On the differential equation $\sum_{r=0}^{n} c_r (pD_1 + qD_2)^r u = 0$

I. Fenyö

Let u be a distribution of $D'(\mathbb{R}^2)$ which is a solution of

(1)
$$\sum_{r=0}^{n} c_r (pD_1 + qD_2)^r u = 0$$

(D₁ and D₂ are the partial differential operators) and ψ an arbitrary Schwartztest function of one variable. We denote by \bigcirc a mapping from D'(R²) × D(R) into D'(r) such that (u $\bigcirc \psi$, φ) = (u, $\varphi \otimes \psi$) (φ is an abritrary testfunction of D(R)). It is proved, that the distribution u $\bigcirc \psi$ possess in every point \mathbf{x}_0 a local value (in the sense of Lojasiewicz) and the value of u $\bigcirc \psi$ in \mathbf{x}_0 is the scalar product of a distribution $\mathbf{u}(\mathbf{x}_0) \in D'(\mathbf{R})$ with ψ (i.e. $\mathbf{u} \oslash \psi|_{\mathbf{x}_0} = (\mathbf{u}(\mathbf{x}_0), \psi)$). Now the following problem can be posed. There are given n points of the real axis: $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$ ($\mathbf{x}_i \neq \mathbf{x}_k, i \neq k$) and n distributions f_1, \ldots, f_n (of D'(R)). We are looking for a distribution $\mathbf{u} \in D'(\mathbf{R}^2)$ which is a solution of (1) and for which $\mathbf{u}(\mathbf{x}_i) = f_i$ ($i = 1, 2, \ldots, n$) holds. It is proved that this problem has always a unique solution.

Reference

 Feny8, I. : On a partial differential equation in two variables, Demonstration Math. (Poland) Vol 1973.