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Abs t r ac t .  In this paper, we introduce a new concept that we call a 
parallel COtlBA object. It is the basis of the Cobra runtime system 
that is compliant to the CORBA specification. Cobra is being devel- 
oped within the PACHA Esprit project. It aims at helping the design of 
high-performance applications using independent software components 
through the use of distributed objects. It  provides the benefits of dis- 
tributed and parallel programming using a combination of two standards: 
CORBA and MPI. To support CORBA parallel objects, we propose to 
extend the IDL language to support object and data distribution. In this 
paper, we discuss the concept of CORBA parallel object, 

1 I n t r o d u c t i o n  

Thanks  to the rapid increase of performance of nowadays computers ,  it can 
be now envisaged to couple several high-intensive numerical codes to simulate 
more accurately complex physical phenomena.  Due to both the increased com- 
plexity of these numerical codes and their future developments,  a tight cou- 
pling of these codes cannot be envisaged. A loosely coupling approach based 
on the use of several components offers a much more at t ract ive solution. With 
such approach, each of these components implements a part icular  processing 
(pre-processing of data, mathemat ica l  solver, post-processing of data) .  More- 
over, several solvers are required to increase the accuracy of simulation. For 
example, fluid-structure or thermal-s tructure interactions occur in many  field of 
engineering. Other components  can be devoted to pre-processing (data  format  
conversion) or post-processing of da ta  (visualisation). Each of these components  
requires specific resources (computing power, graphic interface, specific I / O  de- 
vices). A component,  which requires a huge amount  of computing power, can 
be parallelised so tha t  it will be seen as a collection of processes to be ran on a 
set of network nodes. Processes within a component  have to exchange da ta  and 
have to synchronise. Therefore, communicat ion has to be performed at different 
levels: between components and within a component .  However, requirements for 
communicat ion between components or within a component  are not the same. 
Within a component,  since performance is critical, low level message-passing is 
required whereas between components,  al though performance is still required, 
modular i ty/ interoperabi l i ty  and reusability are necessary to develop cost effec- 
tive applications using generic components.  
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However, till now, low level message-passing libraries, such as MPI or PVM, 
are used to couple codes. It is obvious to say that  this approach does not con- 
tr ibute to the design of applications using independent software components. 
Such communication libraries were developed for parallel programming so that  
they do not offer the necessary support for designing components which can 
be reused by other applications. Solutions already exist to decrease the design 
complexity of applications. Distributed object-oriented technology is one of these 
solutions. A complex application can be seen as a collection of objects, which rep- 
resent the components, running on different machines and interacting together 
using remote object invocations. Existing standard such as CORBA (Common 
Object Request Broker Architecture) aims at helping the design of applications 
using independent software components through the use of CORBA objects 1 
CORBA is a distributed software platform which supports distributed object 
computing. However, exploitation of parallelism within such object is restricted 
in a sense that it is limited to a single node within a network. Therefore, both 
parallel and distributed programming environments have their own limitations 
which do not allow, alone, the design of high performance applications using a 
set of reusable software components. 

This paper aims at introducing a new approach that  takes advantage of 
both parallel and distributed programming systems. It aims at helping pro- 
grammers to design high performance applications based on the assembling of 
generic software components. This environment relies on CORBA with exten- 
sions to support parallelism across several network nodes within a distributed 
system. Our contribution concerns extensions to support a new kind of object 
we called a parallel CORBA object (or parallel object) as well as the integra- 
tion of message-passing paradigms, mainly MPI, within a parallel object. These 
extensions exploit as much as possible the functionality offered by CORBA and 
requires few modifications to existing CORBA implementations. The paper is 
organised as follows. Section 2 gives a short introduction to CORBA. Section 
3 describes our extensions to the CORBA specification to support parallelism 
within an object. Section 4 introduces briefly the Cobra runtime system for the 
execution of parallel objects. Section 5 describes some related works that  share 
some similarities with our own work. Finally, section 6 draws some conclusions 
and perspectives. 

