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A b s t r a c t .  This paper covers the design of processor arrays for algo- 
rithms with uniform dependencies. The design constraint is a limited 
latency of the resulting processor array. As objective of the design the 
minimization of the costs for an implementation of the processor array 
in silicon is considered. 
Our approach starts with the determination of a set of proper linear allo- 
cation functions with respect to the number of processors. It follows the 
computation of a uniform anne scheduling function. Thereby, a module 
selection and the size of partitions of a following partitioning is deter- 
mined. A proposed linearization of the arising optimization problems 
permits the application of integer linear programming. 

1 I n t r o d u c t i o n  

Processor arrays represent an appropriate kind of co-processors for time con- 
suming algorithms. Especially in heterogeneous systems a dedicated hardware 
for parts of algorithms, e.g. for the motion estimation of MPEG, is required. 
An admissible latency Lg for the selected part of the algorithm can be derived 
from the time constraint of the entire algorithm. The objective of the design 
is a processor array with minimal hardware costs that  matches the admissible 
latency Lg. 
In this paper, we consider algorithms with uniform dependencies. First, a set 
of linear allocation functions that lead to a small number of processors is com- 
puted. Then, for each allocation function a uniform affine scheduling function is 
determined. We assume that a LSGP (locally sequential and globally parallel) 
-partitioning can be applied to the processor array. The size of the partitions is 
derived with respect to the constraint that  the latency of the resulting processor 
array is less than Lg. Furthermore, the processor functionality, i.e. kind and num- 
ber of modules that have to be implemented in each processor, is determined. 
The objective of the design is a minimization of hardware costs. We measure 
hardware costs by the chip area needed to implement modules and registers in 
silicon. 

* The research was supported by the "Deutsche Forschungsgemeinschaft", in the 
project A1/SFB358. 
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Related works handling the allocation function cover (1) a limited enumeration 
process to determine a linear allocation function leading to a minimal number 
of processors of the processor array [15], (2) the determination of a set of linear 
allocation functions that  match a given interconnection network of the processor 
array [16], (3) the inclusion of a limited radius of the intereonnections into the 
determination of the allocation function [14] and (4) the minimization of the 
chip area of the processor array by consideration of the processor functional- 
ity [3]. An approach to compute a variety of linear allocation and scheduling 
functions is proposed in [11]. Some notes to the determination of unconstrained 
minimal scheduling functions for algorithms with uniform dependencies can be 
found in [1]. Resource constraint scheduling for a given processor functionality 
is presented in [13]. An approach to minimize the throughput by consideration 
of the chip area is proposed in [9]. In [2] the approach [13] is extended to deter- 
mine additionally the processor functionality in order to minimize a chip area - 
latency product. 
The paper is organized as follows. Basics of the design of processor arrays are 
given in section 2. In section 3 hardware constraints considered in this paper 
are introduced. A linear program to determine a set of linear allocation func- 
tions is presented in section 4. Section 5 covers the determination of scheduling 
functions. A linear programming approach is presented in detail. Finally, a short 
conclusion is given in section 6. 

2 D e s i g n  o f  P r o c e s s o r  A r r a y s  

In this paper we restrict our attention to the class of algorithms that  can be 
described as systems of uniform recurrence equations (SURE) [5]. 

D e f i n i t i o n  1 ( S y s t e m  of  u n i f o r m  r e c u r r e n c e  e q u a t i o n s ) .  A system of uni- 
form recurrence equations is a set of equations Si of the following form: 

S i :  y i [ i ] = F i ( . . . , y j [ f ~ ( i ) ] , . . . ) ,  i e Z ,  l < _ i , j < _ m , l < k < m , j ,  (1) 

where i �9 Z ~ is an index vector, f•(i) = i - d ~ j  are index functions, the constant 

vectors dikj �9 ~ are called dependence vectors, Yi are indexed variables and Fi 
are arbitrary single valued operations. All equations are defined in the index space 
5[ being a polytope Z = {i ] Hii  > hi0}, Hi �9 Q'~'x~, hi0 �9 Q '~ .  

