## §37. Inner products for protoscales

Given any protoscale $E$ and given any $B \in[1, O(\ell(E))]$
and $G \subset Q$ and $u \in Q$ we define

$$
\begin{aligned}
G(E(B) \geq u)=\{j \in G(\ell(E)): & \operatorname{inpo}(j, E(B, \tilde{B}, \hat{B}, \hat{C})) \geq u \\
& \text { for all }(\tilde{B}, \hat{B}, \hat{C}) \in \operatorname{supt}(E, B)\}
\end{aligned}
$$

and

$$
\begin{aligned}
G(E((B)) \geq u)=\{j \in G(\ell(E)): & \operatorname{inpo}(j, E((B, \tilde{B}, \hat{B}, \hat{C}))) \geq u \\
& \text { for all }(\tilde{B}, \hat{B}, \hat{C}) \in \operatorname{supt}((E, B))\}
\end{aligned}
$$

and for any $P \in\{>,=\}$ we define

$$
\begin{aligned}
G(E(B) P u)= & \{j \in G(E(B) \geq u): \\
& \operatorname{inpo(j,E(B,\circ (\ell (E)),\circ (\ell (E)),0))Pu\} }
\end{aligned}
$$

and

$$
\begin{aligned}
G(E((B)) P u)=\{ & j \in G(E((B)) \geq u): \\
& \operatorname{inpo(j,E((B,o(\ell (E)),o(\ell (E)),0)))Pu\} .}
\end{aligned}
$$

