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Abstract. Many algorithms in decision tree learning are not designed to 
handle numeric valued attributes very well. Therefore, discretization of the 
continuous feature space has to be carried out. In this article we introduce the 
concept of cost sensitive discretization as a preprocessing step to induction of 
a classifier and as an elaboration of the error-based discretization method to 
obtain an optimal multi-interval splitting for each numeric attribute. A 
transparant description of the method and steps involved in cost sensitive 
discretization is given. We also evaluate its performance against two other 
well known methods, i.e. entropy-based discretization and pure error-based 
discretization on a real life financial dataset. From the algoritmic point of 
view, we show that an important deficiency from error-based discretization 
methods can be solved by introducing costs. From the application point of 
view, we discovered that using a discretization method is recommended. To 
conclude, we use ROC-curves to illustrate that under particular conditions 
cost-based discretization may be optimal. 

1 Introduction 

Many algorithms which focus on learning decision trees from examples  are not 
designed to handle numeric attributes. Therefore, discretization of  continuous valued 
features must be carried out as a preprocessing step. Many researchers have already 
contributed to the issue of  discretization, however as far as we know, no efforts have 
been made to include the concept of  misclassification costs to find an optimal multi-  
split. Discretization also has some additional appeals. Kohavi & Sahami [1996] 
mentioned that discretization itself may be considered as a form of  knowledge 
discovery in that critical values in a continuous domain may be revealed. Catlett 
[ 1991 ] also reported that, for very large data sets, discretization significantly reduces 
the time to induce a classifier. 
Traditionally, five different axes can be used to classify the existing discretization 
methods: error-based vs. entropy-based, global vs. local, static vs. dynamic, 
supervised vs. unsupervised and top-down vs. bottom-up. Our method is an error- 
based, global, static, supervised method combining a top-down and bottom-up 
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approach. However, our method is not just an error-based method. Through the 
introduction of a misclassification cost matrix, candidate cutpoints are evaluated 
against a cost function to minimize the overall misclassification cost of false positive 
and false negative errors instead of just the total sum of errors. False positive (resp. 
false negative) errors, in our experimental design, are companies incorrectly classified 
as not bankrupt (bankrupt) although actually they are bankrupt (not bankrupt). 

The objective of this paper is to evaluate the performance of our cost sensitive 
discretization method against Fayyad & IraN's  entropy-based method. First, we 
evaluate the effectiveness of both methods in finding the critical cutpoints that 
minimize an overall cost function as a result of the preprocessing knowledge 
discovery step. Secondly, both methods will be compared after induction of the C5.0 
classifier to evaluate their contribution to decision tree learning. 

In section 2, we introduce the concept of cost sensitive discretization and a 
transparant description of the several steps that have been undertaken to achieve cost 
sensitive discretization will be given. In section 3, we elaborate on related work in 
the domain o f  discretization of continuous features. In section 4, an empirical 
evaluation of both methods is carried out on a real life dataset. Section 5 is reserved 
for a summary of this work. 

2 Cost Sensitive Discretization 

Cost sensitive discretization signifies taking into account the cost of making errors 
instead of just minimizing the total sum of errors. This implies that discretizing a 
numeric feature involves searching for a discretization of the attribute value range that 
minimizes a given cost function. The specification of this cost function is dependent 
on the costs assigned to the different error types. Potential interval splittings can then 
be generated and subsequently evaluated against this cost function. To illustrate the 
process of cost sensitive discretization we consider a hypothetical example of a 
numeric attribute for which 3 boundary points are identified (see figure 1). In each 
interval the number of cases together with their class labels are given. Intuitively, a 
boundary point is a value V in between two sorted attribute values U and W so that all 
examples having attribute value U have a different class label compared to the 
examples having attribute value W, or U and W have a different class frequency 
distribution. Previous work [Fayyad and Irani 1992] has contributed substantially in 
identifying potential cutpoints. They proved that it is sufficient to consider boundary 
points as potential cutpoints, because optimal splits always fall on boundary points. 
Formally, the concept of a boundary point is defined as: 

Definition 1 [Fayyad and Irani 1992] A value T in the range o f  the attribute A is a 
boundary point iff in the sequence of  examples sorted by the value of  A, there exist 
two examples sl , s 2 ~ S, having different classes, such that valA(sl) < T < valA(s2); and 
there exists no other example s' ~ S such that valA(s ~) < valA(s') < valA(s2). 
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Fig. 1. an example (numeric-valued) attribute and its boundary points. 

