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Abstract. Generalized association rules are a very important extension 
of boolean association rules, but with current approaches mining general- 
ized rules is computationally very expensive. Especially when considering 
the rule generation as being part of an interactive KDD-process this be- 
comes annoying. In this paper we discuss strengths and weaknesses of 
known approaches to generate frequent itemsets. Based on the insights 
we derive a new algorithm, called Prutax, to mine generalized frequent 
itemsets. The basic ideas of the algorithm and further optimisation are 
described. Experiments with both synthetic and real-life data show that 
Prutax is an order of magnitude faster than previous approaches. 

1 I n t r o d u c t i o n  

Association rules were introduced in [1] and today the mining of such rules can 
be seen as one of the key tasks of KDD. The intuitive meaning of an association 
rule X ~ Y, where X and Y are sets of items, is that  a transaction containing 
X is likely to also contain Y. The prototypical application is the analysis of 
supermarket basket data where rules like "34% of all customers who buy fish also 
buy white wine" may be found. Obviously, association rules can be quite useful in 
business applications. But even the above example shows a severe shortcoming: 
Rather than containing an item like "white wine" the transactions will typically 
contain item identifiers derived from a barcode which distinguishes the items 
quite accurately. So instead of finding a few useful rules a huge set of rules like 
"Smoked Irish Salmon, 500g ~ Augey, Bordeaux White, 1993" will be generated. 

One approach is to substitute all items with their generalizations, but this 
leads to a loss of information. A more elaborate solution are the generalized as- 
sociation rules introduced in [3, 4]. These rules extend the simple ones to contain 
items from arbitrary levels of a taxonomy. However this leads to an enormous 
increase in itemsets that  have to be evaluated, because many more generalized 
items are frequent than simple ones. At the same time when considering the rule 
generation as being part of an interactive KDD-process performance becomes 
very important. To address this problem, we present Prutax, a new algorithm 
for fast mining of generalized association rules. 

The problem of mining association rules is formally described in Section 2. 
In Section 3 the common approaches to generate boolean frequent itemsets are 
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sketched. In addition we explain how the performance of each of the approaches 
is differently affected by the characteristics of the database. We show that ,  when 
mining boolean rules, choosing a superior algorithm is not as straightforward as 
supposed in literature. In Section 4 we present the algorithm Pru tax  to mine 
generalized frequent itemsets. Based on the insights of Section 3 we conclude 
that  in the presence of a taxonomy a considerable performance gain can be 
expected when determining supports by tid-intersections instead of counting 
actual occurrences. In order to avoid the overhead of partitioning the database, 
as done eg in [5], we use a special kind of depth-first search. Our approach differs 
from [7] in so far as it is able to prune candidates that  have an infrequent subset 
and is not restricted to mine frequent k-itemsets only for k > 3. In addition our 
modified depth-first search makes it possible to add further optimisations to the 
basic algorithm which are described in the remainder of Section 4. In Section 5 
the performance of the new algorithm is compared to former algorithms on both 
synthetic and real-life data. The paper ends with a short summary in Section 6. 

2 P r o b l e m  D e s c r i p t i o n  

Let Z ---- { x l , . . .  ,xn} be a set of distinct literals, called items. A set X C_ E 
that  contains k items is said to be a k-itemset or just an itemset. Let :D be a 
set of transactions T, T C_ E. A transaction T supports an itemset X if X C T. 
The fraction of transactions from :D that  support X is called the support of 
X,  denoted by supp(X). An association rule is an implication X ~ Y, where 
X, Y C_ E and X N Y = O. In addition to supp(X ~ Y) = supp(X U Y) every 
rule is assigned the confidence conf(X ~ Y) = supp(X U Y)/supp(X), cf [2]. 

A set of taxonomies T is coded as an acyclic directed graph with the items 
as nodes. An edge (x, y) means that  x "is-a" y. x is the child and y the parent. 
ancestors(x) denotes the set of all items ~? for which an edge (x, ~?) exists in the 
transitive closure of T.  A non-leaf item is called a generalized item. Accordingly, 
a transaction T supports an item x C 27 if x ~ T or 3y E T : x E ancestors(y). 
T supports an itemset X C_ Z if T supports every item in X. A generalized rule 
may contain items from arbitrary levels of the taxonomy, cf [4]. 

To obtain all association rules that  achieve minimal thresholds for support  
and confidence, minsupp and minconf respectively, it suffices to generate the set 
of all frequent itemsets, cf [2]. 

3 G e n e r a t i o n  o f  F r e q u e n t  I t e m s e t s  

Since the introduction of association rules in [1], several algorithms for the gen- 
eration of frequent itemsets have been developed, eg Apriori [2], Part i t ion [5] or 
Eclat [7]. In this section we give a general survey and discuss the pros and cons. 

