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1. Semimartingales

Let W denote a standard Wiener process with Wo = O. For a variety of
reasons, it is desirable to have a notion of an integral J: H.dW., where H

is a stochastic process; or more generally an indefinite integral J; H.dW.,
o t < 00. IfH is a process with continuous paths, an obvious way to define a
stochastic integral is by a limit of sums: let 7l"n [0, t] be a sequence of partitions
of [O,t], with mesh (7l"n) = SUPi(ti+l - td, where 0 = to < t 1 < ... < t« = t
are the successive points of the partition. Then one could define

(1.1 )

when liffin-.oo mesh (7l"n) = O. If one wants the natural condition that (1.1)
holds for all continuous processes H, then it is an elementary consequence of
the Banach-Steinhaus theorem that W must have a.s. paths of finite variation
on compacts. Of course this is precisely not the case for the Wiener process.
The key insight of K. Ito in the 1940's was to ask for condition (1.1) to hold
only for adapted continuous stochastic processes. We will both explain this
idea and extend it to a large class of stochastic processes: exactly those for
which both the integral exists as a limit of sums, and for which we also have
a dominated convergence theorem.

We suppose given a filtered probability space (il, F, P, F), where F is a
P-complete a-algebra and where F = is a filtration of a-algebras:
i.e., F. C F t if s t. We also assume that Fo contains all the P-null sets of
Fo and that F is right continuous: that is, F t = F t+ = n,.>tF,.. (Note that if
W is a standard Wiener process with its natural filtration FO =
where Ft =a(W.; s t), then if one adds the P-null sets of:F? to FP, all t,
the resulting filtration F satisfies the preceding hypotheses, which are known
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as the usual hypotheses. The same holds for Levy processes and for most
strong Markov processes.)

Let X be an adapted process with cadlag paths: that is, X, is ft­

measurable, each t > 0, and a.s. has paths which are right continuous with
left limits. 1

Definition 1.1. A process H is simple predictable if H has a representation

n

n, =Ho1{o}(t) +2: Hi1(Ti.Ti+d(t)
i==1

(1.2)

where 0 = T1 :::; ••. :::; Tn+! < 00 is a finite sequence of stopping times,
Hi E fTi' IHil < 00 a.s., 0 :::; i :::; n. The collection of simple predictable
processes is denoted S.

Let LO denote all a.s. finite random variables. We topologize LO with con­
vergence in probability, and we topologize S with uniform convergence (in
(t, w)) and denote it SUo' For a given X we define an operator Ix mapping S
to L O by (with H as in (1.2)):

n

Jx(H) =HoXo+L Hi(XTi+l - XTJ.
i=l

(1.3)

Definition 1.2. A process X is a semimartingale if Ix : SUo --+ LO ts con­
tinuous on compact time sets.

Definition (1.2) is not customary. We give the customary definition here,
and to distinguish it from ours we call it a "classical" semimartingale.

Definition 1.3. A process X is a classical semimartingale if it is adapted,
cadlag, and has a decomposition X =M +A, where M is a local martingale,
and A (is adapted, cadlag, and) has paths of finite variation on compacts.

One of the deepest results in the theory of semimartingales is the follow-
ing, proved around 1978, primarily by C. Dellacherie and K. Bichteler.

Theorem 1.4 (Bichteler-Dellacherie). An adapted, cadlag process X is
a semimartingale if and only if it is a classical semimartingale.

We remark that the deeper implication is the "only if'.
Also note that the Bichteler-Dellacherie theorem gives us many ezamples

of semimartingales:

(i) Any local martingale, such as the Wiener process, is a semimartingale.
(ii) Any finite variation process, such as the Poisson process, is a semimar-

tingale.

1 "cadlag" is the French acronym for right continuous with left limits
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(iii) The Doob-Meyer decomposition theorem states that any submartin-
gale Y can be written Y = M + A, where M is a local martingale and
A is an adapted, cadlag process with nondecreasing paths. Thus, any
submartingale (and hence any supermartingale) is a semimartingale.

(iv) If Z is a Levy process (i.e., a cad lag process with stationary and inde-
pendent increments), then if E{IZtl} < 00, each t, one has E{IZtl} = at
(assuming Zo =0) and thus Zt = (Zt - at) + at is a decomposition for
Z,a nd Z is a semimartingale. More generally it can be shown that any
Levy process is a semimartingale.

(v) Most "reasonable" real valued strong Markov processes are semimartin-
gales.

(vi) An illustrative example of a Levy process that is a martingale is as
follows: let N' be a sequence of i.i.d. Poisson processes with arrival in-
tensities a,(a, > 0). Let 1,8,1::::: c and assume 'E':=.l,8ta, < 00. Then

is a Levy process. Note that if, for example, a, = 1 (all i) and {3;. = to
then if LlM. =M. -M._ (the jump at time s), we have 'Eo<.<t ILlM.1 =
'Eo<.<t LlM. = 'E':=.1 tNf = 00 a.s. This is an example of a -martingale
that cannot be used, path by path, as a classical differential because of
behavior arising purely from the jumps; that is, M has paths of infi-
nite variation on compacts and one cannot define a Lebesgue-Stieltjes
pathwise integral for M.

Finally let us note some simple but important properties of semimartin-
gales.

Theorem 1.5. The set of semimartingales is a vector space.

Theorem 1.6. If Q is another probability absolutely continuous with respect
to P, then every P-semimartingale is a Q-semimartingale.

Theorem 1.7 (Stricker). If X is a semimartingale for a filtration F, and
if G is a subfiltration such that X is adapted to G, then X is a G-
semimartingale as well.

Proof. Theorem 1.5 is immediate from the definition. For Theorem 1.6 it is
enough to remark that if Q «: P, then convergence in P-probability implies
convergence in Q probability. For Theorem 1.7, let S(F) denote S for the
filtration F. Since S(G) C S(F), if l x is continuous for Ix : S,.(F) --+ LO,
then it is a fortiori continuous for S,.(G). 0

Stricker's theorem shows one can easily shrink the filtration since one is
only shrinking the domain of a continuous operator. Expanding the filtration,
on the other hand, is more delicate, since one is then asking a continuous
operator to remain continuous for a larger domain. An elementary result in
this direction is the following:
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Theorem 1.8 (P. A. Meyer). Let A be a countable collection of disjoint
sets in :F. Let H be the filtration given by 1ft = 0-(F t , A). Then every F
semimartingale is an H semimariinqale.

Proof. Without loss of generality assume A is a partition of il, and P(An) > 0,
each An E A. Define o; « P by Qn(A) = P(AIAn). Then X is a Qn-
semimartingale by Theorem 1.6. Let In be the filtration generated by F and
all Qn null sets. Let X be a (In, Qn)-semimartingale, each n. Moreover F C
He In. By Stricker's theorem, X is an H semimartingale under Qn' Note
that dP = 2::=1 P(An)dQn. Suppose H" E S(H) converges to H E S(H)
uniformly. Then Ix(Hn) converges to Ix(H) in Qn-probability for each n,
and it follows that it converges in P-probability as well. Thus X is an (H, P)­
semimartingale. 0

2. Stochastic Integration

We wish to define a stochastic integral of the form H._dX., where H is
cadlag, adapted, and H._ represents its left continuous version; and X is a
semimartingale. We recall S is the space of simple predictable processes and
LO is the space of finite valued random variables.

We also define:

D = the space of adapted processes with cadlag paths
L = the space of adapted processes with cadlag paths (left continuous with

right limits)

Note that if HE D, then H_ (its left continuous version) is in L; and if
H E L, then H+ is in D. We next define a new topology, ucp, which will
replace uniform convergence.

Definition 2.1. A sequence of processes yn converges to a process Y uni-
formly on compacts in probability (denoted ucp) if for each t > 0I

suP.::;t lY.n - Y.I = (yn - y); tends to 0 in probability as n tends to 00.

We note that this topology is metrizable.

Theorem 2.2. S is dense in Lunder ucp.

Proof. By stopping, bL is dense in L, where bL denotes the bounded processes
in L. For Y E bL, let Z = Y+, and for e > 0, define To = 0 and

Then are stopping times and they are increasing since Z is cadlag. Pose

=Yol{o} + ZTi 1(Ti An,Ti+lAn]' This can be made arbitrarily close to
Y E bL by taking e small enough and n large enough. 0
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The operator Ix defined in (1.3) was, effectively, an operator giving a
definite integral for processes H E Sand semimartingales X. We now wish
to define an operator which will be an indefinite integral operator. Thus
its range should be processes rather than random variables. Therefore for a
given process X and a process H E S as given in (1.2) we define the operator
Jx : S --+ D by:

n

Jx(H) = HoXo+L Hi(X T,+l - X T,),

i=l

(2.1)

where the notation X T , for a stopping time T, denotes the process X'[ =
XtAT(t 0).

Definition 2.3. For an adapted, cddldg process X and H E S, the process
JX (H) is called the stochastic integral of H with respect to X.

We will also use the notations H.dX. and H . X or H . X t to denote
the stochastic integral. That is

Jx (H) =JHdX = H . X

Jx(H)t =I t

H.dX. =H· X t.

Theorem 2.4. Let X be a semimartingale. Then Jx : S ucp --+ D ucp is
continuous.

Proof. Suppose H" E S tends to H uniformly. By linearity, we can sup­
pose without loss H" tends to O. Let T" = inf{t : I(H" . X)tl b}. Then

E S tends to 0 uniformly as k tends to 00. Thus for every t

P{(H" .X); > b} P{IH"· b}
= X)tl b}
= 0}

which tends to 0 by definition because X is a semimartingale. Therefore Jx :
Su --+ D ucp is continuous. We next show JX : S ucp --+ D ucp is continuous.
Let b > 0, e > 0, t > O. We now know there exists 11 such that IIHllu 11
implies P(Jx(H); > b) < e/2. Let R" = inf{s : IH:I > 11}, and set H" =

Then H" E Sand IIH"llu 11 by left continuity. When
R" t we have (H" .X); = (H" .X);, whence

P ((H". X); > b) < P ((H" .X);b) + P(R" < t)

< e/2 + P ((H"); > 1])
< e,

if k is large enough, since lim,,­+oo P((H"); > 11) = o. D



6 Thomas Kurtz, Philip Protter

Definition 2.5. Let X be a semimartingale. The continuous linear mapping
JX : L ucp -+ D ucp obtained as the extension of JX : S -+ D is called the
stochastic integral.