Now suppose C(Y [ X) = 3, i.e misclassifying a class X case as belonging to class Y 

costs 3 and C(X ] Y) = 1. For a real life dataset these cost parameters may be found in 
the business context of  the dataset. However, in many cases, exact cost parameters 
are not known. Usually the cost parameters of  true positive and true negative 
classifications are set to null but the cost-values for false positive and false negative 
errors reflect their relative importance against each othter. This results in what is 
called a cost matrix. The cost matrix indicates that the cost of  misclassifying a case 
will be a function of  the predicted class and the actual class. The number of  entries in 
the cost matrix is dependent on the number of  classes of  the target attribute. 
Consequently, for each potential interval the minimal cost can be calculated by 
mult iplying the false positive cost (respectively false negative cost) by the false 
posit ive (respectively false negative) errors made as a result of assigning one of  both 
classes to the interval and picking the minimal cost of  both assignments. For example, 
the total minimal cost for the overall interval (from a to e) is 10 which can be found as 
follows: 

the number of  X cases in interval a-e is 5 
the number of  Y cases in interval a-e is 10, so 
classifying all cases in a-e as 'X '  gives a cost of 10 * C(X ]Y) = 10 * 1 = 10 
classifying all cases in a-e as 'Y '  gives a cost of 5 * C(Y IX) = 5 * 3 = 15 
therefore, the minimal cost for the overall interval a-e is 10. 

Suppose the maximum number of  intervals k is set to 3, now a network can be 
constructed as depicted in figure 2 (not all costs are included for the sake of 
visibility). The value of k may be dependent on the problem being studied, but 

Elomaa & Rousu [1996] advise to keep the value of k relatively low. Increasing 
parameter  k reduces the misclassification cost after discretization but it has a negative 
impact on the interpretability of  the classification tree after induction because the tree 
will become wider. 

0 

0 3 b ~ h 

d d 

e e 

Fig. 2 Shortest route network. 
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The shortest route linear programming approach can be used to identify the optimal 
number and placement of the intervals that yields the overall minimal cost for the 
discretization of this numeric attribute. 

This short illustration shows that several phases are to be undertaken to discretize 
numeric attributes in a cost sensitive way. First, all boundary points for the attribute 
under consideration must be identified. Second, a cost matrix must be constructed to 
specify the cost of making false positive and false negative errors. Third, costs must 
be calculated and assigned to all potential intervals. Fourth, the maximum number of 
intervals k must be specified. Fifth, a shortest route network can be constructed from 
all potential intervals with their corresponding minimal costs. Finally, this shortest 
route network can be solved using the shortest route linear programming routine. 

3 Related W o r k  

Traditional error-based methods, for example Maas [1994], evaluate candidate 
cutpoints against an error function and explore a search space of boundary points to 
minimize the sum of false positive and false negative errors on the training set. 
Entropy-based methods, for example Fayyad and Irani [1993], use entropy measures 
to evaluate candidate cutpoints. Our method is an error-based discretization method. 
However, through the introduction of a misclassification cost matrix, candidate 
cutpoints are evaluated against a cost function to minimize the overall cost of false 
positive and false negative errors instead of just the total sum of errors. Kohavi and 
Sahami [1996] show that the error-based discretization method has an important 
deficiency, i.e. it will never generate two adjacent intervals when in both intervals a 
particular class prevails even when the class frequency distributions differ in both 
intervals. Our cost sensitive discretization method however does not suffer from this 
deficiency because it takes into account these class frequency differences. By 
increasing the error-cost of the minority class, the frequency of the minority class is 
leveraged so that, eventually, different class labels will be assigned to both intervals, 
indicating a potential cutpoint. 
For previous work on other discretization methods we refer to [Holte 1993: static 
discretization] versus [Fulton, Kasif & Salzberg 1994: dynamic discretization] and 
[Van de Merckt 1993: unsupervised discretization] versus [Holte 1993 or Fayyad and 
Irani 1993: supervised discretization] and [Fayyad and Irani 1993: top-down 
discretization] versus [Kerber 1992: bottom-up discretization]. 

4 Empir ica l  Evaluat ion  

4.1 The Data Set 

To carry out our experiments we used a real life dataset of 549 tuples, all tuples 
representing a different company. Each company is described by 18 continuous 
valued attributes, i.e. different financial features on liquidity, solvability, rentability, 
and others. The entire set is not included because of space limitations. The target 
attribute is a 2-class nominal attribute indicating whether the company went bankrupt 
(class 0) or not (class 1) during that particular year. The class distribution in this data 
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set is highly unbalanced, containing only 136 (24.77%) companies that went 
bankrupt. This data set was gathered from the official financial statements of these 
companies which are available at the National Bank of Belgium. In Belgium medium 
to big enterprises are obliged to report their financial statements in large detail. 

