
Design of Processor Arrays
for Real-Time Applications

Dirk Fimmel Renate Merker

Department of Electrical Engineering *
Dresden University of Technology

f immel, merkerOieel, e t . tu-dre sden. de

A b s t r a c t . This paper covers the design of processor arrays for algo-
rithms with uniform dependencies. The design constraint is a limited
latency of the resulting processor array. As objective of the design the
minimization of the costs for an implementation of the processor array
in silicon is considered.
Our approach starts with the determination of a set of proper linear allo-
cation functions with respect to the number of processors. It follows the
computation of a uniform anne scheduling function. Thereby, a module
selection and the size of partitions of a following partitioning is deter-
mined. A proposed linearization of the arising optimization problems
permits the application of integer linear programming.

1 I n t r o d u c t i o n

Processor arrays represent an appropriate kind of co-processors for time con-
suming algorithms. Especially in heterogeneous systems a dedicated hardware
for parts of algorithms, e.g. for the motion estimation of MPEG, is required.
An admissible latency Lg for the selected part of the algorithm can be derived
from the time constraint of the entire algorithm. The objective of the design
is a processor array with minimal hardware costs that matches the admissible
latency Lg.
In this paper, we consider algorithms with uniform dependencies. First, a set
of linear allocation functions that lead to a small number of processors is com-
puted. Then, for each allocation function a uniform affine scheduling function is
determined. We assume that a LSGP (locally sequential and globally parallel)
-partitioning can be applied to the processor array. The size of the partitions is
derived with respect to the constraint that the latency of the resulting processor
array is less than Lg. Furthermore, the processor functionality, i.e. kind and num-
ber of modules that have to be implemented in each processor, is determined.
The objective of the design is a minimization of hardware costs. We measure
hardware costs by the chip area needed to implement modules and registers in
silicon.

* The research was supported by the "Deutsche Forschungsgemeinschaft", in the
project A1/SFB358.

1019

Related works handling the allocation function cover (1) a limited enumeration
process to determine a linear allocation function leading to a minimal number
of processors of the processor array [15], (2) the determination of a set of linear
allocation functions that match a given interconnection network of the processor
array [16], (3) the inclusion of a limited radius of the intereonnections into the
determination of the allocation function [14] and (4) the minimization of the
chip area of the processor array by consideration of the processor functional-
ity [3]. An approach to compute a variety of linear allocation and scheduling
functions is proposed in [11]. Some notes to the determination of unconstrained
minimal scheduling functions for algorithms with uniform dependencies can be
found in [1]. Resource constraint scheduling for a given processor functionality
is presented in [13]. An approach to minimize the throughput by consideration
of the chip area is proposed in [9]. In [2] the approach [13] is extended to deter-
mine additionally the processor functionality in order to minimize a chip area -
latency product.
The paper is organized as follows. Basics of the design of processor arrays are
given in section 2. In section 3 hardware constraints considered in this paper
are introduced. A linear program to determine a set of linear allocation func-
tions is presented in section 4. Section 5 covers the determination of scheduling
functions. A linear programming approach is presented in detail. Finally, a short
conclusion is given in section 6.

2 D e s i g n o f P r o c e s s o r A r r a y s

In this paper we restrict our attention to the class of algorithms that can be
described as systems of uniform recurrence equations (SURE) [5].

D e f i n i t i o n 1 (S y s t e m of u n i f o r m r e c u r r e n c e e q u a t i o n s) . A system of uni-
form recurrence equations is a set of equations Si of the following form:

S i : y i [i] = F i (. . . , y j [f ~ (i)] , . . .) , i e Z , l < _ i , j < _ m , l < k < m , j , (1)

where i �9 Z ~ is an index vector, f•(i) = i - d ~ j are index functions, the constant

vectors dikj �9 ~ are called dependence vectors, Yi are indexed variables and Fi
are arbitrary single valued operations. All equations are defined in the index space
5[being a polytope Z = {i] Hii > hi0}, Hi �9 Q'~'x~, hi0 �9 Q '~ .