Suppose H is a process in D. We can write the stochastic integral H._ .
X = H._dX.k?o as defined above, as a limit of sums. Let a denote a
finite sequence of stopping times:

o= To ::; T1 ::; ••. ::; Tie < 00 a.s. (2.2)

Such a sequence is called a random partition. A sequence of random par­
titions an

an: r; <17' < ... < Tk
n

is said to tend to the identity if

(i) limn suP. T[' =00 a.s.
(ii) Ilanll =sup. 11i+1 ­ Tr I converges to 0 a.s,

For a process H and a random partition a as in (2.2) we define

Ie

H" = Hol{o} +L HT;l(T;,T;+,J'
.=1

Thus if H is in L or D, we have

(2.3)

(2.4)

Theorem 2.6. Let X be a semimartingale and let HE D. Let (an )n>1 be a
sequence of random partitions tending to the identity. Then

L Tn TnH_·X = lim HTn(X ;+1 -X ; )
n-+oo 1-

•
with convergence in ucp.

Proof. Let Hie E S converge to H in ucp. Then

(H_ -H"n).X = (H_ -HIe).X + (Hie -H"n).X.
(2.5)

The first term on the right side of (2.5) equals Jx(H_ ­ Hie), which goes
to 0 because JX is continuous on L ucp : The same applies to the third term
for fixed k as n tends to 00. Indeed, ­ Han tends to 0 as k -+ 00

uniformly in n. As for the middle term on the right side of (2.5), for fixed k
it tends to 0 as n tends to 00. Thus one need only choose k so large that the
first and third terms are small, and then choose n so large that the middle
term is small. 0
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Theorem 2.6 gives an appealing intuitive description of the stochastic
integral as a limit of Riemann-type sums. Of course one can only do this
because of the path regularity of the integrands.

Let us next note some simple and quite nice properties of the stochastic
integral. H will be assumed to be in D, and X a semimartingale in Theo-
rems 2.7 through 2.11.

Theorem 2.7. If X ha» path6 of finite variation a.s., then H_ . X agree6
with the Lebe6gue-Stieltje6 integral, denoted fLS H._dX•.

Proof. The result is evident for H E S. For H E D, let H" E S converge
to H_ in ucp. Then there exists a subsequence nk such that H?» converges
uniformly on compacts a.s. to H _ . X. Since the convergence is uniform,
fLSH":"dX. converges as well to fLS H._dX., whence the result. 0

Recall that for a process Y E D, ..::1yt = yt - yt_, and ..::1Y denotes the
process An important feature of the stochastic integral is that
the jumps behave "correctly" - that is, in the same manner as they do for the
Lebesgue-Stieltjes integral. This is part of the reason we use L, rather than,
for example, D, as our space of integrands. (See Pratelli [14] or Ahn-Protter
[1] for more on this subject.)

Theorem 2.8. The jump process ..::1 (H _ . X). is indi6tingui6hable2 from the
process 1I._..::1X•.

Theorem 2.9. LetQ -e;P. ThenH_Q·X i6Q-indi6tingui6hablefromH_p·
X.

Theorem 2.10. Let P and Q be any two probabilitie6 and X a semimartin-
gale for each. Then there ezist« H_ . X which i6 a version of both H_p . X
and H_Q ·X.

Theorem 2.11. Let G be another filtration and 6upp06e HE D(G)nD(F),
and that X is 6emimartingale for both F and G. Then H -G . X = H -F . X.

Proof. For Theorem 2.8 and 2.9, the result is clear for H E S and follows
for H_ with H E D by taking limits in ucp (convergence in P-probability
implies convergence in Q-probability). For Theorem 2.10, let R = t(P +Q),
and apply Theorem 2.9. For Theorem 2.11, we can use the construction in
the proof of Theorem 2.2 to approximate HE D constructively from H: thus
the approximations H" E S are in S(F) n S(G); the result is clearly true for
H in S and thus it follows by again taking limits. 0

Theorem 2.9 can be used to show that many global results also hold
locally.

We give an example.

2 Two processes Y and Z are indistinguishable if P {w t -+ 1";:(w) =I t -+

Zt(w)} = o.
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Theorem 2.12. Let X, Y be two semimariinqales and H, J be two processes
in D. Let

A = {w : H.(w) = J.(w) and X.(w) =Y.(w)}

where H.(w) denote! the path of H : t -+ Ht ((.;) ) . Let

B = {w : X.(w) i! finite variation on compact!}.

Then H_ ·X = J_ ·X on A a.s., and H_ . X = fLS H._dX on B a.s.

Proof. Without loss of generality assume P(A) > O. Define a new Q by
Q(A) = P(AIA). Then H_ = J_ and X =Y under Q. Note that X and Y
are also semimartingales under Q. Thus H_Q . X = H_p . X, and one need
only apply Theorem 2.9. The second assertion is a combination of the above
idea with Theorems 2.7 and 2.9. D

The next result is quite important.

Theorem 2.13. Let H E D and X be a semimertinqale. Then Y = H_ . X
i! again a semimartinqole. Moreover if G E D a! well, then

G_ . Y = G_ . (H_· X) = (GH)_ ·X.

Proof. IfG, H E 5, then clearly Y = H _ .X is a semimartingale, and Jy (G) =
Jx(GH). The associativity property extends to H_, G_ with G, HE D by
continuity. Therefore it remains only to show Y = H _ .X is a semimartingale.
By taking subsequences if necessary, assume H" E 5 converges to H _ in ucp
and also H" . X converges a.s. to H_ . X. For G E 5, Jy(G) is defined for
any process Y and hence makes sense a priori. Thus

Jy(G) = lim G· y n = lim G· (H n
. X)

n-+oo 11-+00

= lim (GH n
) . X = Jx(GH_),

n--+oo

since X is a semimartingale. Next let G" converge to G in S". We wish to
show ly(Gn ) converges to ly(G). But

since G"H_ converges to GH_ in ucp. Then since Jx(GH_) = Jy(G) we
have the result. D

3. Quadratic Variation

A process which plays a key role in the theory of stochastic integration is the
quadratic variation process. We define it using stochastic integration:
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Definition 3.1. Let X be a semimartingale. The quadratic variation pro­
cess, [X, X], is defined to be

[X,X]t = X t
2 ­ 2i

t
X._dX.. (3.1)

If X and Yare two semimartingales, the quadratic covariation process lS

defined to be

[X, Y]t = Xtrt -it X._dY. -it Y._dXs-

Note that if X is of finite variation, then (3.1) is simply integration by
parts, and if X is also continuous then [X, X]t = X5, and in particular it is
constant. Note further that the bracket [".] satisfies a polarization identity:

1
[X, Y] = 2{[X + Y, X + Y] ­ [X, X] ­ [Y, Y]}.

We make the convention that X o- = 0 a.s. always.

Theorem 3.2. Let X be a semimartingale. Then [X, X] is in D and has
non-decreasing paths. Moreover [X, X]o =X5 and

(i) Ll[X, X] = (LlX)2 i
(ii) If an is a sequence of random partitions tending to the identity as defined

in (2.2), then

{X6 + ­ XTt)2} = [X,X]

•
with convergence in ucp i

(iii) for a stopping time T, [XT,X] = [X,XT] = [XT,XT] = [X,xjT.

Proof. [X, X] is in D since the right side of (3.1) is in D.1t is nondecreasing a
consequence of (ii) above. That (i) holds follows from (3.1) and Theorem 2.8.
Property (ii) is an elementary consequence of Theorem 2.6. Finally (iii) fol­
lows easily from (ii). 0

Theorem 3.2 gives a method of extending the notion of quadratic variation
to a wider class of processes than semimartingales; namely, those for which a
limit of sums exists in ucp, as given in Theorem 3.2 (ii). This would include,
for example, the Dirichlet processes.

It is worthwhile to calculate the quadratic variation of some basic pro­
cesses. Theorem 3.2 (ii) allows one to deduce that [W, W]t = t a.s., where
W is standard Wiener process. If A is of finite variation, again Theorem 3.2
(ii) allows one to conclude that [A, A]t = 'Eo<.<t(LlA.)2. In particular if N
is the Poisson process then [N, N]t = Nt. If A is continuous and of finite
variation, [A, A]t = and thus if Ao =0 then [A, A] == O.

The quadratic variation process has a particularly nice property with
respect to stochastic integrals:
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Theorem 3.3. Let X and Y be two semimartingales, and let H, KED.
Then

(3.3)

In particular,

[H_· X, Y]t = it H._d[X, Y].. (3.4)

First assume that H = l[o,T]. Then (3.4) follows from Theorem 3.2 (iii).
Next let H = Vl(S,TJ where X and T are stopping times and V E Fs. Then
H· X = V(XT

- X ), and by Theorem 3.2

Proof. Without loss we assume X o = Yo = O. By symmetry it suffices to
prove

[H· X, Y] = V{[XT , Y] - [X S , Y]}

= V{[X, YjT - [X, y]S} = f H.d[X, Y] s-

The result now holds for H E S by linearity. For H E D, let H" E S
approximate H_ in ucp. Let Z" = H" ·X. Then [Z",Y] = JH:;'d[X,Y].,
and since H" E S we have:

[Z", Y] =YZ" - f LdZ" - f

=YZ"-fLH"dX- f

which converges to

YZ- jLH_dX- j Z_dY=YZ- l:«: j Z_dY=[Z,Y].