2 A n  overv iew of C O R B A  

CORBA is a specification from the OMG (Object Management Group) [5] to 
support distributed object oriented applications. Such applications can be seen 
as a collection of independent software components or CORBA objects. Ob- 
jects have an interface that  is used to describe operations that  can be remotely 
invoked. Object interface is specified using the Interface Definition Language 
(IDL). The following example shows a simple IDL interface: 

1 For the remaining of the paper, we will use simply object to name a CORBA object 
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interface myservice { 
void put(in double a); 
double myop(inout long i, out long j); 

}; 

An interface contains a list of operations. Operations may have parameters 
whose types are similar to C + +  ones. A keyword added just  before the type 
specifies whether the parameter is an input or an output  parameter  or both. 
IDL provides an interface inheritance mechanism so that  services can be ex- 
tended easily. Figure 1 provides a simplified view of the CORBA architecture. 
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Fig. 1. CORBA system architecture 
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In this figure, an object located at the client side is bound to an implementation 
of an object located at the server side. When a client invokes an operation, com- 
munication between the client and the server is performed through the Object 
Request Broker (ORB) thanks to the IDL stub (client side) and the 1DL skele- 
ton (server side). Stub and skeleton are generated by an IDL compiler taking 
as input the IDL specification of the object. A CORBA compliant system offers 
several services for the execution of distributed object-oriented applications. For 
instance, it provides object registration and activation. 

3 P a r a l l e l  C O R B A  o b j e c t  

CORBA was not originally intended to support parallelism within an object. 
However, some CORBA implementations provide a multi-threading support  for 
the implementation of objects. Such support is able to exploit simultaneously 
several processors sharing a physical memory within a single computer.  Such 
level of parallelism does not require modification of the CORBA specification 
since it concerns only the object implementation at the server side. Instead of 
having one thread assigned to an operation, it can be implemented using several 
threads. However, the sharing of a single physical memory does not allow a large 
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number of processors since it could create memory contention. One objective of 
our work was to exploit several dozen of nodes available on a network to carry 
out a parallel execution of an object. To reach this objective, we introduce the 
concept of parallel CORBA object. 

3.1 E x e c u t i o n  m o d e l  

Client 
node 

I 

Server 1 Parallel server node Server n 

, g -  ...................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

' , i t  Process I parallel CORBAobject [Process J I 
'! , - h ' 
qr ' - l 
"i I Object ', CORBA object collection Object , 
!i[ Implementation 1 Implementation Ill I 
i.l ' I', 

', I_.~?L I ', I_.IDL I "i , ISkeletonl ', --. I~e,etonl ', i i I 

' * ' b ,  , i  
' Object ', Object ' ,l 
I Adapter ', Adapter ' , '  

j I I ," , ! u J "  

Fig. 2. Parallel CORBA object service execution model. 

The concept of parallel object relies on a SPMD (Single Program Multiple Data) 
execution model which is now widely used for programming distributed memory 
parallel computers. A parallel object is a collection of identical objects having 
their own data  so that  it complies with the SPMD execution model. Figure 2 il- 
lustrates the concept of parallel object. From the client side, there is no difference 
when calling a parallel object comparing to a standard object. Parallelism is thus 
hidden to the user. When a call to an operation is performed by a client, such 
operation is executed by all CORBA objects belonging to the collection. Such 
parallel execution is handled by the stub that  is generated by an Extended-IDL 
compiler, which is a modified version of the standard IDL compiler. 

3.2 E x t e n d e d - I D L  

As for a standard object, a parallel object is associated with an interface that  
specifies which operations are available. However, this interface is described using 
an IDL we extended to support parallelism. Extensions to the standard IDL aim 
at both specifying that an interface corresponds to a parallel object and at 
distributing parameter  values among the collection of objects. Extended-IDL is 
the name of these extensions. 
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S p e c i f y i n g  t h e  d e g r e e  o f  p a r a l l e l i s m  The first IDL extension corresponds to 
the specification of the number of objects of the collection that  will implement 
the parallel object. Modifications to the IDL language consist in adding two 
brackets to the IDL interface keyword. A parameter can be added within the 
two brackets to specify the number of objects belonging to the collection. Such 
parameter can be a "*",  that means that  the number of objects belonging to the 
collection is not specified in the interface. The following example illustrates the 
proposed extension. 

