A REMARK ON CODAZZI TENSORS IN CONSTANT CURVATURE SPACES

Dirk Ferus

A Codazzi tensor on a riemannian manifold M with Levi-Civita covariant derivative ∇ is a symmetric (1, 1) - tensor field A with

 $(\nabla_X A) Y = (\nabla_Y A) X$ for all X, Y.

Let M have constant sectional curvature k. Then we have the following Example: If $f: M \rightarrow \mathbb{R}$ is a smooth function,

then A[f] := Hess f + k f Id

is a Codazzi tensor.

We claim the converse

<u>Proposition.</u> If A is a Codazzi tensor on a riemannian manifold of constant curvature k, then locally

A = A [f]

for some smooth function f.

Indication of a proof: For the euclidean case we simply apply the standard integrability condition twice. For the unit sphere or unit hyperbolic space we use the standard imbedding as a hypersurface into the euclidean or lorentzian vector space: $M^n \subset \mathbb{R}^{n+1}$. Let $\pi : \mathbb{R}^{n+1} \supset \{ tx \mid t > 0 , x \in M \} =: \widetilde{M} \rightarrow M$ be the orthogonal projection, and define a (1,1) - tensor \widetilde{A} on \widetilde{M} by

 $\langle \tilde{A} X, Y \rangle = ||x|| \langle Ad_{\pi} (X), d_{\pi} (Y) \rangle$ for X, $Y \in T_X^M$ where $||x|| := \sqrt{|\langle x, x \rangle|}$. Then \tilde{A} turns out to be a Codazzi tensor, and the assertion follows easily from the euclidean case.