We suppose that the SURE has a single assignment form (every instance of a
variable Yi is defined only once in the algorithm) and that there exists a partial
order of the instances of the equations that satisfies the data dependencies.
Next, we introduce a graph representation of the data dependencies of the SURE.

D e f i n i t i o n 2 (R e d u c e d d e p e n d e n c e g r a p h (R D G)) . The equations of the
SURE build the m nodes vl �9 V of the reduced dependence graph (V, $). The
directed edges e = (vl, vj) �9 E are the data dependencies weighted by the depen-
dence vectors d(e) = dl k. Source and sink of an edge e �9 g are called c~(e) and
5(e) respectively.

1020

The main task of the design of processor arrays is the determination of the
time and the processor when and where each instance of the equations of the
SURE has to be evaluated. In order to keep the regularity of the algorithm in
the resulting processor array, we apply only uniform affine mappings [8] to the
SURE.

D e f i n i t i o n 3 (U n i f o r m at=line s c h e d u l i n g) . A uniform aJ:fine scheduling func-
tion vi(1) assigns an evaluation time to each instance of the equations:

r~ : 25n --~ Z : r i (i) = r T i + t i , l < i < m , (2)

where r C 25~, ti E Z.

D e f i n i t i o n 4 (L i n e a r p r o c e s s o r a l l oca t i on) . A linear allocation function
7r(i) assigns an evaluation processor to each instance of the equations:

z z -l: = s i , (a)

where S E 25n-1x~ is of full row rank. Since S is of full row rank, the vector
u G 25~ which is coprime and satisfies Su = 0 and u 7 s 0 is uniquely defined and
called projection vector.

Because of the lack of space we refer to [2,3] for a treatment of uniform affine
allocation functions 7ri : Z ~ --+ 25~-1 : 7ri(i) = Si + Pi, 1 < i < m.
The importance of the projection vector is due to the fact that those and only
those index points of an index space lying on a line spanned by the projection
vector u are mapped onto the same processor. Due to the regularity of the index
space and the uniform affine scheduling function, the processor executes the
operations associated with that index points one after each other if v T u 7s 0
with a constant time distance A =]vTu] which is called iteration interval.
The application of a scheduling and an allocation function to a SURE results in
a so called fullsize array.

3 H a r d w a r e D e s c r i p t i o n

We consider a given set 3/t of modules which are responsible to evaluate the oper-
ations of a processor. Instead of assuming given processors we want to determine
modules which realize the operations of the processors. First, we introduce some
measures needed to describe the modules. To each module mt E M we assign an
evaluation time dl E 25 in clock cycles needed to execute the operation of module
ml, a necessary chip area cl E 25 needed to implement the module in silicon and
the number nl E Z of instances of that module which are implemented in one
processor. If a module ml E M has a pipeline architecture we assign a time
offset ot to that module which determines the time delay after that the next
computat ion can be started on this module, otherwise ol = dr. Some modules
are able to compute different operations, i.e. a multiplication unit is likewise
able to compute an addition. To such modules different delays dli and offsets oti
depending on the operations Fi are assigned.

1021

The assignment of a module ml E 34 to an operation Fi is denoted as re(i),
and the set of modules which are able to perform the operat ion Fi is ~'l i . The
addressing of the instance of the module re(i) which performs the operation Fi
is given by ui C Z.

4 D e t e r m i n a t i o n of A l l o c a t i o n F u n c t i o n s

The allocation function maps each index vector i C Z to a processor p of the
processor space 7) = {p I P = Si A i C Z}. Our a im is the determinat ion of a set
of proper linear allocation functions that lead to processor spaces with a small
number of processors.
In our approach we approximate the number of processors of the processor space
7) by the number of processors of the enclosing constant bounded polytop (cb-
polytop) Q = {p I Pmin <_ P _< Pmax} of 7), where 7) C_ Q, and each face of Q
intersects 7) at least in one point. The consideration of the cb-polytop Q allows
the formulation of the search for allocation functions as a linear opt imizat ion
problem.