Thus,

[Z, Y] = lim [Z", Y] = lim j Y]. = j H._d[X, Y]•.
n-+ex> n--+oo

But Z = lim Z" = lim H" . X = H_ . X, and we have the result. 0
n-+oo n--+oo

An important special case is that of martingales. If M is a martingale
and E{suP.<t IM.1 2

} < 00, then E{Mn = E{[M, M]t}. Therefore Doob's
maximal quadratic inequality for martingales can be expressed as follows (see
[15]):

Theorem 3.4. Let M be a local martingale. Then

E{sup(M.)2} :::: 4E{[M, M]t} .
•:St

In particular if E{[M, M]t} < 00, then M is a square integrable martingale
on [0,t].
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Let W be a standard Wiener process, and let HE D. Then as we previ­
ously remarked [W, W]t = t. Hence

[H_· W,H_· W]t = it H:_ds = it H:ds.

Therefore,

by Fubini's theorem. It is this isometry that K. Ito used when he originally
defined the stochastic integral for the Wiener process.

4. Change of Variables

The change of variables formula in the general case (that is, the case for
semimartingales with jumps) often looks strange, but actually it is close to
the formula for Lebesgue­Stieltjes integration. The problem is that the latter
formula is not well known. Of course it is a corollary of the general formula,
but we nevertheless state it first.

Theorem 4.1. Let V be a process with cadlag paths of finite variation on
compacts, and let f be C1

. Then

f(vt) ­ f(Vo) = it f'(V._)dV. + L {f(V.) ­ f(V.-) ­ f'(V._)LlV.}
0+ O<'st

and in particular f(V) is again a process with paths of finite variation on
compacts.

Note that it is not a priori obvious that the infinite sum above converges.
Before we state the general theorem recall that for a semimartingale X the
process [X, X] is in D and is non­decreasing. Therefore w by w the paths
t -> [X, X]t(w) have a Lebesgue decomposition into a continuous part and a
pure jump part. Indeed, in light of Theorem 3.2 we can write

[X,X]t = + L (LlX.)2,
O<'st

and we call [X, X]C the continuous part of the quadratic variation. Note that
we also have for semimartingales X, Y:

[X,Y]t = [X, + L LlX.LlY.,
O<'st

and in particular we deduce Lo<.<t(LlX.? < 00 a.s, for any semimartingale
X. (It is of course not true in general that Lo<.<t ILlX.1 is finite a.s.; see
example (vi) where such a term is 00 a.s., each t >-0.)
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Theorem 4.2 (Change of Variables). Let X = (xl, ... ,X d
) be a

d-dimensional semimartingale, and let f : R d -+ R be C2 • Then f(X) ts a
semimartingale and moreover

d it 8f ,
f(Xt) - f(Xo) = 2: (4.1)

,=1 0+ X,

1 2: jt 8
2
f ( )d[' j]C+- 8 8 X._ X, X s2 x· x·-+ ' J

{
d 8f '}+ L f(X.) - J(X.-) -2: 8x, (X._PX•.

.=1
Proof. We give the proof for d = 1; the case for d > 1 is analogous but
messier. Thus we want to establish:

f(Xt) - f(Xo) =1:r(x._ )dX. + iit f"(X.- )d[X,
+ 2: {f(X.) - f(X.-) - f'(X._)LlX.}.

(4.2)

We further assume X o = 0, to eliminate the plus symbols. First suppose f
is a polynomial on R. Obviously (4.2) holds for f a constant function. We
will use induction and thus it suffices to prove the following: let 9 be such
that g(X) is a semimartingale and that (4.2) holds; then if f(x) = xg(x),
also f(X) is a semirnartingale and (4.2) holds for f.

Note that the product of two semimartingales is a semimartingale by
integration by parts (formula (3.2) and Theorem 3.2), thus Xg(X) is a sem-
imartingale. Again using integration by parts (formula (3.2)) we have

By hypothesis g'(X) satisfies (4.2), hence by Theorems 2.8 and 2.13 we ob-
tain:

f(Xt) = f(Xo) + it X._g'(X._)dX. + it
o 2 0

+ 2: x._{g(X.) - g(X._) - g'(X._)LlX.}
o<.<t

+ + [X,g(X)k

(4.3)
Next, using Theorem 3.3 we see that
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[X, g(X)]t =it g(X._ )d[X, X].

+ 2: (L1X.){g(X.) - g(X._) - g'(X._)L1X.}
o<.<t

= it g(X:_ )d[X, + 2: L1X.{g(X.) - g(X._n.
o O<'$t

Combining (4.3) and (4.4) we see that f satisfies (4.2).
Now we consider the case where f is not a polynomial. Let

Tn =inf{t > 0: IXtl > n}.

(4.4)

Then for each fixed n we can find a sequence (gnm)m2: 1 of polynomials that
converge, together with their first and second derivatives, respectively to f
and its first two derivatives, uniformly on {x : Ixl n}. There exists a
constant K n such that for [e], Iyl n,

and

If(x) - f(y) - f'(y)(x - y)1 Knlx _ yl2 (4.5)

Ignm(x) - gnm(Y) - - y)1 Knlx - y12. (4.6)

Recall we remarked just before stating this theorem that L.<t(..1X.)2 < 00

a.s. for any semimartingale Xj therefore using (4.5) and (4-:-6) and taking
limits as m increases to 00 we deduce that for t < Tn:

2: If(X.) - f(X.-) - f' (X._ )L\X.I < 00 a.s.
O<'$t

and moreover

lim '" {gnm(X.) - gnm(X.-) -
m--+oo Z::

O<'$t

= 2: {J(X.) - f(X.-) - f'(X.-)L\X.}.
O<'$t

Furthermore liIDm-+oo gnm(Xt} = f(Xt}, for t < Tn. Note further that

tends to f'(X._)dX. since Jx is continuous in ucp on

L, and also )d[X, converges in ucp to f"(X.- )d[X,
Since Tn increases to 00 a.s., the process Lo<.<t{f(X.) - f(X.-) -

f'(X._)L1X.} is of finite variation (and thus absolutely convergent as a series
a.s, for t > 0) on compacts. Since the other terms on the right side of (4.2) are
all well defined semimartingales, we conclude that f(X) is a semimartingale
and that (4.2) indeed holds. 0

We remark that the preceding proof, while quick, simple, and elegant, is
not particularly intuitive. A more intuitive proof, using Taylor expansions,
can be found for example in [15, pp. 71ffj.
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If X = (W1 , ••• , W d ) is a d-dimensional Wiener process, then Wi is
independent of Wi for i i=- i, and one can check that [Wi, Wi] == 0 for i i=- j
(we assume Wo = 0). In this case for f E C2 we can write the change of
variables formula (known here as Ito's formula) in the form

it lit
f(Wt) - f(Wo) = \7 f(W.) . dW. + - ilf(W.)ds.

o 2 0

In particular if ilf = 0, then f(W) is a local martingale.
Also note that if X = (Xl, ... , X d ) is such that some of the compo-

nents of X are finite variation processes, then f need only to be C1 for the
corresponding coordinates.

5. Stochastic Differential Equations

We consider here fairly general stochastic differential equations which are
sufficient for most applications. Let D d denote d-dimensional vectors of pro-
cesses in D.

Definition 5.1. An operator F : D d --+ D is said to be functional Lipschitz
if for any processes X, Y in n- we have

(i) for any stopping time T, X T - = y T - implies F(Xf- = F(Yf-.3
(ii) IF(X)t - F(Yhl:-::; Msup IX. - Y.I .

s :::;t

The following theorem is a special case of a more general result to be
proved in Section 7 of Part II of these notes (see also [15]).

Theorem 5.2. Let Y = (y 1 , ., ., y d ) be a vector of semimartingales and let
r, 1 <i < k, be processes in D. Let Fj, 1 < i < k, 1 :-::; j :-::; d be functional
Lipschitz operators. Then the system of equations

(5.1)

has a solution in D, and it is unique. Moreover if the processes Ji are semi-
martingales, then Xi are semimartingales as well.

The reader may wonder if the condition F(X)._, instead of F(X). is
merely a technicality to ensure that the integrand of the stochastic integral
is in L. It is not, but rather is essential if one considers driving terms with
jumps, and it corresponds to one's physical intuition: a jump at time t "kicks"
the process according to where it was just before t. Indeed, if one takes the

3 The notation X
T- denotes Xtl{t<T} +
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non-random example where Zt = and X, = 1 + X.dZ., then one
has X t = 1 for 0:::; t < 2, and X 2 = 1+X2 , which gives 0 = 1.

A particularly important special case of (5.1) is the exponential equation:

x, =X o +it aX._dY•.
One can use the change of variables formula to give an explicit solution of
(5.2), called the stochastic exponential and denoted £(Y):

£(Yh =exp (ayt - [Y, II (1 + aL1Y.) exp( -aL1Y.). (5.3)
o<.::;t

The stochastic exponential has behavior similar to a true exponential, but of
course slightly different due to the semimartingale calculus; for example we
have the following pretty result:

Theorem 5.3 (Yor). Let X and Y be semimartingales with X o = Yo = O.
Then £(X)£(Y) = £(X + Y + [X, Y]).

Proo]. Let U; = £(Xh and lit = £(Yh- By integration by parts U, lit - 1 =
U._dV. + V._dU. + [U,VJt. Using that U and V are exponentials and

letting W =UV this becomes

whence the result. 0
Using a variation of constants technique we can generalize the stochastic

exponential results.

