by

K. Voss, Zürich

Known results

1. Let g be a two-dimensional Riemannian metric, b a symmetric tensor field with negative determinant and Q = det b / det g. The curves defined by

(1) $b_{ij}du^{j}du^{j} = 0$

form a <u>Tschebyscheff</u> net (T-net) $\Leftrightarrow (1/\sqrt{-Q})b_{ij}$ is a Codazzi tensor. Special case: The asymptotic lines of a surface in E^3 form a T-net \Leftrightarrow Gauss curvature K is constant negative.

2. There is no T-net without singularities, defined in the whole hyperbolic plane H^2 . Corollary: There is no immersion of H^2 into E^3 .

3. The curves (1) form an <u>isothermic net</u> $\Leftrightarrow g^{ij}b_{ij} = 0$ and there exists a function $f \neq 0$ such that $f \cdot b$ is a Codazzi tensor.

4. For a surface x in E³ (simply connected, without umbilical points) let I be the first, II the second fundamental form and H the mean curvature. Then the following conditions are equivalent:
(a) The lines of curvature form an isothermic net.
(b) There exists a variation δx of the surface, such that δI = 0 ("infinitesimal bending"), δII ≠ 0, δH = 0.

New result:

Let x be a surface in E^3 (simply connected, with K $(H^2$ - K) \neq O). If there exists a variation $\delta x,$ such that

 $\delta I \neq 0, \quad \delta II = 0 \text{ ("infinitesimal bending"), } \delta H = 0, \ \delta K = 0, \text{ then}$ the lines of curvature are isothermic with respect to II.