We suppose that the SURE has a single assignment form (every instance of a 
variable Yi is defined only once in the algorithm) and that  there exists a partial  
order of the instances of the equations that satisfies the data  dependencies. 
Next, we introduce a graph representation of the data dependencies of the SURE. 

D e f i n i t i o n  2 ( R e d u c e d  d e p e n d e n c e  g r a p h  ( R D G ) ) .  The equations of the 
SURE build the m nodes vl �9 V of the reduced dependence graph (V, $). The 
directed edges e = (vl, vj) �9 E are the data dependencies weighted by the depen- 
dence vectors d(e) = dl k.  Source and sink of an edge e �9 g are called c~(e) and 
5(e) respectively. 
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The main task of the design of processor arrays is the determination of the 
time and the processor when and where each instance of the equations of the 
SURE has to be evaluated. In order to keep the regularity of the algorithm in 
the resulting processor array, we apply only uniform affine mappings [8] to the 
SURE. 

D e f i n i t i o n  3 ( U n i f o r m  at=line s c h e d u l i n g ) .  A uniform aJ:fine scheduling func- 
tion vi(1) assigns an evaluation time to each instance of the equations: 

r~ : 25n --~ Z : r i ( i ) = r T i + t i ,  l < i < m ,  (2) 

where r C 25~, ti E Z.  

D e f i n i t i o n  4 ( L i n e a r  p r o c e s s o r  a l l oca t i on ) .  A linear allocation function 
7r(i) assigns an evaluation processor to each instance of the equations: 

z z -l: = s i ,  (a) 

where S E 25n-1x~ is of full row rank. Since S is of full row rank, the vector 
u G 25~ which is coprime and satisfies Su = 0 and u 7 s 0 is uniquely defined and 
called projection vector. 

Because of the lack of space we refer to [2,3] for a treatment of uniform affine 
allocation functions 7ri : Z ~ --+ 25~-1 : 7ri(i) = Si + Pi, 1 < i < m. 
The importance of the projection vector is due to the fact that  those and only 
those index points of an index space lying on a line spanned by the projection 
vector u are mapped onto the same processor. Due to the regularity of the index 
space and the uniform affine scheduling function, the processor executes the 
operations associated with that index points one after each other if v T u  7s 0 
with a constant time distance A = ]vTu] which is called iteration interval. 
The application of a scheduling and an allocation function to a SURE results in 
a so called fullsize array. 

3 H a r d w a r e  D e s c r i p t i o n  

We consider a given set 3/t of modules which are responsible to evaluate the oper- 
ations of a processor. Instead of assuming given processors we want to determine 
modules which realize the operations of the processors. First, we introduce some 
measures needed to describe the modules. To each module mt E M we assign an 
evaluation time dl E 25 in clock cycles needed to execute the operation of module 
ml, a necessary chip area cl E 25 needed to implement the module in silicon and 
the number nl E Z of instances of that module which are implemented in one 
processor. If a module ml E M has a pipeline architecture we assign a time 
offset ot to that module which determines the time delay after that  the next 
computat ion can be started on this module, otherwise ol = dr. Some modules 
are able to compute different operations, i.e. a multiplication unit is likewise 
able to compute an addition. To such modules different delays dli and offsets oti 
depending on the operations Fi are assigned. 
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The assignment of a module ml E 34 to an operation Fi is denoted as re(i), 
and the set of modules which are able to perform the operat ion Fi is ~'l i .  The  
addressing of the instance of the module re(i) which performs the operation Fi 
is given by ui C Z. 