Theorem 5.4. Let Hand Z be semimartingales and assume P{L1Zt :f:.
-1, t :::: O} = 1. Let X be the unique solution of

.r, = tt, + it X._dZs-

Then X, = £H(Z)t has the form:

Proof. Let us assume the solution is of the form Ct£(Z)t. Let Ut = £(Z)t,
and we wish to determine C. Note that

(5.4)

Integration by parts yields:
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ax, =c, - .ui; +Ut_dCt + d[C,U]t
= Ct_Ut_dZt +Ut_d{Ct + [C, Z]t}

from which we deduce

Combining (5.4) and (5.5) yields

LlCt = LlHt _ LlHt .
Ut_(l + LlZd £(Z)t-(1 + LlZt)

i,From (5.6) we have

which implies

1
-·H =C+[C,Z],
U_

[;_ . H, z] = [C, Z]t + [[C, Z], Z]p

(5.5)

(5.6)

(5.7)

(5.8)

and since [[C,Z],Z] = ELlC(LlZ)2, and since we know LlC by (5.7), we
obtain

1 LlH(LlZ)2
[C, Z] = U_ . [H, Z] - L U_(1 + LlZ)'

Using (5.8) and (5.9) we get:

(5.9)

tIt 1 { LlH11.(LlZ11.)2}
c, = Jo U,_ dH,-d[C, Z]t = Jo U,_ d H,-[H, Z],- L< (1+ LlZ11.) ,

0<11._'

and the result follows.

6. The Skorohod Topology and Weak Convergence

o

In this section we recall the essentials of the Skorohod topology and weak
convergence. Since this material is by now classic, we omit the proofs except
for Theorem 6.5 which is recent and the reader can consult any of several
expository treatments both in books and research articles.

Recall that D has been used to denote adapted, cadlag stochastic pro-
cesses.

We now let D = DR4 = DR4[0, 00) denote the space of cadleg functions
from [0,00) to R Ii. A process in D has almost all of its sample paths in D. We
wish to endow D with a topology for which it is a complete separable metric
space. A natural candidate would be uc (uniform convergence on compacts),
and the corresponding metric would be:
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duc(x, y) = f (min (1, sup Ix(s) - y(s)I)).
n=l 2

Such a topology, however, is not separable: for example, the family of func-
tions x.(t) = l[.,oo)(t), 0 :::; s < 1, is uncountable, while duc(x., xu) = 1 for
s i:- u.

Let R+ denote [0,(0).

Definition 6.1. A time change function A is an increasing, bijective function
from R+ to R+. We let r denote the class of these functions.

Definition 6.2. A sequence of functions Xn E D converges in the Skorohod
topology to xED if there ezist« An E r such that An(t) converges to A(t) = t
uniformly and Xn(An(t)) converges to x(t) uniformly on compacts.

In the uc topology, if X n converges to z , then for large enough n the jumps
of Sn must occur at the same time as those of z , and of course the sizes must
also converge.

With the Skorohod topology the sizes of the jumps must still converge,
but the jumps need not occur at the same time. The Skorohod topology also
allows the times of occurrence ofthe jumps to converge. Note that if the limit
process x is continuous, then :Z:n -> :z: in the Skorohod topology if and only if
it converges in uc.

Theorem 6.3. The Skorohod topology is metrizable, and the resulting metric
space is separable and complete.

To prove Theorem 6.3 one can construct a compatible metric. A metric
analogous to the uc metric is:

where

y) = sup IA(t) - tl + f: (1/\ sup I:z:(n /\ >.(t)) - y(n /\ t)I). (6.1)
n=l 2

n

The metric d1 is a compatible metric, but it is not complete.
We give two other compatible metrics which are in fact complete. We

define I" to be the set of Lipschitz continuous functions>' E r such that

1'(A)= esssup IlogA'(t)l= sup \logA(t)-A(S)!<oo.
t - s

Next define d2 (x , y, A, u) = sup 1:Z:(A(t) /\ u) - y(t /\ u)l. Finally we can define
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For the third metric, we define

{

I if t <n,
kn(t) = Il + 1 - t if n < t < n + 1, ,

ift n + 1

d3(x, y, n) = inf (-y(>.) + II(knx) a >. - knYIIL""),
AEF'

d3 (x, y) =L 2-n (1 /\ d3 (x, y, n)).
n2:0

The first distance d1 is close to that of the original distance proposed by
Skorohod. The second distance d2 is taken from Ethier and Kurtz (1986) and
is a modernized variation of Prokhorov's distance. The third distance d3 is
actually that of Prokhorov. Note that if X n converges to x in the Skorohod
topology and if the limit function x is continuous, then convergence in the
Skorohod topology is equivalent to convergence in the uc topology.

While the Skorohod topology seems to be quite nice from the above de-
scription, it has a few traits which can create problems.

Example 6.4. Let zn(s) = + with rn < tn, and z
and y continuous, not zero. Then Zn converges to a limit Z in the Skorohod
topology if and only if:

(i) lim rn = 00; whence Z = 0;
n-+oo

(ii) lim rn = r < 00; lim tn = 00; then z(s) = x(s)l{t<J};
-

(iii) lim rn = r < 00; lim tn = t < 00; and r < t, then z(s) = x(s)l{t<J}+
11.-+00 11.-+00 -

From Example 6.4 two important properties are clear:

It can happen that lim Xn = x and lim Yn = y, but
n-+oo n-+oo

lim (xn + Yn) "# x + y. (Note that if Y is continuous, then the above
n-+oo

does hold.) Thus D with the Skorohod topology is not a topological

vector space.

D(Rd
) "# rrt=l D(R) in the sense of Cartesian products as topologi-

cal spaces. Indeed, the topology of D(Rd) is finer than the product

topology D(R)d.

We will say that a subset A of D is relatively compact if it has com-
pact closure. Note that if A is relatively compact then every sequence has a
convergent subsequence (in the Skorohod topology, of course).

We now wish to pass from convergence in the space of functions to con-
vergence of stochastic processes. There is a minor problem to make this pro-
cedure measurable. We have the following result. (See [7] for more results of
this type.)



Weak Convergence of Stochastic Integrals 19

'I'heor-em 6.5. Let Xn and X be E-valued stochastic processes, where E is
a Polish space, and suppose liIIln-+oo Xn = X a,s. in the Skorohod topology.
Then there exists a sequence (A n)n2:1 of measurable processes with paths in

r such that liIIln-+oo dA" (Xn, X) =0 a.s.

Proof. Recall d1(x, y) is defined in (6.1).

o; = {(w, A) E a X r :dl(Xn(w), X(w)) < d1(Xn(w), X(w)) + Tn}.

Denote by 7) and {] the Borel fields of D and r respectively, where r is
endowed with the uniform topology. Then (x, A) --+ z 0 A is Borel from D x r
into D, and (x,y) --+ d1(x(t),y(t);t::; n) is Borel from D x D into R. Since
Xn and X are measurable from (n, F) into (D,7)), by composition we have
UnEF@{].

The projection 1I'"n(Un) = {w : :3,\ E r with (w, A) E Un} is equal to all
of n. By the measurable section theorem (cf, e.g., [2, p. 18], there exists a
random variable An with values in (r, (]) such that P{w : (w, An(w)) E Un} =
1. Since d1(x, y) = inf).Er d1(x, y), we have X) ::; d1(Xn, X) + 2-n

a.s., whence the result. 0
We remark that one can improve upon this result to obtain a sure result

(instead of "almost sure"); the proof is complicated and uses a measurable
selection theorem (see, e.g., [7]).

Let us now turn to weak convergence. For a given Polish space E (for our
purposes one can think of E as a complete, separable metric space), let P(E)
denote the space of all probability measures on (E, E). We endow P(E) with
the weak topology: this is the smallest topology making all the mappings

f --+Jfdl-£

continuous for all bounded continuous functions f defined on E. We have
that P(E) is also a Polish space for this topology. We have the following
elementary properties:

Theorem 6.6. Let E, E' be Polish spaces. Suppose I-£n, 1-£ E P(E) and I-£n
converges to 1-£ weakly. Then

(i) if F is a closed subset of E then lim sup I-£n (F) ::; 1-£(F) j
n-+oo

(ii) if f is a bounded function on E that is 1-£- a.s. continuous then

lim I-£n (J) = I-£(J) jn-+oo
(iii) if h : E --+ E' then 1-£ --+ 1-£ 0 h- 1 is continuous from P(E) to P(E') at

each point 1-£ such that h is 1-£- a.s, continuous.

Definition 6.7. A subset A ofP(E) is called "tight" if for every e > 0 there
exists a compact subset K of E such that I-£(K C

) ::; e for all 1-£ E A.

Perhaps the most important result in weak convergence is the following:
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Theorem 6.8 (Prokhorov). A subset A ofP(E) is relatively compact for
the weak topology if and only if it is tight.

We now wish to consider the weak convergence of stochastic processes.
Let X n, X be Rd-valued stochastic processes with paths in D. That is, X n
and X have cadlag paths. (One could replace R d with a Polish space E if
desired.) Two obvious ways X n could converge to X are:

Xn(w) X(w) in D for the Skorohod topology for all w; (6.2)

X n X in D for the Skorohod topology almost surely. (6.3)

We wish to consider a third way, namely,

E{f(Xn)} E{f(X)} for all bounded Skorohod continuous functions f.
(6.4)

Note that if we let J.Ln, J.L be the distributions respectively of X n, X, then
(6.4) is the same as

Jf dJ.Ln Jf dJ.L for all bounded Skorohod continuous t. (6.5)

The third type ((6.4) above) will be called the convergence in distribution of
X n to X and it will be implicitly understood that we are always using the
Skorohod topology. We denote x n X to mean x n converges in distribution
to X.

Observe that for convergence types (6.2) and (6.3), x n and X must all be
defined on the same probability space, whereas for convergence in distribution
(6.4) each X n and X can be defined on a different space. Such a nuance is
important for limit theorems, since the limit X may of necessity "live" on a
strictly bigger space than the converging sequence x n • On the other hand,
combining Theorem 6.5 with the classical Skorohod representation theorem,
one can prove the following:

Theorem 6.9. Let X n X. Then there exists a probability space (ii, ft,P)
such that there exists processes (Xn)n>l' X defined on ii with £(Xn) =
£(Xn)i £(X) = £(X)i and furthermore-there exists a sequence of measurable

processes An with paths in r such that liIDn-+oo dAn (Xn, X) = 0, P a.s. 4

(Recall that the metric d1(x, y) is given in (6.1)).
The definition (6.4) of convergence in distribution is stated in terms of

functions which are "continuous for the Skorohod topology". We can relate
(6.4) to the more familiar continuous functions (for the uniform topology)
using the ideas of Theorem 6.5 or Theorem 6.9:

Theorem 6.10. X n X if and only if there exists a sequence ofmeasurable
processes An with paths in r such that liIDn-+oo E{f(XAn)} = E{f(X)} for
all bounded, continuous f (f continuous in the uniform topology).

