TERMINOLOGY AND NOTATIONS

For two sets A,B, A\B denotes the difference set and A $_{\Delta}$ B the symmetric difference. If the set A is contained in a set B then $\chi_{_{\Delta}}$ is the characteristic function of A defined by

$$Y_{A}(x) = \begin{cases} 1, & x \in A \\ 0, & x \in B \setminus A \end{cases}$$

For any two numerical functions f,g on a set A let

$$[f \leq g] = \{x \in A : f(x) \leq g(x)\}.$$

Analogously we define [f < g] and [f = g].

If F is a family of numerical functions on a set A then $\sup F$ (resp. inf F) is the numerical function on A defined by

$$(\sup F)(x) = \sup_{f \in F} f(x)$$
 (resp. (inf F)(x) = inf f(x)).

Let (A, \leq) be an ordered set and let B be a subset of A. Then we call least upper bound or supremum (resp. greatest lower bound or infimum) of B in A, if it exists, the smallest (resp. greatest) element of A which dominates any element of B (resp. which is dominated by any element of B). The ordered set A is said to be increasing (resp. decreasing) if for any $a_1, a_2 \in A$ there exists $a_3 \in A$ such that $a_3 \triangleq a_1, a_3 \triangleq a_2$ (resp. $a_3 \leq a_1, a_3 \leq a_2$).

If A is a subset of a topological space then \overline{A} denotes the closure of A. If f is a numerical function on a topological space then the lower semi-continuous regularization of f is defined by

and it is the greatest lower semi-continuous function which is smaller than f.

We denote by \mathbb{N} , \mathbb{R} , $\overline{\mathbb{R}}$ the set of natural numbers (o not included), the set of real numbers and the extended real line respectively. Further let \mathbb{R}_+ be the set of positive real numbers and $\overline{\mathbb{R}_+} = \mathbb{R}_+ \vee \{+\infty\}$.

If $a,b \in \mathbb{R}$, a < b, then [a,b] resp.]a,b[denotes the closed resp. open interval with endpoints a and b.