3.1 Basics 

Except for the empty set all 21zl subsets of the itemset 55 = {1,2, 3,4, 5} are 
shown as a lattice in Figure l(a).  The thin lines indicate the subset relations. 
The bold line is an example of actual itemset support and separates the frequent 
itemsets in the upper part  from the infrequent ones in the lower part. The goal 
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Fig. 1. Subsets of Z = {1, 2, 3, 4, 5} 

is to traverse the lattice in such a way that  all frequent itemsets are found but 
as few infrequent itemsets as possible are visited. To achieve this the algorithms 
use the downward closure property of itemset support: All subsets of a frequent 
i temset must  also be frequent. 

Let map: Z -+ {1 , . . .  , [Z[} be a mapping that  maps all items x 6 Z one-to-one 
onto natural  numbers. Now the items are totally ordered by the usual relation 
"<" .  In addition, for X C_ Z let X.item : {1 , . . .  , IXI} -+ Z : n ~ X.itemn be a 
mapping  with X.itemn denoting the n-th i tem of the items x 6 X increasingly 
sorted by "<" .  The n-prefix of an itemset X with n ~ [X I is then given by 
P = {X.itemm ] 1 < m < n}. The common strategy of the recent algorithms 
is to join every two frequent (k - 1)-itemsets which have a (k - 2)-prefix in 
common. Such a join results in a candidate k-itemset. In Figure l(a),  eg ,  {2, 3, 4} 
and {2, 3, 5} form the candidate {2, 3, 4, 5}. After the support  of a candidate is 
counted, it will by pruned or will be added to the set of frequent itemsets. 
This approach starts  with the 1-itemsets as the set of candidate 1-itemsets. 
Whenever a candidate turns out to be frequent, it may be used for further 
candidate generation. This s trategy ensures tha t  all frequent itemsets are visited. 
At the same t ime the number of infrequent itemsets tha t  are visited is reduced. 

3.2 L a t t i c e  T r a v e r s a l  

Let the classes E(P) ,P  C Z with E(P) = {H C Z [[H[ = [P[ + 1 and P is a 
prefix of H} be the nodes of a tree. Two classes are connected by an edge, if all 
i temsets of the first class can be generated by joining two itemsets of the second 
class, eg Figure l(b).  

When traversing the tree by breadth-first search - BFS - as done by Apriori 
and Parti t ion,  all frequent (k - 1)-itemsets are known when generating the can- 
didate k-itemsets. Therefore both algorithms improve performance by pruning 
those candidates tha t  have an infrequent subset before counting supports.  

The algorithms introduced in [7] use depth-first search - DFS -- to traverse 
the tree but are restricted to mine only frequent k-itemsets with k >_ 3. Further- 
more, a fundamental  drawback is not mentioned in [7]: Arbi t rary  DFS does not 
guarantee tha t  the infrequent (]C] - 1)-subsets of a candidate C are known at  
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the time the support  of C has to be determined. Therefore, candidates having 
infrequent subsets cannot be pruned by the algorithms from [7] and usually must 
be counted at large expenses instead. Especially when mining generalized rules 
this problem becomes impeding because the pruning is required by an important  
optimization. In Section 4 we show how to integrate the pruning ir~to DFS. 

3.3 S u p p o r t  C o u n t i n g  

Counting actual occurrences of candidates as done by Apriori relies on a hashtree 
structure, cf [4]. Obviously counting candidates that  occur quite infrequently is 
fairly cheap. But with growing candidate sizes, this approach gets more and 
more expensive because the number of levels of the hashtree increases. 

Counting support by intersecting tid-sets as done in Part i t ion end Eclat re- 
quires for every item in 5[ the tid-set, i.e. the set of transactions containing 
this item, to be provided. Tid-sets also exist for every itemset X and are de- 
noted by X.fids. The support of a candidate C --- X U Y is obtained by the 
intersection C.fids = X.tids n Y.tids and evaluating IC.tids]. Intersecting tid-sets 
does not suffer from large candidate sizes. Yet, there is another problem: Re- 
gardless of the actual support of a candidal;e, the cost of an intersection is at 
least rain ({ IX.tidsl, IY.t]dsl }) operations. In addition, memory usage may become 
critical but solutions to this problem are given in [5, 7]. 