4 £(X) denotes the law of X j that is, the distribution of X
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Since we will be concerned with the convergence in distribution of
cadlag processes (and not probability measures), it is useful to reformulate
Prokhorov's theorem in terms of them:

Definition 6.11. A sequence of stochastic processes with paths in
D is said to be relatively compact in distribution if the sequence L:(Xn) of
its distribution measures is relatively compact.

Note that Definition 6.11 says essentially that (xn) is tight if there exists
a compact subset K of D such that pn(xn (/. K) e for all n.

Theorem 6.12 (Prokhorov). Let (Xn 1 be a sequence of stochastic pro­
cesses with paths in D. The sequence (L:(Xn))n>l is relatively compact in
P(DE) if and only if the collection of measures of (Xn is
tight.

7. Weak Convergence of Stochastic Integrals

Let (H n , X n ) be a sequence of processes in D. If we assume x n are semi­
martingales, each n, a natural question to pose ­ which is useful in many
applications ­ is when do the stochastic integrals J converge,
and to what do they converge? If (Hn , X n ) ::::} (H, X), it would be desir­
able to have sufficient conditions such that X is a semimartingale too and
J ::::} JH._dXs­ We will see that we have a surprisingly nice answer
to this question.

Since we are dealing with weak convergence we may assume that each
(Hn, xn) is defined on its own space. Let en = (an,P, P"; Fn) where
F" = is a filtration satisfying the usual hypothesis, each n 1.

Before we make the next definition, that of goodness, we must clear up an
important ambiguity. If (Hn, xn) is a sequence of processes in D 2 converging
to (H, X) in D 2 in the Skorohod topology, then they could be considered
to converge either in DR.[D,oo) or in DR[D,oo) x DR[D,oo). The former
convergence is stronger: for DR' [D, 00)we assume there is one sequence An of
changes of time such that (HA,,(t)' XA,,(t)) converges uniformly to (Ht, Xt);
in DR[D,oo) x DR[D,oo) there are two changes of time, and such
that (HA},(t)' converges uniformly to in; Xt). We will always use the
stronger topology DR.[D,oo). That is, if we write (Hn,xn)::::} (H,X) it will
be understood that convergence is in the topology DR.[D, 00), and thus one
change of time An applies to both H" and xn. It turns out that this is the
natural convergence to use for most applications (eg to stochastic differential
equations), since often the jumps of H" will be intimately related to those of
X", In addition, the following example shows that the fundamental theorem
of weak convergence of stochastic integrals (Theorem 7.1D) fails if one takes
convergence in DR[D, 00) x DR[D, 00).
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Example 7.1. Let X;' = X t = 1{(?::1} for all n, and let H;' =
Then = 1 for t > 1 but the limiting integral J; H._dX. = 0
for all t.

Caveat 7.2. To keep our notation simple we make the convention that when
we say, for example, that (Hn,xn), (H,X) are vector processes in D and
(Hn,xn) (H,X), we mean that X n, X are d dimensional vectors of
processes with each component a process in D, and H" is a k X d matrix
of processes with each component in D. The convergence is of course weak
convergence in the Skorohod topology DMu XR4[O, 00), where M k d denotes
k x d real valued matrices.

Definition 7.3. Let X n be a sequence of R d-valued semimartinqale« on en,
n 1 and assume x n X. The lJequence x n ill good if for any lJequence
iH" )n:?:: 1 of d x k matrix processes in D defined on en such that tH"; X n)

(H,X), then X is semimartinqale and J JH._dXs »

Observe that in Definition 7.3 we are implicitly assuming that the limit
process X is a semimartingale on a space (f), F, P, F) relative to which H is
an adapted, cadlag process. Thus F may be required to be a bigger filtration
than the minimal one generated by X that satisfies the usual hypotheses.

Recall that X was defined to be a semimartingale if for H in S, satisfying
(1.2), and l x defined by (1.3), we have l x : S", -+ LO were continuous on
compact time sets. In other words, if H" E S converged uniformly to H E
S, then J would converge in probability to JH.dX•. The following
analogous property for sequences was proposed by Jakubowski, Memin, and
Pages [9]:

Definition 7.4. A sequence of semimartisujales (Xn)n>lI with xn defined
on en, ill lJaid to be uniformly tight, denoted UT, if fa; each t > 0, the set
U; _ex; ,Hn E s-, Itr- I< 1, n I} ilJ stochcsticallg bounded (uniformly
in n).

In the above definition S" denotes the simple predictable processes on
en.

Definition 7.4 gives a theoretically compelling criterion, but it is perhaps
not easy to verify in practice. We will give another criterion that is indeed
easy to verify in practice and which turns out to be equivalent. A first step
is to modify a semimartingale in such a way as to work with processes with
bounded jumps. A standard procedure in the theory of stochastic integration
is simply to subtract away the jumps bigger than a certain size: that is, if X
is a given semimartingale, and 8 > 0 is given, let
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where of course LlX. = X. - X._. The sums converge since w by w they have
only a finite number of terms before each t > 0, since X has cadlag paths.
The problem with this approach is that it is not a continuous operation for
the Skorohod topology! We will instead propose a similar procedure which
- while it is a bit more complicated - is indeed a Skorohod continuous
procedure! Instead of removing the large jumps, we shrink them to be no
larger than a specified 6 > o. We define h6 : R+ -+ R+ by h6(r) =(1-6 Ir)+,
and J6 : D(Rd) -+ D(Rd) by

J6(Z)t = L h6(ILl:z: . I)Ll:z: . . (7.2)

For a semimartingale X set X 6= X - J6(X), and analogously for a sequence
x n : X n,6 = xn - J6(Xn ) . Then X 6 will have all of its jumps bounded
by 6. A semimartingale with bounded jumps has many nice properties. The
most important ones for us will be as follows. Let Y be a semimartingale with
jumps bounded by 6 > 0; then we have:

Y is locally bounded; that is, there exist stopping times

increasing to 00 a.s. such that = is bounded a.s.; (7.3)

[Y, Y] is locally bounded; (7.4)

Y has a decomposition Y =M + A where M is a local martingale and

A E D has paths of finite variation on compacts, and M and A both

have bounded jumps (by, e.g., 26); (7.5)

The process A in (7.5) can be taken to be "natural" (see [15]), or

equivalently, predictably measurable.f (7.6)

The process M and A in (7.5) are each locally bounded. Moreover the

total variation process of A, denoted JIdA. I, is also locally bounded.7)

Suppose x n is a sequence of semimartingales and 6 > o. We can form X n ,6

for each n and we then obtain decompositions such as (7.5) for each n :
X n,6 = Mn,6 + An ,6. As in (7.4) and (7.7) there will exist stopping times
r,1e increasing to 00 a.s. in k such that [M n ,6,M n ,6] and JIdA. I are locally
bounded; the next definition makes the dependence of each r,1e on k uniform
in n; note that this is a little subtle, since each sequence is a priori
defined on a different space en.
Definition 7.5. A sequence of semimartingales is said to have uni-
formly controlled variations (UCV) if there exists 6 > 0, and for each Q > 0,
n 1, there exist decompositions X n,6 = M n ,6+ An,6 and stopping times
r,o such that P({r,O < Q}) < and furthermore

S The predictable e-algebra on n X R+ is n = O'(L).
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En{ [Mn,O, Mn,O]tATn,a +l t AT n

,a < 00. (7,8)

Note that it is implicit in Definition 7.5 that each semimartingale x n

(and hence also Xn,o, Mn,o, An,o and m,el) can be defined on a different
probability space en. Definition 7.5 is taken from [10].

Theorem 7.6. Let (Xn be a 6equenee of semimartinqoles, XED, and
6upp06e x n => X. Then x n 6ati!jie6 UT if and only if it satisfies UCV.

Proof. Suppose first satisfies UT, By considering stopping times
of the form T = inf{t > 0 : IX:' I 2': e}, and then H of the form H =
l[o,T)(t) (which is in S"}, it follows that {suP.<t n 2': I} is stochastically
bounded. Using this and Theorem 3.2 (ii) which approximates [X, X] as a
limit of sums of squared increments of X in ucp ], we see that [Xn, X n] is
also stochastically bounded. Therefore, the number of jumps of x n bigger
than 6(n 2': 1) is stochastically bounded, whence (Xn,O) is stochastically
bounded too. Apply the preceding again to deduce that [Xn,O, Xn,O] is also
stochastically bounded.

Let Xn,o =Mn,6 +An,o be the decomposition of Xn,o where An,o is taken
to be natural (as mentioned in (7.6)). Given e > 0, one can find K such that
pn([xn,o, Xn,O] > K) < c. Let m,le = inf{t > 0 : [Xn,O, Xn,O]t > K} 1\ t.
Then p(m,1e < t) < e, and moreover

E{[Xn,O, Xn,Ohn,,,} < K + 462 ,

using (a + b)2 :=:; 2a2+ 2b2 and also (7.5). Since An,o is natural one has that
En{[Mn,o, An,O]R} = 0 for stopping times R such that Mn,6 is bounded.
Since [xn,o,xn,O] = [Mn,6,Mn,0] +2[Mn,0,An,0] + [An,6,An,0], we deduce

En{[Mn,o, Mn,O]Tn,,,} < en{[Xn,O, Xn,Ohn,,,} :=:; K + 462• (7.9)

IfH" E S", IHnl :=:; 1, then by Doob's maximal quadratic inequality we have

<4E{ l T n

,,, Mn,O].}

< 4E{[Mn,0,Mn,o]Tn,,,}:=:; K +402

by (7.9), and combining this with the UT property of Xn,o, and since

P([Mn s no] ) K + 46
2

, ,M ' Tn," > K :=:; e + K2 '

we have that

is stochastically bounded. Note that
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and since An,6 is natural we can take Hn,6 E L without loss. Therefore we
have that

lim " Hn,6,k(An,6 - An,6) =JIdAn,61
k-+oo L...J t, t,+l ti s ,

and we deduce fo is stochastically bounded for each K. Since
the jumps of An ,6 (and hence also of IAn,61) are bounded by 26, it follows
that we have UCV.

