§29. Computation of low-degree cases

To illustrate (28.2) we consider the low degree cases. Assume $\phi(t) \quad$ is primitive and let Δ denote its discriminant.

1) Degree $\phi(t)=2$: $Z\left[\alpha, \alpha^{-1}\right]$ is Dedekind unless, for some prime $\mathrm{p}, \mathrm{p}^{2} \mid \Delta$, but at most one coefficient of $\phi(\mathrm{t})$ is divisible by p, and $\Delta \equiv 0$ or $4 \bmod 16$ if $p=2$.

In this case, the criterion of (28.2) reduces to the existence of a nontrivial double root a of $\phi(t)(\bmod p)$ such that $\phi(a)$ is divisible by p^{2}. It is not hard to see this is equivalent to the stated criterion.
2) Degree $\phi(t)=3: Z\left[\alpha, \alpha^{-1}\right]$ is Dedekind unless for some prime p there exists an integer a such that

$$
\begin{aligned}
& \phi^{\prime}(\mathrm{a}) \equiv 0 \quad \bmod \mathrm{p} \\
& \phi(\mathrm{a}) \equiv 0 \quad \bmod \mathrm{p}^{2}
\end{aligned}
$$

(thus $p \mid \Delta$).
In order that $Z\left[\alpha, \alpha^{-1}\right]$ be not Dedekind, (28.2) implies we may write $\phi(t)=c(t-a)^{2}(t-b)+p_{\gamma}(t)$ for some prime p, where c , $\mathrm{a} \nexists 0 \bmod \mathrm{p}$, and $\gamma(\mathrm{a}) \equiv 0 \bmod \mathrm{p}$. This is easily seen to be equivalent to the stated criterion.
3) Degree $\phi(t)=4 ; \phi(t)=\phi\left(t^{-1}\right)$: (This is satisfied when A supports a nondegenerate ϵ-pairing--see (19.1).) $Z\left[\alpha, \alpha^{-1}\right]$ is Dedekind unless $\phi(1)$ or $\phi(-1)$ is divisible by p^{2}, for some prime p, or, writing $\phi(t)=a t^{2}+b t+c+b t^{-1}+a t^{-2}$, and, setting $\Delta=b^{2}-4 a(c-2 a), p^{2} \mid \Delta$ for some prime p such that $p \nmid a$ and, if $p=2, \Delta \equiv 0$ or $4 \bmod 16$.

We omit the proof.