3.4 C o n c l u s i o n  

Obviously the performance of the algorithms is affected differently by the char- 
acteristics of the database. Whereas the inability to prune candidates that  have 
an infrequent subset is an obvious disadvantage of DFS, the performance stud~ 
ies in literature seem to be contradictory concerning the different approaches 
of support  counting: According to [5] the algorithm Part i t ion that  relies on tid- 
intersections achieves a much better  performance than Apriori that  counts actual 
occurrences (both use BFS). On the other hand in [6] it is shown that  tid-inter- 
sections usually are more expensive than counting actual occurences. Our own 
experiments support [6]: Even when extending Eclat to prune candidates that  
have an infrequent subset - cf Subsection 4.2 -- Eclat does not perform bet ter  
than Apriori for k-itemsets with k > 1 on datasets comparable to those in [5]. 

4 A l g o r i t h m  P r u t a x  

Based on the insights from the boolean case described in Section 3, the basic 
approach to mine generalized association rules is derived in Section 4.1. The 
resulting algorithm is then further optimised in Sections 4.2 - 4.4. 

4.1 Bas i c  I d e a  

One perception of Section 3 is that  determining supports by tid-intersection 
instead of counting actual occurrences is favoured under certain conditions: 

(a) A shrinking average gap between the number of actual occurrences of a 
candidate C = X U Y and min({IX.tidsl, IY.tidsl}). 

(b) A growing average size of candidates and frequent itemsets. 
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Experiments  showed that  both  conditions typically become true when intro- 
ducing a taxonomy. The reason is that ,  usually, the more general an i tem is, 
the higher is its support.  Therefore our algorithm Pru tax  uses tid-intersections 
and combines them with DFS for two reasons: With DFS only the tid-sets of the 
frequent 1-itemsets tha t  need roughly the same amount of memory  as the original 
t ransactions must be maintained in memory permanently and partitioning, as 
done in [5], is not necessary under normal conditions. In addition it allows to 
prune candidates by taxonomy information as described later. 

4.2 O p t i m i s a t i o n  i: P r u n e  C a n d i d a t e s  w i t h  i n f r e q u e n t  s u b s e t s  

As noticed in Section 3.2 arbi t rary DFS does not allow the pruning of candi- 
dates by their infrequent subsets. This is due to the fact that  in general not all 
infrequent (ICI - 1)-subsets of a candidate C are already known at the t ime its 
support  must  be determined. In order to cope with this problem, the following 
relation is defined for all pairs of itemsets X,  Y E Km ~- { H  c_C_ Z I IHI = m):  

X < Y :r 3n, n E N, n < m : X.itemn < Y.itemn A 
Vn ~, n '  E N A n ~ < n : X.itemn, -- Y.itemn, 

"<"  imposes the lexicographic order on the itemsets of each Km. Consequently 
for every subset K '  of Km there exists exactly one largest itemset. Let C -- 
{ c l , . . .  ,cn} with ci = C.itemi be a subset of Z and let P = {c l , . . .  ,c~-1} be 
the (IC] - 1)-prefix of C. For all S C_ C with IS I = ICI - 1 follows: 

S ~ P ~ S = { C l , . . .  , c j _ l , c j + l , . . .  ,cn} 
:=> P.itemj < S.itemj A Vn', n '  E N, n ~ < j : P.itemn, = S.itemn, 
~ P < S .  

When generating a candidate C -- X U Y with X < Y as supposed in Section 3, 
the (ICI - 1)-prefix of C is X.  Consequently, all S C C, ISI -- ICI - 1, S ~ X have 
the proper ty  S > X.  To assure that  all infrequent itemsets S > X are known at 
the t ime C is generated, it suffices to realize a right-most DFS by choosing the 
largest i temset according to "<" whenever there is the choice of: 

(a) different candidates to be counted, 
(b) different prefixes P that  determine the next class E ( P )  to descend to. 

4.3 Optimisat ion ii: A v o i d  c o u n t i n g  r e d u n d a n t  supports  

In [4] the following proper ty  of itemsets containing generalized items is described: 

The support  of an itemset X that  contains both an item x and its an- 
cestor & will be the same as the support  of the itemset X \ {~}. 