4 D e t e r m i n a t i o n  of  A l l o c a t i o n  F u n c t i o n s  

The allocation function maps  each index vector i C Z to a processor p of the 
processor space 7 ) = {p I P = Si A i C Z}. Our a im is the determinat ion of a set 
of proper linear allocation functions that  lead to processor spaces with a small  
number  of processors. 
In our approach we approximate  the number  of processors of the processor space 
7 ) by the number  of processors of the enclosing constant bounded polytop (cb- 
polytop) Q = {p I Pmin <_ P _< Pmax} of 7), where 7) C_ Q, and each face of Q 
intersects 7) at least in one point. The consideration of the cb-polytop Q allows 
the formulation of the search for allocation functions as a linear opt imizat ion 
problem. 

P r o g r a m  1 ( D e t e r m i n a t i o n  of  a l l o c a t i o n  f u n c t i o n s )  
f o r j =  1 t o n - 1  

minimize 1 2 1 2 v~ - v ~  + 1 ,  Vj,Vj E~, 
subject to v ~ < Jr < . 1  _ Sj  W l _ v j ,  1 < l < [~ /V[ , s j  C ~ n ,  

s j b k + ( 1 - - r k ) R > l ,  l < k < n - j + l ,  (4.1) (4) 
n - j §  

E rk = 1, rk C {0,1}, 
k----1 

e n d  fo r  
where }4/ is the set of vertices wt of Z, R is a sufficiently large constant and the 
vectors bk, 1 < k < n - j + 1, are spanning the right null space of the matrix 
( s l , . . .  , s j -a)  T. Constraint (4.1) is replaced by sl ~ 0 for j = 1. 

Constraint  (4.1) ensures that  the vectors sj,  1 < j ~ n -  1, are linearly indepen- 
dent, i.e. that  rank(S) = n - 1 .  Constant R has to fulfill R _> max  {IsTbk ]}. 

l < k < n - j + l  

2 1). The number of processors of the cb-polytop Q is H ( vj - vj + 
j = l  

A motivat ion of our approach is given in the following theorem. 

T h e o r e m  1 ( N u m b e r  o f  p r o c e s s o r s  o f  a n  e n c l o s i n g  c b - p o l y t o p ) .  If  N 
(N  I) is the number of processors of the enclosing cb-polytop of the processor 
space resulting after application of the allocation function defined in program 1 
(of another arbitrary linear allocation function), then N < N I. 

Since we are interested in several allocation functions we replace constraint (4.1) 
in program 1 for j = 1 by s T u t r  0, 1 _< l < i, in order to determine the 
i-th allocation function, where ut are the projection vectors of the previous 
determined allocation functions. 



1022 

Example 1. 
We consider a part of the GSM speech codec system as example. The considered 
algorithm consists of two equations. 

I. yl[i,k] = y l [ i -  1, k]+r[i]y2[i- 1 , k -  1], (i,k) T 6Z ,  
II. y 2 [ i , k ] = y 2 [ i - l , k - 1 ] + r [ i ] y l [ i - l , k ] ,  (i ,k) T E / : ,  

/[={(i,k) T I 1 < i < 8 , 1 < k < 1 2 0 } .  

The index space with the data dependencies as well as the reduced dependence 
graph are depicted in Fig. 1. 

120 

I I I I I I I I ~ ,  
1 2 3 4 5 6 7 8 i 

Fig. 1. Index spaces with data dependencies and reduced dependence graph 

The dependence vectors are: I -+ I : dl = (1,0) T, II -~ I : d~ = (1, 1) T, 
I - + I I : d 3 = ( 1 , 0 )  T, I I - + I I : d 4 = ( 1 , 1 ) T .  The set of vertices W of the index 
space Z is IW = {(1, 1), (S, 1), (1,120), (S, 120)]. 
Application of program 1 leads to the matrices $1 = (1, 0) and S~ = (0, 1), and 
hence to the projection vectors Ul = (0, 1) T and u2 = (1, 0) T respectively. 

The next section covers the determination of a scheduling function and the 
processor functionality with respect to each projection vector ui computed in 
program 1. 