Next suppose (Xn)n?:l satisfies UCV. Since Xn ::::} X, there exists 6> 0
such that J6(X n) is stochastically bounded. By UCV we also have that

{it [Mn,6, Mn,6]t; n:::=: 1}

is stochastically bounded. This implies that x n - M n ,6 satisfies the property:

is stochastically bounded. Now let e > O. There exists K such that
pn([Mn,6, Mn,6]t > K) < e for all n. Define

T" =inf{ s : [Mn ,6,Mn ,6]. > K} 1\ t.

Then pn(rn < t) < e. Next let Hn ED, IHnl 1. Then we have

.M n ,6hl > K) < pn (sup .Mn,6). 1> K)
.<t

pn( sup .Mn,6).1 > I{) + e
.<Tn

1 -
-E{ sup .M n ,6). )2} + e
K2 s-ci»

1 - n 6 n 6 K + 4e2
K2 E{[M ' ,M ' ]Tn}+e K2 +e.

This last quantity can be made arbitrarily small, and thus M n ,6 satisfies UT
as well. 0

We note that without the hypothesis that X n ::::} X, we have that if(Xn
)

satisfies UT, then it satisfies UCV, but if it satisfies UCV we need the extra
hypotheses that J6(X n) is stochastically bounded to prove it satisfies UT.

Next we give some general conditions that imply UT:
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If (Xn )n2': 1 is a sequence of supermartingales such that

inf(inf b (b E R)
n s

then (X n
) satisfies UT (cf [9]); (7.10)

If (X n )n2': 1 is a sequence of local martingales and if for each t < 00

one has

sup En{sup < 00
n s::;t

then (xn) satisfies UT (cf [9]). (7.11)

Clearly the condition UCV gives conditions which are easy to verify in prac­
tice. We give two examples:

­ Let (X n )n2': l be a sequence of semimartingales with decompositions

X n = u: + An such that sup{En{[Mn, Mn]t} + En{lt < 00,
n 0

(7.12)
each i :» O. Then (xn)n2':l satisfies UCV.

­ Let (X n )n2': l be a sequence of semimartingales with decompositions

X n =u: + An such that sup{Var (Mn + En{lt < 00, (7.13)
n 0

each t > O. Then (Xn )n>l satisfies UCV. (Here Var (Mr) refers to the
variance of the random variable Mr).

Note that (7.12) and (7.13) are trivially equivalent. Combining (7.11) and
(7.12) we get: let xn =? X and suppose x n has decompositions

X n =u» +An

such that

(7.14 )

Then (Xn)n2':l satisfies UT and UCV.

Theorem 7.7. Let (Xn)n>l be a sequence of vector valued semimartingales,
X a vector valued process in D, and assume x n =? X and that (Xn)n2':l is
a good sequence. Then (xn )n2': 1 satisfies UT and UCV.

Proof. We treat the scalar case. By Theorem 7.6 it suffices to show that UT
holds. Suppose (Xn)n2':l is good but UT does not hold. Then there must
exist H" E 5, IHnl ::; 1, and constants Cn increasing to 00 such that for some
e > 0,
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But this implies that

lim infp" {J 2': I} 2': e
n-+oo en

(7.15)

as well. Since [H" [ 1we have that c:H" converges uniformly in distribution

to the zero process. The goodness of then implies that J c:
converges in distribution to 0, which contradicts (7.15). 0

The next theorem is a key step to showing that each of UT and UCV
imply goodness. For a sequence of vector processes (H", X") each defined
on a space e", we let H" = )t>o denote the smallest filtration making
(H", X") adapted and also satisfying the usual hypotheses. H = (Ht is
analogous for the limiting process (H,X).

Theorem 7.8. Let (H",X"), (H,X) be vector processes, each in D, and
suppose (H",X")::::} (H,X). Assume UT or equivalently UCV holds. Then
X is an H semimartingale.

Proof. XED by hypothesis. If H'"' E S(H), [H"[ 1, and liIIlm-+oo H'"' = 0
uniformly, we need to show liIIlm-+oo H'"' . X = 0 in probability. Note that
for H'"' E S, H'"' . X is well defined for any XED. Since the limit is 0 -
a constant - it suffices to show that H'"' . X converges to 0 in distribution.
Thus it suffices to show that

{H" . X, H'"' E S(H), IH'"'[ I}

is stochastically bounded.
Let

j(H, X) = {s 2': 0 : P(,1.H. -j::. 0 or ,1.X. -j::. 0) > O}.

(7.16)

(7.17)

One can check fairly easily (cf, eg, [8, p. 313]) that j(H, X) is at most count-
able. Therefore, Q = R+ \ j(H, X) is dense. Since (H", X") ::::} (H, X), we
have that the finite dimensional distributions, restricted to Q-valued tuples,

of (H",X") converge to (H,X). (Typically this is denoted (H",X") LJgl
(H,X)). This fact, together with the UT property is enough to
conclude, using simple approximation arguments, that (7.16) is stochastically
bounded. 0

The next theorem (Theorem 7.10) is the key result in the theory of weak
convergence of stochastic integrals. One can prove it using the UT approach
(see [9]) or the UCV approach (see [10]). The UT approach is fairly intuitive
given our definition of a semimartingale as a good integrator, but it is a little
complicated to execute. The UCV approach is intuitively very simple, as is
the proof. The main disadvantage is that we need a technical result concerning
the Skorohod topology. Note that we will generalize this approach in Section
4,5,6 of Part II of these notes (at the end of this volume). To motivate the
argument of the proof let us first make an observation.
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Let X, Y be functions in D where (x n, Yn) -+ (x, y) in the
Skorohod topology (that is DR' [0,(0), not DR [0,(0) x DR[O, 00)!). Assume
further that Yn is piecewise constant and the number of discontinuities of Yn
in a bounded time interval is uniformly bounded in n. Assuming all terms
make sense, we then have

(xn,Yn,Jxn(s-)dYn(s),JYn(s-)dxn(S)) -+ (x,y,Jx._dy.,JY._dX.)

(7.18)
in the Skorohod topology DR' [0,(0). In view of (7.18), it makes sense to try
to approximate the processes involved by piecewise constant processes, but
in such a way that they converge along with the approximating processes.
Before giving Theorem 7.10 we establish a lemma that plays an essential role
in its proof.

Suppose (E, p) is a metric space, and let be a sequence of i.i.d.
random variables, uniform on 1]. Fix zED, e > 0, and define inductively

To = 0,
Tk+l = inf{t > Tk : V eOd

and let Yk(Z) = (Note that Tk == Tk(z); that is for each Z we get a
different sequence of times Tk.) We define

(7.19)

Then p(Zt, JE (z)t) ::; e, for all t. The role of the (Okh 1 is to "spread" e over an
interval which then ensures the almost sure convergence of the Tf: = Tk (zn)
when z" converges to z,

Lemma 7.9. For JE defined as in (7.19), if liIDn-+oo Zn = Z in the Skoro-
hod topology DE[O, (0), then (zn,JE(zn)) -+ (z,I£(z)) a.s. in the Skorohod
topology DE' [0,(0).

We refer the reader to [10, p. 1067] for a proof.

Theorem 7.10. If (Hn, X n ) defined on en converges in distribution in the
Skorohod topology to (H, X) and if (Xn 1 are semimartingales satisfying
UCV (or equivalently UT), there exists a filtration H such that X is an H
semimartingale and moreover

(7.20)

That is, the sequence (X n
1 is good.

Proof. That (UT) and (UCV) are equivalent under these hypotheses is The-
orem 7.6. That X is an H semimartingale is Theorem 7.8. Thus it remains
to establish (7.20).
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Recall that for xED and 6> 0, we defined J6(X) in (7.2) as an operator
that is used to shrink the large jumps to the size 6. Then X n,6 =Xn-J6(xn)
is a semimartingale with jumps bounded by 6. We define

zn = (Hn,xn,J6(xn),xn,6).

Let IE be as defined in (7.19). Then JE(zn) is adapted to a filtration K" =
H" V U, where U is independent of H", (By the independence, we note
that x n remains a semimartingale for the larger filtration K n . ) Let Hn,E
denote the first component of zn (which is Mica valued in general, where
Mica represents k x d matrices). Then IHn - Hn,E I e and moreover

iti-, x-, J6(X n), X n,6,Hn,E) ::::} (H, X, J6(X),X6,HE).

Next define:

=j

=j + j

=j H._dX.;

=j + j H._dJ6(X) s»

Then it follows as in (7.18) that

(Hn, X n, Un,E) ::::} (H, X, UE).

Finally we let

Then

=j(Hn _ Hn,E)dXn,6
5- ,s- ..

=j(Hn _ Hn,E)dMn,6 + j(Hn _ Hn,E)dAn,E
,5- ,s-.. ,5-.5-"

where X n,6 =Mn,6+An,6 is a decomposition of xn,6 into the sum of a local
martingale and a finite variation process. Using Doob's maximal quadratic
inequality we have that for any stopping time T,

An analogous estimate holds for U - UE. We now apply the UCV hypothesis
to conclude that in», X n , un) ::::} (H, X, U). D

We wish to make several remarks. First note that if we combine Theo-
rems 7.7 and 7.10, we have that if(Hn, X n) ::::} (H, X), then is good
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if and only if UCV (or equivalently UT) holds. Second, if convergence in
distribution is replaced by convergence in probability in the hypothesis of
Theorem 7.10 (in this case of course all processes are defined on the same
space), then convergence in probability will also hold in the conclusion.