As a consequence, counting the support  of an itemset that  contains bo th  an i tem 
and an ancestor of this i tem is redundant.  If our optimisation i) is applied to 
DFS, the only thing that  has to be done in order to avoid determining redundant  
supports  is to t reat  redundant  2-itemsets as infrequent, cf [4]. 
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4.4 Optimisat ion iii: Prune by taxonomy 
The itemset X is an ancestor of X if I)~l = IX I and )~ can be generated by 
replacing one or more items from X with one of their ancestors. ) (  is a parent of 
X if there is no X '  with X '  being an ancestor of X and )~ being an ancestor of 
X' .  Obviously those candidates can be pruned that  have an infrequent parent. In 
the context of BFS the use of this approach is rather limited, cf [4], but not when 
using our optimised right-most DFS lattice traversal: As a prerequisite, it has to 
be guaranteed that  at the time the support of a candidate is to be determined 
all its infrequent ancestors are known. Accordingly, a certain ordering among 
itemsets of the same size has to be followed when traversing the subsets of :~. 
This can be realized by introducing the depth of each itemset: 

f 0 ,  if {X I ~ is ancestor of X} = @ 
depth : 2 z -~ N : X ~ [max({dep th (X  I )~ is parent of X}) + 1, else 

For all ancestors C of a candidate C depth(C) < depth(C) holds. Consequently 
determining the support of all candidates C with depth(C) = i before counting 
the support  of a candidate C ~ with depth(C ~) = i + 1 ensures that  all infrequent 
ancestors of a candidate are known when its support has to be counted. 

Pruning candidates by their infrequent subsets requires to follow the order 
imposed by the mapping map, cf optimisation i). On first sight, this order may 
seem to be contradictory to the one imposed by depth. But whereas depth is 
determined by the taxonomy, map only serves as a common base for the relation 
"<" no mat ter  what specific kind of order it actually implies. Let x .  be the n-th 
element of the list generated by sorting all items x E I according to descending 
depth. Now map is chosen so that  map(x,)  = n holds for all Xn. It follows: 

map(x) < map(Z) <=~ depth({x}) > depth({~}) 

For arbitrarily chosen X, ) (  C_ I with IXI = 121 that  means: 

X < )(  ~ 3n, n E N : X.itemn < _~.itemn 

=~ depth({X.itemn}) > depth({X.itemn}) 
=~ X.itemn is not an ancestor of )~.itemn 

X is not an ancestor of ) (  

In other words, C > C holds for all ancestors C of C. Accordingly, if choosing 
map as indicated above, applying optimization i) will ensure that  all infrequent 
ancestors are known when processing a candidate. 

4.5 A l g o r i t h m  
The algorithm Pru tax  that  incorporates the described ideas is given in Figure 2. 
The parameters H 1 , . . .  ,Hn are initialized with the frequent 1-itemsets, con- 
sidering Hi < Hi+I,VHi,  1 ~_ i < n. The part  to enrich the tid-sets of the 
generalized items with the tid-sets of their children has been left out but  its 
implementation is straightforward as a recursive function. The set of frequent 
itemsets, F ,  should be implemented as a hashtree [2] in order to allow fast lookup. 
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(1) funct ion prutax(Hi , . . .  ,Ha) 
(2) f o r i = n - 1  down to 1 d o  
(3) E.ClearArray0; 
(4) f o r j = n d o w n t o i + l  do 
(5) C -- Hi U Hi; 
(6) if  not  (ICI = 2 A C.item2 �9 ancestors(C.iteml)) t h e n  
(7) if not  (IV[ r 2 A 3S, S C C, ISI = ICI - 1: S ~ F) t h e n  
(8) if  not  (3C, C C Z, C is parent of C : C ~ F) t h e n  do 
(9) C.tids = Hi.tids g~ Hj.tids; 
(10) if]C.tids[ _> minsupp-[T~[ then do 
(11) E ---- C.Append(E); 
(12) F = F U {C}; 
(13) endif; 
(14) endif; 
(15) endfor;  
(16) prutax(E); 
(17) endfor;  
(18) end.  

Fig. 2. Algorithm Prutax 

5 Pe r fo rmance  S tudy  
Pru tax  is evaluated and compared with the algorithm Cumulate,  cf [4], tha t  uses 
BFS and counting of actual occurences. For EstMerge, a variation of Cumulate  
tha t  uses sampling, only a performance gain up to 30% and no fundamental  
different performance behaviour is detected in [4]. So due to the difficulties in 
duplicating the circumstances of sampling only "pure" Cumulate was taken into 
account. In addition the algorithms from the ML-family, cf [3], are not consid- 
ered: They perform badly because of the extra  pass over the database done for 
every level of the taxonomy and excessive da ta  pre-processing. To make the com- 
parison fair the t ime to generate the tid-sets of the generalized items is added 
to the total  t ime when generating frequent itemsets with Prutax.  

The first par t  of the performance evaluation relies on synthetic datasets  sim- 
ilar to those from [4]. They were generated by the tool gen but with slightly 
modified default values. We decreased the number of items on level 2 of the 
t axonomy - the number  of roots in terms of gen - from 250 down to 64. Even 
this seems to be quite large, eg if thinking of level 2 representing the different 
depar tments  of a supermarket .  Yet, this number could only be slightly decreased 
because of Cumulate performing badly on lower values as shown in Figure 3(b). 
In addition we decided to double the default value of the minimal support  from 
0.5% to 1% in order to decrease the gap between the algorithms. Furthermore 
the number  of transactions has been decreased from 1000K to 100K. This does 
not affect the overall results because the needed time grows linearly with the 
number  of transactions for both  algorithms. 