5 D e t e r m i n a t i o n  o f  a S c h e d u l i n g  F u n c t i o n  

5.1 G e n e r a l  O p t i m i z a t i o n  P r o b l e m  

In this section we propose an approach to determine a scheduling function as 
well as a module selection and a conflict free assignment of the modules to the 
operations of the SURE. Our objective is the minimization of the costs for a 
hardware implementation of the processor array subject to the condition that  a 
given latency Lg is satisfied. 
A scheduling function is determined for each linear allocation function resulting 
after application of program 1. First, we present a general description of the 
optimization problem and go into more detail in the next paragraphs. 
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P r o g r a m  2 ( D e t e r m i n a t i o n  o f  a s c h e d u l i n g  f u n c t i o n )  

minimize chip area C of the processor array 
subject to latency L of the processor array: L < Lg 

causal scheduling function 
selection of modules 
conflict free access to the modules 

5.2 O b j e c t i v e  F u n c t i o n  

The number  of processors Np is given exactly since the allocation function is 
fixed at this step. In each processor of the fullsize array we have to implement  
nz instances of module ml. The chip area needed to implement  the modules of 

all processor of the fullsize array is therefore C / =  Np ~ ntcz. 
/=1  

Additional chip area is needed to implement  (1) registers to store intermedi- 
ate results, (2) combinatorial  logic to control the behaviour of the processors 
and (3) interconnections between the processors. The costs for the control logic 
are assumed to be negligible. The number  of registers depends on the number  
of processors as well as the number of da ta  produced in each processor. We 
approximate  the chip area Cr needed to implement  the registers in silicon by 
Cr = Np m cr, where cr is the chip area of one register and m is the number  of 
equations of the SURE. Since the number  of processors is independent of the 
scheduling function and the module selection, C~ can be treated as a constant.  
An assessment of the effort for the implementat ion of the interconnections is 
difficult. Instead of measuring the chip area of interconnections we propose a 
minimization of the length or a l imitat ion of the radius of the interconnections 
respectively while determining the allocation function. 
As a consequence of the above discussion we conclude that  it is sufficient to 
consider the chip area C] needed to implement  the modules as measure for the 
hardware costs. 
Now, we assume that  the admissible latency Lg enables a slow down of the 
fullsize array. Hence, we can decrease the hardware costs by part i t ioning the 
fullsize array. We apply the LSGP-part i t ioning [4] (tiling) by a factor of K,  i.e. 
each part i t ion contains K processors of the fullsize array. Each part i t ion repre- 
sents a processor of the resulting processor array. We assume tha t  the part i t ion- 
ing matches exactly the fullsize array and we neglect the additional hardware 
needed to control the partitions. Hence, we get the hardware costs of the result- 
ing processor array Cp = C / / K .  Since the number  of processors Np is fixed it is 
sufficient to consider the chip area C~ of only one processor of the fullsize array. 
Our objective is to minimize C~ = C~/K, where Cp = NvC ~ and C/  = NvC ~. 

5.3 Admissible Latency Lg 

The latency L/ of the fullsize array is given by L/  = t . . . .  t rni~, where 

t mi~ ~ v T w  q- tl ~ t max -- dm(i),i, Vw E W, 1 K i K m, 
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where t'~in,t "~a~ E Z and W is the set of vertices w of the index space Z. 
The consideration of only the vertices of Z is justified by the fact tha t  linear 
functions have their extreme values at extreme points of a convex space [10]. 
The relaxation to integer values has only small effort for sufficiently large index 
spaces Z. 
The assumption that  Lg > >  Lf enables a parti t ioning of the fullsize array by a 
factor K,  where K L f  < Lg. This inequality is a sufficient condition since we can 
presume that  a partit ioning exists where the latency L of the resulting processor 
array satisfies L < K L f .  An intuitive justification yields the opposite ease where 
the distribution of a sequential program to K processors leads to a speed up less 
or equal to K.  
Next,  we linearize the constraints C} = KCp and K L f  < Lg. The minimal  
latency Lmi~ of a fullsize array is easy to determine by assumption of unlimited 
resources and assignment of the fastest possible module to each operat ion of the 
SURE. Using Lmi~ we can limit K by 1 < K < K,~a~ = [Lg/L,~i~J. The lower 
bound of K can be increased by consideration of the minimal  hardware costs for 

