
Cobra: A CORBA-compliant Programming
Environment for High-Performance Computing

Thierry Priol and Christophe Ren~

IRISA -Campus de Beaulieu - 35042 Rennes, Prance

Abs t r ac t . In this paper, we introduce a new concept that we call a
parallel COtlBA object. It is the basis of the Cobra runtime system
that is compliant to the CORBA specification. Cobra is being devel-
oped within the PACHA Esprit project. It aims at helping the design of
high-performance applications using independent software components
through the use of distributed objects. It provides the benefits of dis-
tributed and parallel programming using a combination of two standards:
CORBA and MPI. To support CORBA parallel objects, we propose to
extend the IDL language to support object and data distribution. In this
paper, we discuss the concept of CORBA parallel object,

1 I n t r o d u c t i o n

Thanks to the rapid increase of performance of nowadays computers , it can
be now envisaged to couple several high-intensive numerical codes to simulate
more accurately complex physical phenomena. Due to both the increased com-
plexity of these numerical codes and their future developments, a tight cou-
pling of these codes cannot be envisaged. A loosely coupling approach based
on the use of several components offers a much more at t ract ive solution. With
such approach, each of these components implements a part icular processing
(pre-processing of data, mathemat ica l solver, post-processing of data) . More-
over, several solvers are required to increase the accuracy of simulation. For
example, fluid-structure or thermal-s tructure interactions occur in many field of
engineering. Other components can be devoted to pre-processing (data format
conversion) or post-processing of da ta (visualisation). Each of these components
requires specific resources (computing power, graphic interface, specific I / O de-
vices). A component, which requires a huge amount of computing power, can
be parallelised so tha t it will be seen as a collection of processes to be ran on a
set of network nodes. Processes within a component have to exchange da ta and
have to synchronise. Therefore, communicat ion has to be performed at different
levels: between components and within a component . However, requirements for
communicat ion between components or within a component are not the same.
Within a component, since performance is critical, low level message-passing is
required whereas between components, al though performance is still required,
modular i ty/ interoperabi l i ty and reusability are necessary to develop cost effec-
tive applications using generic components.

1115

However, till now, low level message-passing libraries, such as MPI or PVM,
are used to couple codes. It is obvious to say that this approach does not con-
tr ibute to the design of applications using independent software components.
Such communication libraries were developed for parallel programming so that
they do not offer the necessary support for designing components which can
be reused by other applications. Solutions already exist to decrease the design
complexity of applications. Distributed object-oriented technology is one of these
solutions. A complex application can be seen as a collection of objects, which rep-
resent the components, running on different machines and interacting together
using remote object invocations. Existing standard such as CORBA (Common
Object Request Broker Architecture) aims at helping the design of applications
using independent software components through the use of CORBA objects 1
CORBA is a distributed software platform which supports distributed object
computing. However, exploitation of parallelism within such object is restricted
in a sense that it is limited to a single node within a network. Therefore, both
parallel and distributed programming environments have their own limitations
which do not allow, alone, the design of high performance applications using a
set of reusable software components.

This paper aims at introducing a new approach that takes advantage of
both parallel and distributed programming systems. It aims at helping pro-
grammers to design high performance applications based on the assembling of
generic software components. This environment relies on CORBA with exten-
sions to support parallelism across several network nodes within a distributed
system. Our contribution concerns extensions to support a new kind of object
we called a parallel CORBA object (or parallel object) as well as the integra-
tion of message-passing paradigms, mainly MPI, within a parallel object. These
extensions exploit as much as possible the functionality offered by CORBA and
requires few modifications to existing CORBA implementations. The paper is
organised as follows. Section 2 gives a short introduction to CORBA. Section
3 describes our extensions to the CORBA specification to support parallelism
within an object. Section 4 introduces briefly the Cobra runtime system for the
execution of parallel objects. Section 5 describes some related works that share
some similarities with our own work. Finally, section 6 draws some conclusions
and perspectives.

2 A n overv iew of C O R B A

CORBA is a specification from the OMG (Object Management Group) [5] to
support distributed object oriented applications. Such applications can be seen
as a collection of independent software components or CORBA objects. Ob-
jects have an interface that is used to describe operations that can be remotely
invoked. Object interface is specified using the Interface Definition Language
(IDL). The following example shows a simple IDL interface:

1 For the remaining of the paper, we will use simply object to name a CORBA object

1116

interface myservice {
void put(in double a);
double myop(inout long i, out long j);

};

An interface contains a list of operations. Operations may have parameters
whose types are similar to C + + ones. A keyword added just before the type
specifies whether the parameter is an input or an output parameter or both.
IDL provides an interface inheritance mechanism so that services can be ex-
tended easily. Figure 1 provides a simplified view of the CORBA architecture.