According to our evaluation Pru tax  is more than 3 times faster than Cumu- 
late at minsupp=0.25%. As shown in Figure 3(a), the gap is even increasing with 
decreasing support .  This is due to the fact that ,  when lowering minsupp, the 
average size of the candidates and frequent itemsets increases and the average 
gap between the number of actual occurrences of a candidate C = X U Y and 
min({IX.tidsl, ]Y.tidsl} ) shrinks. Fewer items at level 2 of the taxonomy mean 
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Fig. 3. Experiments on Synthetic Data 

that the support of these items increases. The effects are the same as when 
lowering minsupp, cf Figure 3(b). Decreasing the parameter fa nout, cf Figure 3(c), 
corresponds to increasing the mlmber of taxonomy levels. At lower values Prutax 
is able to prune quite a lot of candidates by their infrequent parents and at 
fanout=2.5 performs nearly 6 times faster than Cumulate. With higher depth- 
ratio the support of frequent itemsets that contain items from the lower levels 
of the taxonomy increases and more candidate counting is done on lower levels. 
Again Prutax is able to prune quite many candidates by their infrequent parents. 
At depth-ratio=4 Prutax achieves a performance gain of almost f~ctor 5 over 
Cumulate. In addition to the experiments from Figure 3 both algorithms scale 
linearly with the number of transactions and showed to be independent from the 
number of items when the number of frequent itemsets stays roughly constant. 

A further evaluation is done on a real-life dataset. It consists of about 70,000 
customer transactions from a supermarket. There is a total number of about 
60~000 different items with an average of 10.5 items per transaction. Again Pru- 
tax outperforms Cumula~e being even I0 times faster at minsupp =: 0.6%. 
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Fig. 4. Comparison on a Real-life Dataset (Minimum Support in %) 

6 Summary 
In this paper  we described a new algorithm for fast mining of generalized as- 
sociation rules. First we discussed todays commonly known approaches to mine 
frequent itemsets. Based on this, support  counting by tid-set intersections was 
recognised as the best approach to mine generalized association rules. In order to 
avoid the overhead of parti t ioning the database,  as it is proposed in [5], we intro- 
duced right-most DFS to traverse the lattice. In contrast to DFS, as described in 
[7], the resulting algorithm is able to prune candidates that  have an infrequent 
subset and in addition is not restricted to mine frequent k-itemsets only for 
k > 3. Furthermore we were able to add further optimisations tha t  use the tax- 
onomy to improve candidate pruning. The resulting algorithm Pru tax  achieves 
an order of magnitude bet ter  performance than former approaches. This perfor- 
mance gain was shown on both synthetic da ta  and on a real-life dataset .  The 
overall benefit from Pru tax  is the enhanced consideration of taxonomic relation- 
ships: the stronger the taxonomy dominates rule generation the more significant 
is the performance gain, especially at lower values of minimum support .  

R e f e r e n c e s  

1. R. Agrawal, T. Imielinski, A. Swami: Mining Association Rules between Sets of 
Items in Large Databases, In Proc. of A C M  SIGMOD '93, 1993, Washington, USA. 

2. R. Agrawal, R. Srikant, Fast Algorithms for Mining Association Rules, In Proc. of 
the VLDB '9~, 1994, Santiago, Chile. 

3. J. Hart, Y. Fu, Discovery of Multiple-Level Association Rules from Large Databases, 
In Proc. of the VLDB '95, 1995, Ziirich, Switzerland. 

4. R. Srikant, R. Agrawal, Mining Generalized Association Rules, In Proc. of the VLDB 
'95, 1995, Ziirich, Switzerland. 

5. A. Savasere, E. Omiecinski, S. Navathe, An Efficient Algorithm for Mining Associa- 
tion Rules in Large databases, In Proc. of the VLDB '95, 1995, Zfirich, Switzerland. 

6. M. Holsheimer, M. Kersten, Heikki Mannila, Hannu Toivonen, A Perspective on 
Databases and Data Mining, In Proc. of the KDD '95, !995, Montreal, Canada. 

7. M. J. Zaki, S. Parthasarathy, M. Ogihara, W. Li, New Algorithms for Fast Discovery 
of Association Rules, In Proc. of the KDD '97, 1997, Newport Beach, California. 