Groin one processor ' = m i n { ~  nzcz} satisfying 3ml E A/Ii.nt > 1, 1 < i < m. 
l----1 

The application of a resource constraint scheduling [13] with the modules leading 
to C'mi ~ yields Lma~ and Kmi~ = max{l ,  [ng/L,~a~]}. 
The introduction of Kmaz - Kmin + 1 binary variables 7j E {0, 1} enables an 
equivalent formulation of the constraints C} = KC~ and KL]  < Lg as follows: 

C ~f < j C ~ + ( 1 - T j ) C ~ a x ,  Kmin < j  < h" . . . .  
jLg > jKmi,~ Lf + 7j (J - K,~i,~)Lg, Kmi,~ < j < K.~a~, 

- - ( 5 )  

~ j = l ,  
j=Kmi~ 

I~1 
where C,~a~' = ~ nma~ct t, and n~ a~ is the maximal  number  of instances of 

l = l  
module mt which can be implemented in one processor of the fullsize array. 
A reduction of the number  of variables ~/i f rom K , ~  - K,,in + 1 to [(K,~a~ - 
Kmi~ + 1)/z] ,  z E Z, is possible by solving the optimization problem iteratively. 
In the first iteration only such j ,  Kmi n <_ j < K , ~ ,  are considered tha t  satisfy 
j rood z = a, where a = K,~i~ mod z. The second iteration of the opt imizat ion 
problem is solved for j , ~  - z < j < j , ~ z  + z, where jrnax is the solution of the 
first iteration. 

5.4 Causality Constraint 

In order to ensure a valid partial  order or the equations preserving the da ta  
dependencies the scheduling function has to satisfy the causality constraint.  

Definition 5 (Causality constraint). A scheduling function ri(i) = rT i  + tl 
has to satisfy the following constraint: 

r T d ( e )  + t~(e) -- t~(e) _> dm(,7(c)),,7(e), Ve e ~. (6) 
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5.5 M o d u l e  S e l e c t i o n  a n d  P r e v e n t i o n  o f  Access  Conf l i c t s  

The assignment of a module to the operation Fj is described by I.h~jl binary 
variables r} e {0,1}, where ~ r} = 1  a n d r  k = 1  +~m(j)  = m k .  

t o t E M  3 

The following resource constraint prevents access conflicts to the module. 

D e f i n i t i o n  6 ( R e s o u r c e  c o n s t r a i n t ) .  For a given projection vector u a uni- 
f o rm aJfine scheduling funct ion ri(i) = ~-Ti + ti has to satisfy the fdl lowing 
constraint: 

(tj mod /~) - (tk mod A) >__ Om(j),k, 
;~ -- (tj mod ;~) + (tk mod ~) >_ om(j),j, 

(tk mod )~) - (tj mod )~) > Om(j),j, 
)~ - (tk mod )~) + ( t j  mod )~) >_ om(j ) ,k ,  

for  all j r k, l <_ j , k  

We refer to [2] for an 

if (~ rood ~) > (t~ rood ~), 

if (tj rood ~) <_ (tk rood ;~), 
(7) 

< m, with re(j)  = re(k) and uj = uk, where A = I~-Tu[. 

explanation and a linearization of (7). 