4.2 Position of Cutpoints and Induced Cost 

In a first experiment we evaluated the performance of Fayyad & Irani's discretization 
method against our cost sensitive method relative to a specified cost function. We 
know our method yields optimal results, i.e it achieves minimal costs given a 
maximum of k intervals. Now, we are interested if Fayyad & Irani's entropy-based 
method is able to come close to this optimal solution by using the same cost function. 
We discretized all numeric attributes seperately for different misclassification cost 
matrices ranging from false positive cost parameter 1 (uniform cost problem) to 8 
(false positive errors are severely punished relative to false negative errors). For the 
sake of simplicity we call this cost parameter the discretization cost. Parameter k was 
arbitrarily set to 2n+l, i.e 5, with n the number of classes. We are particularly 
interested in to what extent our cost sensitive method is able to achieve significantly 
better results on the overall cost function compared to the method of Fayyad & Irani. 
Our experiments revealed that for all attributes, cost sensitive discretization achieved 
significantly better results than Fayyad & Irani's entropy-based discretization. On 
average, for all discretization costs and for all attributes, entropy-based discretization 
resulted in a 8.7 % increase in cost relative to our method. Table 1 shows the 
percentage increase in cost of Fayyad & Irani's method against our method for 
different discretization costs. 

Table 1 Average percentage increase in cost Fayyad vs. cost sensitive 

Discretization Cost 

This large performance gap is mainly due to the fact that our cost sensitive method 
exploits local class differences to achieve lower costs whereas the entropy-based 
method finds thresholds to minimize the entropy function and, as a consequence, it is 
not so heavily distracted by local differences. 

Experiments revealed that on average entropy-based discretization results in fewer 
cutpoints (2) compared to cost-sensitive discretization (4). For low false positive 
costs, cost-sensitive discretization only subdivides the range where the frequency of 
the minority class equals that of the majority class or small frequency differences 
exist, resulting in sensitivity to local class frequency differences. For high false 
positive costs only the common range with high class frequency differences is 
subdivided. 

4.3 Comparison of entropy-based versus cost-based discretization 

False positive(FP) and false negative(FN) error rates We induced the C5.0 
classifier and used repeated 3-fold cross validation on the discretized data sets to 
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compare the FP and FN error rate for both discretization methods. The C5.0 
algori thm has been used with increasing FP cost. Increasing this cost results in a 
lower FP error rate and a higher FN error rate. In order to visualize the differences 
between the different discretization methods, we normalized the error rates and used 
entropy-based discretization as the base line. This means that a given percentage is 
the cost sensitive error rate divided by the entropy-based error rate. First, we want to 
investigate the interaction effect of  a given discretization cost and changing the C5.0 
cost parameter on the FP and FN error rates. When the discretization cost equals 1, 
the method is an error-based method. On figure 3 it can be seen that for this method 
the FP error rate is higher but the FN error rate is lower than the base line (entropy- 
based). 
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Fig. 3 FP and FN error rates discretization cost 1 vs. Fayyad & Irani 

This higher number of  FP errors results from the fact that some attribute value ranges 
are highly dominated by non-bankruptcy cases and thus will be classified as non- 
bankrupt while this range can still contain a large proportion of  bankruptcy cases. 
Calculation of  the frequency of  FP errors (43.6%) confirmed this observation. With  
the given class distribution, the global accuracy is higher with the error based 
discretization. The following figures (4 and 5) give the error rates for other 
discretization costs (resp. 2 and 6). 
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Fig. 4 FP and FN error rates discretization cost 2 vs. Fayyad & Irani 
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Fig. 5 FP and FN error rates discretization cost 6 vs. Fayyad & Irani 

For the cost sensitive discretization the FP error rate is lower and the FN error rate is 
higher than the base line. These figures show two surprising results. Firstly, the 
shape of the curves. By increasing the C5.0 cost parameter, the FP error rate should 
decrease. This is the case for both methods, but for the cost sensitive discretizer the 
decrease is much faster (at lower C5.0 cost parameter). For higher C5.0 cost 
parameters, the entropy-based method has a lower FP error rate. Secondly, the first 
bar(s) show a decrease of the FP error rate with just a slightly increase in the FN error 
rate. Combining these two results indicates that the best results can be obtained by 
using a low C5.0 cost parameter. 