P r o g r a m 1 (D e t e r m i n a t i o n of a l l o c a t i o n f u n c t i o n s)
f o r j = 1 t o n - 1

minimize 1 2 1 2 v~ - v ~ + 1 , Vj,Vj E~,
subject to v ~ < Jr < . 1 _ Sj W l _ v j , 1 < l < [~ /V[, s j C ~ n ,

s j b k + (1 - - r k) R > l , l < k < n - j + l , (4.1) (4)
n - j §

E rk = 1, rk C {0,1},
k----1

e n d fo r
where }4/ is the set of vertices wt of Z, R is a sufficiently large constant and the
vectors bk, 1 < k < n - j + 1, are spanning the right null space of the matrix
(s l , . . . , s j -a) T. Constraint (4.1) is replaced by sl ~ 0 for j = 1.

Constraint (4.1) ensures that the vectors sj, 1 < j ~ n - 1, are linearly indepen-
dent, i.e. that rank(S) = n - 1 . Constant R has to fulfill R _> max {IsTbk]}.

l < k < n - j + l

2 1). The number of processors of the cb-polytop Q is H (vj - vj +
j = l

A motivat ion of our approach is given in the following theorem.

T h e o r e m 1 (N u m b e r o f p r o c e s s o r s o f a n e n c l o s i n g c b - p o l y t o p) . If N
(N I) is the number of processors of the enclosing cb-polytop of the processor
space resulting after application of the allocation function defined in program 1
(of another arbitrary linear allocation function), then N < N I.

Since we are interested in several allocation functions we replace constraint (4.1)
in program 1 for j = 1 by s T u t r 0, 1 _< l < i, in order to determine the
i-th allocation function, where ut are the projection vectors of the previous
determined allocation functions.

1022

Example 1.
We consider a part of the GSM speech codec system as example. The considered
algorithm consists of two equations.

I. yl[i,k] = y l [i - 1, k]+r[i]y2[i- 1 , k - 1], (i,k) T 6Z ,
II. y 2 [i , k] = y 2 [i - l , k - 1] + r [i] y l [i - l , k] , (i ,k) T E / : ,

/[={(i,k) T I 1 < i < 8 , 1 < k < 1 2 0 } .

The index space with the data dependencies as well as the reduced dependence
graph are depicted in Fig. 1.

120

I I I I I I I I ~ ,
1 2 3 4 5 6 7 8 i

Fig. 1. Index spaces with data dependencies and reduced dependence graph

The dependence vectors are: I -+ I : dl = (1,0) T, II -~ I : d~ = (1, 1) T,
I - + I I : d 3 = (1 , 0) T, I I - + I I : d 4 = (1 , 1) T . The set of vertices W of the index
space Z is IW = {(1, 1), (S, 1), (1,120), (S, 120)].
Application of program 1 leads to the matrices $1 = (1, 0) and S~ = (0, 1), and
hence to the projection vectors Ul = (0, 1) T and u2 = (1, 0) T respectively.

The next section covers the determination of a scheduling function and the
processor functionality with respect to each projection vector ui computed in
program 1.

5 D e t e r m i n a t i o n o f a S c h e d u l i n g F u n c t i o n

5.1 G e n e r a l O p t i m i z a t i o n P r o b l e m

In this section we propose an approach to determine a scheduling function as
well as a module selection and a conflict free assignment of the modules to the
operations of the SURE. Our objective is the minimization of the costs for a
hardware implementation of the processor array subject to the condition that a
given latency Lg is satisfied.
A scheduling function is determined for each linear allocation function resulting
after application of program 1. First, we present a general description of the
optimization problem and go into more detail in the next paragraphs.