interface [*] ComputeFEM { 
typedef double dmat [I00] [I00] ; 
void initFEM(in dmat mat, in double p) ; 
void doFEM(in long niter, out double err) ; 

}; 

In this example, the number of objects will be fixed at runtime depending 
on the available resources (i.e. the number of network nodes if we assume that  
each object of the collection is assigned to only one node). The implementation 
of a parallel object may require a given number of objects in the collection to 
be able to run correctly. Such number may be inserted within the two brackets 
of the proposed extension. The following example gives an example of a parallel 
object service which is made of 4 objects. 

interface[4] ComputeFgM { 

}; 

Instead of giving a fixed number of objects in the collection, a function may 
be added to specify a valid number of objects in the collection. The following 
example illustrates such possibility. In that  case, the number of objects in the 
collection may be only a power of 2. 

interface [n^2] ComputeFEM { 

}; 

It is the responsibility of the runtime system, in our case Cobra, to check 
whether the number of network nodes has been allocated according to the spec- 
ification of the parallel object. IDL allows a new interface to inherit from an 
existing one. Parallel interface can do the same but with some restrictions. A 
parallel interface can inherit only from an existing parallel interface. Inheritance 
from standard interface is forbidden. Moreover, inheritance is allowed only for 
parallel interfaces that  could be implemented by a collection of objects for which 
the number of objects coincides. The following example illustrates this restric- 
tion. 

interface [*] MatrixComponent { 

}; 
interface In^2] ComputeFEM : MatrixComponent { 
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In this example,  interface ComputeFEM derives from interface MatrixCom- 
portent, The new interface has to be implemented using a collection having a 
power of 2 objects. In the following example, the Extended-IDL compiler will 
generate an error when compiling because inheritance is not valid : 

interface[3] MatrixComponent { 

}; 
interface In'2] ComputeFEM : MatrixComponent { 

}; 

S p e c i f y i n g  d a t a  d i s t r i b u t i o n  Our second extension to the IDL language con- 
cerns da ta  distribution. The execution of a method on a client side will provoke 
the execution of the method on every objects of the collection. Since, each ob- 
ject of the collection has it own separate address space, we must  envisage how 
to distribute parameter  values for each operation. Attr ibutes and types of op- 
eration parameters  act on the data  distribution. Proposed extension of IDL for 
da ta  distribution is allowed only for parameters  of operations defined in a par- 
allel interface. When a standard IDL type is associated with a paramete r  with 
an in mode, each object of the collection will receive the same value. When a 
parameter  of an operation has either an o u t  or a i n o u t  mode, as a result of the 
execution of the operation, stub generated by the Extended-IDL compiler will 
get a value from one of the objects of the collection. 

The  IDL language provides multidimensional fixed-size arrays which contains 
elements of the same type. The size along each dimension has to be specified in 
the definition. We provide some extensions to allow the distribution of arrays 
among the objects of a collection. Da ta  distribution specifications apply for bo th  
in, o u t  and i n o u t  mode. They are similar to the ones already defined by H P F  
(High Performance Fortran). The following example gives a brief overview of the 
proposed extension. 

interface[*] MatrixComponent { 
typedef double dmat [iO0] [I00] ; 
typedef double dvec[iO0]; 
void matrix_vector_mult (in dist [BLOCK] [*] dmat, in dvec v, 

out dist[CYCLIC] dvec u); 
}; 

This extension consists in the adding of a new keyword (dis t )  which specifies 
how an array is distributed among the objects of the collection. For example,  the 
2D array m a t  is distributed by block of rows. Stubs generated by the Extended 
IDL compiler do not perform the same work when the paramete r  is an input 
or an output  parameter .  With an input parameter ,  the stub must  scatter the 
distributed array so that  each object of the collection received a subset of the 
whole array. With  an output  parameter ,  the stub must  do the reverse operation.  
Indeed, each object of a collection contains a subset of the array. Therefore, 
the stub is in charge of gathering da ta  from objects belonging to the collection. 
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Such gathering may include a redistribution of data  if the client is itself a par- 
allel object. In the previous example, the number of objects in the collection is 
not specified in the interface. Therefore, the number of elements assigned to a 
particular object can be known only at runtime. It is why a distributed array 
of a given IDL type is mapped to an unbounded sequence of this IDL type. 
Unbounded sequence offers the advantage that  its length is set up at runtime. 
We propose to extend the sequence structure to store information related to the 
distribution. 

