$$
\text { On the differential equation } \sum_{r=0}^{n} c_{r}\left(p D_{1}+q D_{2}\right)^{r} u=0
$$

I. Fenyd

Let u be a distribution of $D^{\prime}\left(R^{2}\right)$ which is a solution of

$$
\begin{equation*}
\sum_{r=0}^{n} c_{r}\left(p D_{1}+q D_{2}\right)^{r} u=0 \tag{1}
\end{equation*}
$$

(D_{1} and D_{2} are the partial differential operators) and ψ an arbitrary Schwartatest function of one variable. We denote by O a mapping from $D^{\prime}\left(R^{2}\right) \times D(R)$ into $D^{\prime}(r)$ such that $(u \odot \psi, \varphi)=(u, \varphi \otimes \psi)(\varphi$ is an abritrary testfunction of $D(R))$. It is proved, that the distribution $u \Theta \psi$ possess in every point x_{0} a local value (in the sense of Lojasiewicz) and the value of $u \boldsymbol{O} \psi$ in x_{0} is the soalar product of a distribution $u\left(x_{0}\right) \in D^{\prime}(R)$ with $\psi\left(i . e .\left.u 0 \psi\right|_{x_{0}}=\left(u\left(x_{0}\right), \psi\right)\right.$). Nom the following problem can be posed. There are given n points of the real axis: $x_{1}, x_{2}, \ldots, x_{n}\left(x_{i} \neq x_{k}, i \neq k\right)$ and n distributions $f_{1}, \ldots, f_{n}\left(o f^{\prime}(R)\right)$. We are looking for a distribution u $\in D^{\prime}\left(R^{2}\right)$ which is a solution of (1) and for which $u\left(x_{i}\right)=f_{i}(i=1,2, \ldots, n)$ holcs. It is proved that this problem has always a unique solution.

Reference

1. Fenyl, I. : On a partial differential equation in two variables, Demonstration Math. (Poland) Vol 1973.