Third, we can use Theorem 7.10 to prove some nice properties of good­
ness (Theorems 7.11 through 7.13). The first theorem shows that goodness
is inherited via stochastic integration. The proof is similar to the proof of
Theorem 7.7.

Theorem 7.11. Suppose (Hn , Xn) =? (H, X), and (xnk:::l is a good se­
quence of semimartingales. Then yn = H':. . x n is also a good sequence of
semimartingales.

Proof. We treat the scalar case. By Theorem 7.10 it suffices to show (yn)n::::l
satisfies UT. Suppose it does not. Then as in the proof of Theorem 7.7 there
exists a sequence K" E 5, IKnl ::::: 1, and constants en such that for some
c > 0,

or equivalently

liminfpn
{ J I} c.

n-oo en
(7.21)

The hypothesis that (xnk:::l is good implies that the integrals in (7.21)
converge to 0, which is a contradiction. 0

Theorem 7.12. Let (xn,yn)n>l be a sequence of semimartingales such
that (Xn, yn) =? (X, y), and both (xnk:::l and (ynk:::l are good. Then

(7.22)

and also [Xn,yn] and xnyn are good.

Proof. Integration by parts yields

xnyn =J +J + [Xn, yn],

and (7.22) follows trivially. By Theorem 7.11 it suffices to show that [Xn , yn]
is good. But goodness implies UCV by Theorem 7.7, and the goodness of
[Xn , yn] follows easily. 0

Theorem 7.13. Let (Xn)n>l be good, and suppose f : R d X R+ ­­­­+ R is
C2 on R d and C1 on R+. L;t = tix; ,t). Then (ynk:::l is also a good
sequence.
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Proof. One need only apply the change of variables formula, and Theo­
rems 7.12 and 7.11. 0

We remark that the convergence in (7.22) is not as robust as it might
seem. The next example, due to Jacod [6, p. 395], shows that one can have
x n => X, but [xn,xn] ­p [X,X]i thus a condition such as goodness is truly
needed for the convergence of the quadratic variations.

Example 7.14. Let x n be the non­random process X;' =
Then IXn I whence x n => 0. On the other hand,

which converges to t. Since [X, X] =°trivially, we have [xn,xn] ­p [X,X].

One of the primary uses of Theorem 7.10 is to the study of stochastic
differential equations, which is the topic of §8..

8. Weak Convergence of Stochastic Differential
Equations

In this section we consider stochastic differential equations in a form similar
to those of § 5.. Let be a sequence of semimartingales, and
be a sequence of processes in D. Let

F, F" : DR" [0, 00) -+ 00)

have property (i) of Definition 5.1: that is, for t > °we have Fn(X)t =
Fn(xth and F(X)t = F(Xt)t, which is a non­anticipation requirement.
Note that we do not make the Lipschitz hypothesis ((5.1)(ii)). We will study
equations of the type

Xf = J;' + it
and give conditions that imply x n => X, where X is a solution of the limiting
equation

x, = r,+ it F(X)._dZ•.
Note that without the Lipschitz assumption on (Fn)n>l nor F we do not

have uniqueness of solutions either for (8.1) or for (8.2). If we are willing to
assume that a priori the solutions (8.1) are relatively compact, we have the
following simple result:
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Theorem 8.1. Suppose that (In,xn,zn) satisfies equation (8.1), that
(In, X n, zn) is relatively compact in the Skorohod topology for DR.Io+m. [0,00),
and that (r, zn) ::::} (J, Z) and that (zn 1 is good. A ssusne further that
r-, F satisfy

if (:Z:n' Yn) --+ (:z:, y) in the Skorohod topology, then
(:Z:n' Yn, Fn(:Z:n)) --+ (:z:, Y, F(:z:)) in the Skorohod topology.

Then any limit point of the sequence (Xn)n>l satisfies (8.2).

Proof. Suppose a subsequence of (Xn)n>l converges in distribution. Then
along a further subsequence, the triple (jn, x n , zn) will converge in distri­
bution, to a process (J, X, Z). Theorem 7.10 then gives that X satisfies (8.2).
o

The assumption (8.3) is that F" and Fare Skorohod continuous. Some
examples of such are the following:

Example 8.2. Let 9 : R k x R+ --+ M km and h: R+ --+ R+ be continuous.
The following functionals are non­anticipating and Skorohod continuous.

(i) F(:Z:)t = g(:Z:t, t)

(ii) F(:Z:)t =it h(t ­ s)g(:z:., s)ds

If k =m = 1, then:

(iii) F(:z:}t =sup h(t ­ s)g(:z:., s)

(iv) F(:z:}t = sup h(t ­ s)g(.1:z:., s) .
•

Before stating our main result we need to make some definitions.

Definition 8.3. (X, T) is a local solution of (8.2) if there ezisis a filtration
F for which X, J, and Z are adapted, Z is a semimartingale, T is a stopping
time, and such that

rXtAT = JtAT + 0 F(X)._dZs- (8.4)

We say that we have strong local uniqueness if any two solutions (Xl, T l ),
(X 2, T 2) satisfy xl = X;, 0 ::; t < T l

/\ T 2.

To define weak local uniqueness (that is, local uniqueness in the sense of
distributions), we need the stopping times to be functions of the solutions.

Definition 8.4. A tuple (5, Z, X,T) is a weak local solution if (5, Z) is a

version of (J,Z), and (8...1) holds with (5,Z,X,T) replacing (J,Z,X,T).
We say that weak local uniqueness holds for (8.2) if for any two weak
local solutions (Jl,Zl,Xl,Tl) and (J2,Z2,X2,T2) with T l = hl(Xl)

and T 2 = h2(X2) for measurable hl, h2, then (Xl, (h l /\ h2)(X
l)) and

(X2, (hl /\ h2)(X2)) have the same distribution.



Weak Convergence of Stochastic Integrals 33

We need to make some technical assumptions on the functional coeffi­
cients which are stronger than simple Skorohod continuity. Nevertheless Ex­
amples 8.2 can be shown to satisfy Condition 8.5 below.

Condition 8.5. Let A denote the collection of increasing maps>. of R+ to
R+ with >'0 =°and >'t+h ­ >'t :s h, all t, h 0. Assume that there exist
mappings Gn, G : DR/> [0,00) X A ­­+ DMI>n'[O,oo) such that Fn(x) a >.
Gn(x a >., >.), and F(x) 0 >. = G(x a >., >.). Assume further

(a) For each compact subset 1£ CDR/> [0,00) x A and t > 0, (8.5)

lim sup sup IGn(x, >.). ­ G(x, >').1 = 0,
n­+oo (:z:,>')E1i

(b) For (x n, >'n) E DR/> [0, 00) x A, if liIDn­+oo Ixn(s) ­ x(s)1 =°
and lim sup I>'n(s) ­ >'(s)1 =°for each t :» 0,

then lim sup IG(xn, >'n). ­ G( z , >. ).1 = 0.
n­+oo

Theorem 8.6. Suppose (In , zn) => (J, Z) where I n , JEDi zn are semi­
martingales, and (zn)n>l is good. Suppose E'", F have representations in
terms of cr, G satisfyi;;g Condition 8.5. For b » 0, let

and let Xn,b denote the solution of

that agrees with X n on [0, Then (In, Xn,b, zn is relatively compact
and any limit point (J, X b, Z) gives a local solution (Xb,T) of (8.2) with
T = '1/C, for any c < b.

Moreover if there exists a global solution X of (8.2) and weak local unique­
ness holds, then (In , xn, zn) => (J, X, Z).

The proof of Theorem 8.6 involves some technical points, and we refer the
reader to [10].

We next give two examples to show how Theorem 8.6 can be used.

Example 8.7 (Duffie-Protter). We can use Theorem 8.6 to help to derive
and to justify models in continuous time stochastic finance theory as limiting
cases of discrete models. As an example, let (yt be the periodic rate of
return on a security (such as a stock) with initial price So. After k periods
the price of the security will be

k

Sk = lI(1 + yt)·
i=l
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Let Zr = }'t and .57 = Since Sk+l - Sk = SkYt, we can write

57 = + it
If is good with zn => Z then the limiting equation is

s, = So + it S._dZ.

which is the stochastic exponential and has a unique global solution, and
thus if SCi => So, by Theorem 8.6, S" => S. Moreover by Theorem 7.11 we
also thus know that is good, hence if represents a trading
strategy and

=it
where 0;' = represents the resulting "gain" from the strategy on, and
if (zn ,on, s;n => (Z, 0, So) with (zn )n>1 still assumed to be good, we have
G" => G, with G given by

c, =it O._dSs-

Many naturally occurring models have the property that (zn 1 is good.

Example 8.8. Emery [4] has discovered a class of martingales that have the
Chaos Representation Property (CRP). A necessary condition to have this
property, if (M, M)t =t, is that the local martingale M satisfy an equation

of the type [M, M]t = t + cp.dMs > A special case is:

(8.6)

where f : R -+ R is continuous. Therefore it is of interest to know when
solutions of (8.6) exist. One can show existence for any such f by defining
a sequence of discrete time martingales and then showing the sequence is
relatively compact and that the limit satisfies (8.6). If one sets .:1ykn = Yt+l -
yt and assumes Yon = 0, then the discrete time analogue of (8.6) becomes

(8.7)

One then solves (8.7) for .:1Ykn :

n _ f(yt) ± .)f(Yt)2 + 4/n
.:1Yk - 2 .

Call the solutions Z+ and Z-. In order for yn to be a martingale we are
forced to choose
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z­
p(L\yr = z+) = -=z---_-=z:-7""+

and
p(L\yr = Z-) =1- p(L\yr = Z+).

