§ 29. Computation of low-degree cases

To illustrate (28.2) we consider the low degree cases. Assume $\phi(t)$ is primitive and let Δ denote its discriminant. 1) <u>Degree $\phi(t) = 2$ </u>: $Z[\alpha, \alpha^{-1}]$ is Dedekind unless, for some prime p, $p^2 | \Delta$, but at most one coefficient of $\phi(t)$ is divisible by p, and $\Delta \equiv 0$ or 4 mod 16 if p = 2.

In this case, the criterion of (28.2) reduces to the existence of a montrivial double root a of $\phi(t) \pmod{p}$ such that $\phi(a)$ is divisible by p^2 . It is not hard to see this is equivalent to the stated criterion.

2) <u>Degree $\phi(t) = 3$ </u>: $Z[\alpha, \alpha^{-1}]$ is Dedekind unless for some prime p there exists an integer a such that

 $\phi'(a) \equiv 0 \mod p$ $\phi(a) \equiv 0 \mod p^2$

(thus $p|_{\Delta}$).

In order that $Z[\alpha, \alpha^{-1}]$ be not Dedekind, (28.2) implies we may write $\phi(t) = c(t - a)^2(t - b) + p_{\gamma}(t)$ for some prime p, where c, a $\neq 0 \mod p$, and $\gamma(a) \equiv 0 \mod p$. This is easily seen to be equivalent to the stated criterion.

3) Degree $\phi(t) = 4; \phi(t) = \phi(t^{-1})$: (This is satisfied when A supports a nondegenerate $\boldsymbol{\epsilon}$ -pairing--see (19.1).) $Z[\alpha, \alpha^{-1}]$ is Dedekind unless $\phi(1)$ or $\phi(-1)$ is divisible by p^2 , for some prime p, or, writing $\phi(t) = at^2 + bt + c + bt^{-1} + at^{-2}$, and, setting $\Delta = b^2 - 4a(c - 2a), p^2|_{\Delta}$ for some prime p such that p/a and, if p = 2, $\Delta \equiv 0$ or 4 mod 16.

We omit the proof.

95