryu and Christoph F. Eick. Deriving queries from examples us-
ing genetic programming. In Evangelos Simoudis, Jia Wei Han, and Usama
Fayyad, editors, The Second International Conference on Knowledge Dis-
covery and Data Mining (KDD-96), pages 303-306, Portland, Oregon, USA,
August 2-4 1996. AAAI.
J. C. Schlimmer. Concept acquisition through representational adjustment.
Technical Report ICS-TR-87-19, University of California, Irvine, Depart-
ment of Information and Computer Science, July 1987.
W. M. Spears, K. A. De Jong, T. Bs D. B. Fogel, and H. de Garis. An
overview of evolutionary computation. In Pavel B. Brazdil, editor, Proceed-
ings of the European Conference on Machine Learning (ECML-93), volume
667 of LNAI, pages 442-459, Vienna, Austria, April 1993. Springer Verlag.