5.6 R e s u l t  o f  t h e  O p t i m i z a t i o n  P r o b l e m  

The result of the optimization problem in program 2 is a set of modules have to 
be implemented in each processor and the number of processors of the fullsize 
array building one partit ion and hence one processor of the resulting proces- 
sor array. Program 2 is solved for each projection vector computed in program 
1. Then we select the projection vector ui leading to minimal hardware costs 

c = c~ + c r  = N~(~  E ~te~ + met). 
i=l 

Example  2. (Continuation of example 1) 
The admissible latency La is measured in clock cycles and supposed to be 
Lg = 1200. The considered set of modules is listed in table 1. We solve the 

operation 

rnl add/mult 
m~ add/muir, 

add/mult 
mr reg 

Table 1. Set of modules 

evaluation time di time offset oi chip area ci 
in clock cycles in clock cycles normalized 

3 3 297 

4 4 169 

8 8 44 

1 

optimization problem of program 2 separately for the projection vectors u l  and 
u2 determined in program 1. In order to justify our approach we present some 
interesting solutions in table 2 instead of only the best one given by the solver 
of the optimization problem. 
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Table 2. Results of the optimization problem 

projection vector Np C~ = Np m c,. 

Ul = (0,  1) "r 8 L6 

" 8 16  
" 8 ] 6  

u2 = (1,0) 'r 120 240 
" 120 240 
" 120 240 

IMI 
module selection K Cp = 9 ~ nlcl 

1 x ma 1 

1 x m 2  1 
2 x m l  3 
L x m,a 9 

2 x m2 37 
1 x m l  25 

C = Cr + Cp 
i = 1  

704 720 
1352 1368 
1584 1600 
586 826 
1096 1336 
1425 1665 

Minimal hardware costs occur by using projection vector u l  and implementing 
one instance of module m3 in each processor of the resulting processor array. 
Finally, we want to give some short notes to the computational  effort of our 
example. The worst case is program 2 with respect to the projection vector ul .  
The program consists of 168 constraints with 51 binary, 14 integer and one ra- 
tional variable. The solution takes 11.3 seconds of CPU time on a SUN SPARC 
Station 10. 

5.7 Se l ec t i on  o f  P r o j e c t i o n  V e c t o r s  

An alternative approach to the separate computation of a scheduling function 
for each projection vector consists in consideration of the projection vectors ui 
as parameters in program 2. We assume that the iteration interval A < Am~x. 
A linearization of the constraint A = [TTu[ is achievable using four inequalities 
and one binary variable v. 

A - -  2VAmax < "rTll < )% A E Z ,  
A - 2 ( 1 - v ) A m a ~  < - - T T u < _ A ,  r E { O ,  1}. (8) 

Suppose, that  we have to select one of P projection vectors ui, 1 < i < P.  Using 
P binary variables ai, 1 < i < P,  we replace (8) by: 

A - 2vAma~: - 2 ( 1 -  ai)Amaz < r T u i < A + ( 1 - - O L i ) A m a z ,  l < i < P, 
- 2 ( 1  - - 2 ( 1  - < <_ + (1  - . { 0 , 1 } ,  

P 

c q = l ,  a i C { 0 , 1 } ,  
i----.1 

I<i<P. 

The projection vector ui is selected if ai = 1. 
Furthermore, we have to include the hardware costs for the registers. The ob- 
jective function is changed to minimize the hardware costs C of the resulting 
processor array. New constraints have to be introduced to take the different num- 
ber of processors N~ of the fullsize arrays with respect to the projection vectors 
ui into account: 

i I 
- - ~i)N~(Cmax + mc~), 1 < i < P. C >_ + ' 
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We do not recommend this approach since the condition of the integer linear 
program deteriorates strongly. 

6 C o n c l u s i o n  

The presented approach is suitable to derive cost minimal processor arrays for 
algorithms with the requirement of an admissible latency. The arising optimiza- 
tion problems are given in a linearized form which permits the use of standard 
packages to solve the problems. 
Possible extensions to our approach are the inclusion of the power consumption 
and the inclusion of a rough approximation of the effort needed to implement 
the interconnections. 
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