Client
node

" CORBA Object ' ', 1 ,,(... ~:

I Object I"
�9 �9 i ' !l Implementation l I:

~,. L 2J"

Object I
IDLStubs [I adaptor I

" - ~ - " O b i e c t RequesiBrok-er~]"

Fig. 1. CORBA system architecture

Server
node

In this figure, an object located at the client side is bound to an implementation
of an object located at the server side. When a client invokes an operation, com-
munication between the client and the server is performed through the Object
Request Broker (ORB) thanks to the IDL stub (client side) and the 1DL skele-
ton (server side). Stub and skeleton are generated by an IDL compiler taking
as input the IDL specification of the object. A CORBA compliant system offers
several services for the execution of distributed object-oriented applications. For
instance, it provides object registration and activation.

3 P a r a l l e l C O R B A o b j e c t

CORBA was not originally intended to support parallelism within an object.
However, some CORBA implementations provide a multi-threading support for
the implementation of objects. Such support is able to exploit simultaneously
several processors sharing a physical memory within a single computer. Such
level of parallelism does not require modification of the CORBA specification
since it concerns only the object implementation at the server side. Instead of
having one thread assigned to an operation, it can be implemented using several
threads. However, the sharing of a single physical memory does not allow a large

1117

number of processors since it could create memory contention. One objective of
our work was to exploit several dozen of nodes available on a network to carry
out a parallel execution of an object. To reach this objective, we introduce the
concept of parallel CORBA object.

3.1 E x e c u t i o n m o d e l

Client
node

I

Server 1 Parallel server node Server n

, g -

' , i t Process I parallel CORBAobject [Process J I
'! , - h '
qr ' - l
"i I Object ', CORBA object collection Object ,
!i[Implementation 1 Implementation Ill I
i.l ' I',

', I_.~?L I ', I_.IDL I "i , ISkeletonl ', --. I~e,etonl ', i i I

' * ' b , , i
' Object ', Object ' ,l
I Adapter ', Adapter ' , '

j I I ," , ! u J "

Fig. 2. Parallel CORBA object service execution model.

The concept of parallel object relies on a SPMD (Single Program Multiple Data)
execution model which is now widely used for programming distributed memory
parallel computers. A parallel object is a collection of identical objects having
their own data so that it complies with the SPMD execution model. Figure 2 il-
lustrates the concept of parallel object. From the client side, there is no difference
when calling a parallel object comparing to a standard object. Parallelism is thus
hidden to the user. When a call to an operation is performed by a client, such
operation is executed by all CORBA objects belonging to the collection. Such
parallel execution is handled by the stub that is generated by an Extended-IDL
compiler, which is a modified version of the standard IDL compiler.

3.2 E x t e n d e d - I D L

As for a standard object, a parallel object is associated with an interface that
specifies which operations are available. However, this interface is described using
an IDL we extended to support parallelism. Extensions to the standard IDL aim
at both specifying that an interface corresponds to a parallel object and at
distributing parameter values among the collection of objects. Extended-IDL is
the name of these extensions.

1118

S p e c i f y i n g t h e d e g r e e o f p a r a l l e l i s m The first IDL extension corresponds to
the specification of the number of objects of the collection that will implement
the parallel object. Modifications to the IDL language consist in adding two
brackets to the IDL interface keyword. A parameter can be added within the
two brackets to specify the number of objects belonging to the collection. Such
parameter can be a "*", that means that the number of objects belonging to the
collection is not specified in the interface. The following example illustrates the
proposed extension.

interface [*] ComputeFEM {
typedef double dmat [I00] [I00] ;
void initFEM(in dmat mat, in double p) ;
void doFEM(in long niter, out double err) ;

};

In this example, the number of objects will be fixed at runtime depending
on the available resources (i.e. the number of network nodes if we assume that
each object of the collection is assigned to only one node). The implementation
of a parallel object may require a given number of objects in the collection to
be able to run correctly. Such number may be inserted within the two brackets
of the proposed extension. The following example gives an example of a parallel
object service which is made of 4 objects.