4 A runtime sys tem to support parallel C O R B A  objects  

The Cobra runtime system [2] aims at providing resource allocation for the exe- 
cution of parallel objects. It is targeted to a network of PCs connected together 
using SCI [6]. Resource allocation consists in providing network nodes and shared 
virtual memory regions for the execution of parallel objects. Resource allocation 
services are performed by the resource management service (RmProcess) of Co- 
bra. It is used when a parallel service must be bind to a client. We propose to 
extend the _bind method provided by most of the CORBA implementations. 
Binding to a parallel object differs from the standard binding method. Indeed, a 
reference to a virtual parallel machine (vpm)  is given as an argument of the bind 
method instead of a single machine. The v p m  reference is obtained through the 
Cobra resource allocator. The following example illustrates how to use a parallel 
object service within the Cobra runtime: 

// Obtain a reference from the RmProcess service 

cobra = RmProcess::_bind("cobra.irisa.fr"); 

// Create a VPM 
cobra->mkvpm(vpmname, NumberOfNodes, NORES); 

// Get a reference to the allocated vpm 

pap_get_info_vpm(~vpm, vpmname); 

// Obtain a reference from the parallel object service: MatrixComponent 

cs = MatrixComponent::_bind ( &vpm ); 

// Invoke an operation provided by MatrixComponent service 

cs->matrix_vector_mult( a, b, ~c); 

The bind method may be called either by a single object, or by all objects 
belonging to a collection if the client is itself a parallel object. 

5 Related works 

Several projects deal with environments for high-performance computing com- 
bining the benefits of distributed and parallel programming. The RCS [1], Net- 
Solve [3] and Ninf [8] projects provide an easy way to access linear algebra 
method libraries which run on remote supercomputer. Each method is described 



1121 

by a specific interface description language. Clients invoke methods thanks to 
specific functions. Arguments of these functions specify method name and method 
arguments. These projects propose some mechanisms to manage load balancing 
on different supercomputers. One drawback of these environments is the diffi- 
culty for the user to add new functions in the libraries. Moreover, they are not 
compliant to relevant standard such as CORBA. The Legion [4] project aims 
at creating a world wide environment for high-performance computing. A lot of 
principles of CORBA (such as heterogeneity management and object location) 
are provided by the Legion run-time, although Legion is not CORBA-eompliant .  
It manipulates parallel objects to obtain high-performance. All these features are 
in common with our Cobra run-time. However, Legion provides others services 
such as load balancing on different hosts, fault-tolerance and security which are 
not present in Cobra. The PARDIS [7] project proposes a solution very close to 
our approach because it extends the CORBA object model to a parallel object 
model. A new IDL type is added: c/sequence (for distributed sequence). It is a 
generalisation of the COI~BA sequence. This new sequence describes data  type, 
da ta  size, and how data  must be distributed among objects. In PARDIS, distri- 
bution of objects is let to the programmers. It is the main difference with Cobra 
for which a resource allocator is provided. Moreover in Cobra, extended-IDL 
allows to describe object parallel services in more details. 

6 C o n c l u s i o n  a n d  p e r s p e c t i v e s  

This paper introduced the parallel CORBA object concept. It is a collection of 
standard CORBA objects. Its interface is described using an Extended-IDL to 
manage data  distribution among the objects of the collection. Cobra is being im- 
plemented using Orbix from Iona Tech. It has already been tested for building a 
signal processing application using a client/server approach [2]. For such applica- 
tion, the most computing part of the application is encapsulated within a parallel 
CORBA object while the graphical interface is a Java applet. This applet, act- 
ing as a client, is connected to the server through the CORBA ORB. Current 
works are now focusing on the experiment of the coupling of numerical codes. 
Particular attention will be paid on the performance of the ORB which seems to 
be the most critical part of the software environment to get the requested per- 
formance. It is planned, within the PACHA project, to implement an ORB that  
fully exploits the performance of the SCI clustering technology while ensuring 
compatibility with existing ORB through standard protocols such as T C P / I P .  
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