Misdass i f iea t ion  costs We will compare the performance of the classifiers obtained 
with the different discretization methods in a ROC graph [Provost & Fawcett 1997]. 
On a Roc graph the true positive rate (TP) is plotted on the Y axis and the false 
positive rate (FP) on the X axis. One point in the ROC curve (representing one 
classifier with given parameters) is better than another if it is to the north-west (TP is 
higher, FP is lower or both). A ROC graph illustrates the behaviour of a classifier 
without regard to class distributions and error cost, so that it decouples classification 
performance from these factors. Figure 6 shows the ROC graph for the different sets 
of classifiers. We decided not to show all classifiers, only the most relevant 
classifiers with respect to the performance evaluation are shown. 
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Fig. 6 Roc curve for different classifiers 
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Provost has shown that a classifier is potentialy optimal if and only if it lies on the 
northwest boundary of the convex hull [Barber, Dobkin and Huhdanpaa 1993] of the 
set of points in the ROC curve. From the figure we can see that the set of classifiers 
with the entropy-based and cost-based discretization method are potentialy optimal. 
From a visual interpretation, we can rank the methods for the region with a FP rate 
lower than 35 as follows: entropy, better than cost-based, better than error-based 
discretization. For the region with a FP rate higher than 35: firstly cost-based and 
secondly entropy and error-based discretization. To choose the optimal (minimal 
misclassification cost) classifier we need to know the error cost and the class 
distributions. In Belgium, the FP error cost is estimated to be 30 to 50 times higher 
than the FN error cost and the prior probability (this is the true distribution) of 
negative classes versus positive classes is estimated to be approximately 1 in 95. 
With this information a set of iso-performance lines [Provost & Fawcett 1997] with a 
slope of 30/95 can be constructed. On an iso-performance line all classifiers 
corresponding to points on the line have the same expected cost and the slope of the 
line is dependent on the a priori cost and class frequency distributions. This provides 
us with an instrument to choose the optimal classifier of the given sets of classifiers. 
If only the single best classifier is to be chosen, under the known cost and class 
frequency distributions, the error-based classifier (indicated by a circle) slightly 
outperforms the cost-based discretization methods with C5.0 cost 1 (indicated by a 
right triangle), as can be seen on figure 6. Altogether, it can be seen on the same 
figure that discretization of numeric attributes prior to induction is always better than 
discretizing while inducing the C5.0 classifier. 

Overfitting With our dataset, by using a discretization method, better estimated 
accuracies are obtained due to the fact that overfitting is reduced. When using the 
C5.0 cost functionality this observation is even strengthened. Increasing the C5.0 cost 
parameter results in increasing resubstitution error rates as illustrated in table 2. The 
overfitting pattern is similar to that of the false negative error rates shown in the first 
paragraph of section 4.3. From these observations, it can also be seen that cost 
sensitive discretization is less robust compared to entropy-based discretization, but 
more robust than C5.0 without discretization. So, cost sensitive discretization is more 
able to lower the false positive error rate but is more sensitive to overfitting than 
entropy-based discretization. 

C5,0 cost 
parameter 
Not discretized 
Fayyad 
Average of all 
cost sensitive 

Table 20verfi t t ing in absolute percentages 

1 2 3 4 5 6 

11.96 15.06 13.68 15.07 14.48 13.88 
10.95 12.31 10.69 9.77 9.45 8.53 
9.16 11.75 12.54 11,39 10.94 10.48 

7 8 

12.87 11.93 
8.00 7.83 
9.88 9,42 

5 Conclusion 

The concept of misclassification costs is an important contribution to the work of 
error-based discretization because in many real wodd problems, the cost of making 
certain mistakes is not equal. As a consequence, false positive and false negative 
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classifications were treated equally. A discretization method that is cost sensitive has 
been implemented, tested and compared with a well known discretization method on a 
real life financial dataset. From an algoritmic point of  view, it has been shown that an 
important deficiency from error-based discretization methods can be solved by 
introducing costs, i.e. two adjacent intervals with different class labels can be 
generated even when in both intervals a particular class prevails. From the 
application point of  view, we may conclude that using a discretization method is 
recommended. C5.0 is overfitting the financial dataset. It is easier to reduce this 
overfitting by a priori discretization than by tuning the C5.0 pruning parameter. 
Choosing the optimal discretization method is more difficult. Firstly, the results are 
only valid for this small dataset. Secondly, dependent on the evaluation procedure 
and distributions used, different choices are possible. The three methods considered 
are all potentialy optimal, but cost sensitive discretization of  numeric attributes has 
showed to be worth considering further research. 
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