interface[4] ComputeFgM {

};

Instead of giving a fixed number of objects in the collection, a function may
be added to specify a valid number of objects in the collection. The following
example illustrates such possibility. In that case, the number of objects in the
collection may be only a power of 2.

interface [n^2] ComputeFEM {

};

It is the responsibility of the runtime system, in our case Cobra, to check
whether the number of network nodes has been allocated according to the spec-
ification of the parallel object. IDL allows a new interface to inherit from an
existing one. Parallel interface can do the same but with some restrictions. A
parallel interface can inherit only from an existing parallel interface. Inheritance
from standard interface is forbidden. Moreover, inheritance is allowed only for
parallel interfaces that could be implemented by a collection of objects for which
the number of objects coincides. The following example illustrates this restric-
tion.

interface [*] MatrixComponent {

};
interface In^2] ComputeFEM : MatrixComponent {

1119

In this example, interface ComputeFEM derives from interface MatrixCom-
portent, The new interface has to be implemented using a collection having a
power of 2 objects. In the following example, the Extended-IDL compiler will
generate an error when compiling because inheritance is not valid :

interface[3] MatrixComponent {

};
interface In'2] ComputeFEM : MatrixComponent {

};

S p e c i f y i n g d a t a d i s t r i b u t i o n Our second extension to the IDL language con-
cerns da ta distribution. The execution of a method on a client side will provoke
the execution of the method on every objects of the collection. Since, each ob-
ject of the collection has it own separate address space, we must envisage how
to distribute parameter values for each operation. Attr ibutes and types of op-
eration parameters act on the data distribution. Proposed extension of IDL for
da ta distribution is allowed only for parameters of operations defined in a par-
allel interface. When a standard IDL type is associated with a paramete r with
an in mode, each object of the collection will receive the same value. When a
parameter of an operation has either an o u t or a i n o u t mode, as a result of the
execution of the operation, stub generated by the Extended-IDL compiler will
get a value from one of the objects of the collection.

The IDL language provides multidimensional fixed-size arrays which contains
elements of the same type. The size along each dimension has to be specified in
the definition. We provide some extensions to allow the distribution of arrays
among the objects of a collection. Da ta distribution specifications apply for bo th
in, o u t and i n o u t mode. They are similar to the ones already defined by H P F
(High Performance Fortran). The following example gives a brief overview of the
proposed extension.

interface[*] MatrixComponent {
typedef double dmat [iO0] [I00] ;
typedef double dvec[iO0];
void matrix_vector_mult (in dist [BLOCK] [*] dmat, in dvec v,

out dist[CYCLIC] dvec u);
};

This extension consists in the adding of a new keyword (dis t) which specifies
how an array is distributed among the objects of the collection. For example, the
2D array m a t is distributed by block of rows. Stubs generated by the Extended
IDL compiler do not perform the same work when the paramete r is an input
or an output parameter . With an input parameter , the stub must scatter the
distributed array so that each object of the collection received a subset of the
whole array. With an output parameter , the stub must do the reverse operation.
Indeed, each object of a collection contains a subset of the array. Therefore,
the stub is in charge of gathering da ta from objects belonging to the collection.

1120

Such gathering may include a redistribution of data if the client is itself a par-
allel object. In the previous example, the number of objects in the collection is
not specified in the interface. Therefore, the number of elements assigned to a
particular object can be known only at runtime. It is why a distributed array
of a given IDL type is mapped to an unbounded sequence of this IDL type.
Unbounded sequence offers the advantage that its length is set up at runtime.
We propose to extend the sequence structure to store information related to the
distribution.

4 A runtime sys tem to support parallel C O R B A objects

The Cobra runtime system [2] aims at providing resource allocation for the exe-
cution of parallel objects. It is targeted to a network of PCs connected together
using SCI [6]. Resource allocation consists in providing network nodes and shared
virtual memory regions for the execution of parallel objects. Resource allocation
services are performed by the resource management service (RmProcess) of Co-
bra. It is used when a parallel service must be bind to a client. We propose to
extend the _bind method provided by most of the CORBA implementations.
Binding to a parallel object differs from the standard binding method. Indeed, a
reference to a virtual parallel machine (vpm) is given as an argument of the bind
method instead of a single machine. The v p m reference is obtained through the
Cobra resource allocator. The following example illustrates how to use a parallel
object service within the Cobra runtime:

// Obtain a reference from the RmProcess service

cobra = RmProcess::_bind("cobra.irisa.fr");

// Create a VPM
cobra->mkvpm(vpmname, NumberOfNodes, NORES);

// Get a reference to the allocated vpm

pap_get_info_vpm(~vpm, vpmname);

// Obtain a reference from the parallel object service: MatrixComponent

cs = MatrixComponent::_bind (&vpm);

// Invoke an operation provided by MatrixComponent service

cs->matrix_vector_mult(a, b, ~c);

The bind method may be called either by a single object, or by all objects
belonging to a collection if the client is itself a parallel object.