We then define X;' = and show it is relatively compact and that the

limit satisfies (8.6). See [10, p. 1044] for details. The above argument also
applies to the more general equation

(8.8)

where F satisfies Condition 8.5. Note that a martingale is called a normal
martingale if (M, M}t = t and it has CRP, thus solving equations (8.6) or
(8.7) is a way to generate candidates for normal martingales. Emery [4] has
shown that if M satisfies

d[M, M]t =dt + (3Mt_dMti Mo =z ,

then M is a normal martingale for -2 (3 O. Note that (3 = 0 corresponds
to Brownian motion, (3 = -1 is Aserna's martingale, and (3 = -2 is the
parabolic martingale (Iu, I = 0).

In many situations the approximating semimartingales are not good. We
give an example to illustrate this phenomenon.

Example 8.9. Let W = be a standard Wiener process (that is,
standard Brownian motion). Let us approximate W with an "approximate
identity" as follows:

wt =nit W.ds.

Then wn is defined on the same space as W, w n is adapted to the same
filtration, and liffin--+oo w n =W a.s., uniformly on compacts. However (Wn

)

is not good. Indeed, consider the equations

(8.9)

Then X;' =z exp(Wt). But for the limiting equation

x, =z+ it X.dW.

we have X; = x exp(Wt - Thus wn
::::} W, but X n X. This could not

happen if were good by Theorem 8.6.
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If in Example 8.9 we rewrite wn as w n =W + (Wn - W) = yn + zn,
then we have yn => Wand (yn)n>l is good (in this case yn = W for all
n, so the convergence and goodness are trivial), and zn is a sequence of
semimartingales converging to O. Equation (8.8) can be re-written

x;' = X + it + it

This idea allows us to handle naturally arising situations where goodness does
not apply. It generalizes a well-known approach due originally to E. Wong
and M. Zakai.

Theorem 8.10. Let yn, zn be semimartingales on en, and let j : R d -+

M dm be C2 and bounded with bounded derivatives of first and second order.
Define matrices of processes in D by

H;' =it

and
K;' = [yn, zn]t.

Assume (yn)n:=:-l (Hn)n:=:-l are good, and zn => O. Moreover assume

An = yn, z», n», K n) => A = (X, y, 0, H, K).

Let x n be the solution of:

X;' = + it )dy.n + it

Then (An,xn) is relatively compact and any limit point (A,X) satisfies

where 8i denotes the partial derivative with respect to the i t h variable, ji
denotes the lh column of i, etc.

Before we prove Theorem 8.10, we remark that the boundedness assump-
tions on f and its derivatives can be dropped, and can be replaced with
an exogenous process (J;'h>o. See [10]. Also since zn => 0, it follows that H
and K will a fortiori be continuous. Also, we have not assumed that (Kn)n:=:-l
is a good sequence in Theorem 8.10; however the hypotheses will imply that
(Kn)n:=:-l is also good (see (8.14) in the proof to follow).
Proof of Theorem 8.10. The proof will follow from the change of variables
formula and integration by parts. First observe that

6 Matrix entries' (Hn)i j = J.t Zn,i sz:». (Kn)ij = [yn,i zn,j]
. t 0'-' l t t
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[z n,i Z"',j] = Zn,i zn,j _ Zn,i zn,j -it zn,i dzn,j -it zn,j dZn,i
, t t tOO s r- s .- s'

o 0

and therefore if = [zn,i zn,j]t, it follows that

I"',i,j _(Hij + Hji). (8.12)

Since I"',i,i is non-decreasing and converges in distribution to a continuous
process, it follows that In,i,i is good. Moreover we can estimate the increments
of In,i,j by the increments of In,i,i and I"',j,j to deduce that (I'")...;:::1 itself is
a good sequence.

Since f is assumed to be C2 , letting X" be the solution of (8.9), by the
change of variables formula we have

where the increments of Rn,i,j are dominated by a linear combination of the
increments of [yn"t, yn,k] and [zn,k, zn,k], whence (Rn 1 is good.

Next we integrate by parts to obtain:

where U" O. Continuing:

=U;' - Lit 8krj + + (8.13)
k,l 0

We have already seen that (In 1 is good, and we calculated its limit in
(8.12). Note further that
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I
Kn,j,1c _ Kn,j,lcl < {[yn,j yn,j] + In,Ic,1c _ [yn,j yn,j] _ In,Ic,Ic}
t+h t - 2 ' t+h t+h ,t t

(8.14)
and it follows that is good. Therefore it remains only to substitute
(8.13) into (8.9) to complete the proof. 0

9. Applications to Numerical Analysis of SDE's

Let us consider a simple stochastic differential equation driven by a semimar-
tingale Y:

(9.1 )

where f is a continuous function (not necessarily Lipschitz). One is often
interested in estimating quantities of the form E{g(XaH for a fixed time
a. One could use a Monte Carlo method if the law of g(Xa) or of X a were
known, but in general it is not. Therefore one uses the structure of the SDE
(9.1) to estimate the law of X a • The simplest method is the Euler method.
(There are more complicated numerical schemes that converge faster, but we
intend to combine our results with a Monte Carlo procedure, and since Monte
Carlo convergence is slow, we do not consider them here.) A straightforward
extension of the Euler method of ordinary differential equations leads to an
Euler scheme of the type

(9.2)

where 7r
n = {a = to < t1< ... < tic .... = a} is a sequence of partitions of [0, a]

such that liffin-+oo mesh (7r
n

) = a. We denote :xo to be the approximation
(the dependence on n is implicit) to distinguish it from a solution X of (9.1).

It is convenient in this context to use a different scheme than the naive
one (9.1). However note that for our scheme (9.4) below, the two schemes
will agree on the partition points (tlc)Jc>l of 7r

n [a,a].We define

(9.3)

for a partition 7r
n [a,a] = {a < to < ... < tic .... = a} where again the depen-

dence on n is implicit. Let X satisfy the equation:

(9.4)

so that the integrands in the stochastic integral are piecewise constant. Note

that X t lo = for partition points We can put more general as-
sumptions on TI, as the next lemma shows.
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Lemma 9.1. Let (yn) be a sequence of semimartingales, xn ED, and TIn E
D, nondecreasing, Tln(t) :::: t, and liIIln-+oo Tln(t) = t for all t O. Assume
also is good and that (X", yn) => (X, Y). Then

J X;,,(._)dy.n => J X._dYs-

Proof. Recall the notation J6 introduced in §7. (equation (7.2)). Then for
8> 0 we have

Therefore there exists a sequence tending to 0 such that

However the asymptotic continuity of X n,6" implies that =>
0, whence

J
(X n,6" - X n,6" ) dyn => 0
.- '7" (.-) • ,

and therefore

- X;,,(._))dy.n => 0

and the lemma is proved. o

Theorem 9.2. Let (yn) be a good sequence of semimartingales such that
yn => Y Let TIn be as in Lemma 9.1. Let f : ad -+ M km be bounded and
continuous, and let r satisfy

x: = X o+ it f (X';,,(.-)) dy.n.

Then (r, yn) is relatively compact and any limit point satisfies

(9.5)

(9.6)

If all yn are defined on the same sample space as Y and if yn converges to
Y in ucp and pathwise uniqueness holds for (9.6), then r converges to X
in ucp as well.

Proof. The relative compactness is complicated and we refer the reader to
Kurtz and Protter [10].

The fact that any limit point satisfies (9.6) then follows from Lemma 9.l.
Under the assumptions of the final assertion, we can treat (r, X) as a

solution of a single system. The uniqueness then gives us that (r, X) =>
(X, X), whence r - X=> 0, and the conclusion follows. 0
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We note that often in applications we will have y n =Y for all nj such a
sequence is of course trivially good.

In certain circumstances we can give an analysis of the error in the Euler
scheme; that is, we can determine the asymptotic distribution of the normal­
ized error. Here weak convergence is essential, as we will see by considering
the Brownian case in Example 9.4.

Theorem 9.3. Let Y be a given F semimartingale and let f be a C1 Mc:im
matrix valued function. Let 0 = TO < Tr' < ... be F stopping times and
define

1]n(t) =Tk ifTk < t < Tk+l'

and let r satisfy (9.5). Let On be a sequence of positive constants tending
to 00, and set

U" =On(X
n
­ X)

and define

=On it (Y:_ - dYj.

Assume that (zn )n>1 is good and that (Y, zn) => (Y, Z). Then U" => U,
where U satisfies -

u, =x] Vf,(X.-)U._dY:+ it Lie 8Iet(X._)fj,Ie(X._)dZ';i. (9.7)
\ ',3

Proof. The hypothesis imply that (9.6) has a unique solution, hence

(:Y',X,Y,zn) => (X,X,Y,Z).

Let us treat only the scalar use (d=m = 1). Observe that

X';- - = -

Therefore

UI' = it On (f(X';-) - f(X.-)) dY. -it On (J(X';-) - dY.

= t f("S) - f(X.-) U:'-dY.
Jo x.. ­ x.:
-it f + f (Y.- -

-f (Y.- -

Next let T",'1 = inf{t > 0 : lUI' I > a}. Then is relatively compact,
and any limit point will satisfy (9.7) on [0,Taj, where T" =inf{t > 0 : IUtl >
a}. But lim '1 ­+ oo T '1 =00 a.s., 50 U" => U. 0
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Example 9.4. Let us take yt = ( ) in Theorem 9.3, where W is an n-l

dimensional standard Wiener process (or Brownian motion). Let 1Jn (t) = ¥.
Then taking On = .;n, we have (Y, zn) => (Y, Z), where Z is independent of
Y. Moreover zirn = zr» = 0, and since Zij are continuous local martingales

with [Zi j, ZklJt = {!t we conclude that Z is also a Brownian

motion, independent of W. Note that since Z is independent of W, it need
not "live" on the same space as W. Thus the limiting process U could appear
only through weak convergence, in general.
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