5 Related works

Several projects deal with environments for high-performance computing com-
bining the benefits of distributed and parallel programming. The RCS [1], Net-
Solve [3] and Ninf [8] projects provide an easy way to access linear algebra
method libraries which run on remote supercomputer. Each method is described

1121

by a specific interface description language. Clients invoke methods thanks to
specific functions. Arguments of these functions specify method name and method
arguments. These projects propose some mechanisms to manage load balancing
on different supercomputers. One drawback of these environments is the diffi-
culty for the user to add new functions in the libraries. Moreover, they are not
compliant to relevant standard such as CORBA. The Legion [4] project aims
at creating a world wide environment for high-performance computing. A lot of
principles of CORBA (such as heterogeneity management and object location)
are provided by the Legion run-time, although Legion is not CORBA-eompliant .
It manipulates parallel objects to obtain high-performance. All these features are
in common with our Cobra run-time. However, Legion provides others services
such as load balancing on different hosts, fault-tolerance and security which are
not present in Cobra. The PARDIS [7] project proposes a solution very close to
our approach because it extends the CORBA object model to a parallel object
model. A new IDL type is added: c/sequence (for distributed sequence). It is a
generalisation of the COI~BA sequence. This new sequence describes data type,
da ta size, and how data must be distributed among objects. In PARDIS, distri-
bution of objects is let to the programmers. It is the main difference with Cobra
for which a resource allocator is provided. Moreover in Cobra, extended-IDL
allows to describe object parallel services in more details.

6 C o n c l u s i o n a n d p e r s p e c t i v e s

This paper introduced the parallel CORBA object concept. It is a collection of
standard CORBA objects. Its interface is described using an Extended-IDL to
manage data distribution among the objects of the collection. Cobra is being im-
plemented using Orbix from Iona Tech. It has already been tested for building a
signal processing application using a client/server approach [2]. For such applica-
tion, the most computing part of the application is encapsulated within a parallel
CORBA object while the graphical interface is a Java applet. This applet, act-
ing as a client, is connected to the server through the CORBA ORB. Current
works are now focusing on the experiment of the coupling of numerical codes.
Particular attention will be paid on the performance of the ORB which seems to
be the most critical part of the software environment to get the requested per-
formance. It is planned, within the PACHA project, to implement an ORB that
fully exploits the performance of the SCI clustering technology while ensuring
compatibility with existing ORB through standard protocols such as T C P / I P .

References

1. P. Arbenz, W. Gander, and M. Oettli. The Remote Computation System. In HPCN
Europe '96, volume 1067 of LNCS, pages 662-667, 1996.

2. P. Beaugendre, T. Priol, G. Alleon, and D. Delavaux. A client/server approach for
hpc applications within a networking environment. In HPCN'98, pages 518-525,
April 1998.

1122

3. H. Casanova and J. Dongara. NetSolve: A Network Server for Solving Computa-
tionaJ Science Problems. The International Journal of Supercomputer Applications
and High Performance Computing, 11(3):212-223, 1997.

4. A. S. Grimshaw, W. A. Wulf, and the Legion team. The Legion Vision of a World-
wide Virtual Computer. Communications of the ACM, 1(40):39 45, January 1997.

5. Object Management Group. The common object request broker: Architecture and
specification 2.1, August 1997.

6. Dolphin Interconnect. Clustar interconnect technology. White Paper, 1998.
7. K. Keahey and D. Gannon. PARDIS: CORBA-based Architecture for Application-

level Parallel Distributed Computation. In Proceedings of Supercomputing '97,
November 1997.

8. M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima, and H. Takagi.
Ninf: A Network Based Information Library for Global World-Wide Computing
Infrastructure. In HPCN Europe '97, volume 1225 of LNCS, pages 491 502, 1997.