1023

P r o g r a m 2 (D e t e r m i n a t i o n o f a s c h e d u l i n g f u n c t i o n)

minimize chip area C of the processor array
subject to latency L of the processor array: L < Lg

causal scheduling function
selection of modules
conflict free access to the modules

5.2 O b j e c t i v e F u n c t i o n

The number of processors Np is given exactly since the allocation function is
fixed at this step. In each processor of the fullsize array we have to implement
nz instances of module ml. The chip area needed to implement the modules of

all processor of the fullsize array is therefore C / = Np ~ ntcz.
/=1

Additional chip area is needed to implement (1) registers to store intermedi-
ate results, (2) combinatorial logic to control the behaviour of the processors
and (3) interconnections between the processors. The costs for the control logic
are assumed to be negligible. The number of registers depends on the number
of processors as well as the number of da ta produced in each processor. We
approximate the chip area Cr needed to implement the registers in silicon by
Cr = Np m cr, where cr is the chip area of one register and m is the number of
equations of the SURE. Since the number of processors is independent of the
scheduling function and the module selection, C~ can be treated as a constant.
An assessment of the effort for the implementat ion of the interconnections is
difficult. Instead of measuring the chip area of interconnections we propose a
minimization of the length or a l imitat ion of the radius of the interconnections
respectively while determining the allocation function.
As a consequence of the above discussion we conclude that it is sufficient to
consider the chip area C] needed to implement the modules as measure for the
hardware costs.
Now, we assume that the admissible latency Lg enables a slow down of the
fullsize array. Hence, we can decrease the hardware costs by part i t ioning the
fullsize array. We apply the LSGP-part i t ioning [4] (tiling) by a factor of K, i.e.
each part i t ion contains K processors of the fullsize array. Each part i t ion repre-
sents a processor of the resulting processor array. We assume tha t the part i t ion-
ing matches exactly the fullsize array and we neglect the additional hardware
needed to control the partitions. Hence, we get the hardware costs of the result-
ing processor array Cp = C / / K . Since the number of processors Np is fixed it is
sufficient to consider the chip area C~ of only one processor of the fullsize array.
Our objective is to minimize C~ = C~/K, where Cp = NvC ~ and C/ = NvC ~.

5.3 Admissible Latency Lg

The latency L/ of the fullsize array is given by L/ = t t rni~, where

t mi~ ~ v T w q- tl ~ t max -- dm(i),i, Vw E W, 1 K i K m,

1 0 2 4

where t'~in,t "~a~ E Z and W is the set of vertices w of the index space Z.
The consideration of only the vertices of Z is justified by the fact tha t linear
functions have their extreme values at extreme points of a convex space [10].
The relaxation to integer values has only small effort for sufficiently large index
spaces Z.
The assumption that Lg > > Lf enables a parti t ioning of the fullsize array by a
factor K, where K L f < Lg. This inequality is a sufficient condition since we can
presume that a partit ioning exists where the latency L of the resulting processor
array satisfies L < K L f . An intuitive justification yields the opposite ease where
the distribution of a sequential program to K processors leads to a speed up less
or equal to K.
Next, we linearize the constraints C} = KCp and K L f < Lg. The minimal
latency Lmi~ of a fullsize array is easy to determine by assumption of unlimited
resources and assignment of the fastest possible module to each operat ion of the
SURE. Using Lmi~ we can limit K by 1 < K < K,~a~ = [Lg/L,~i~J. The lower
bound of K can be increased by consideration of the minimal hardware costs for

Groin one processor ' = m i n { ~ nzcz} satisfying 3ml E A/Ii.nt > 1, 1 < i < m.
l----1

The application of a resource constraint scheduling [13] with the modules leading
to C'mi ~ yields Lma~ and Kmi~ = max{l , [ng/L,~a~]}.
The introduction of Kmaz - Kmin + 1 binary variables 7j E {0, 1} enables an
equivalent formulation of the constraints C} = KC~ and KL] < Lg as follows:

C ~f < j C ~ + (1 - T j) C ~ a x , Kmin < j < h"
jLg > jKmi,~ Lf + 7j (J - K,~i,~)Lg, Kmi,~ < j < K.~a~,

- - (5)

~ j = l ,
j=Kmi~

I~1
where C,~a~' = ~ nma~ct t, and n~ a~ is the maximal number of instances of

l = l
module mt which can be implemented in one processor of the fullsize array.
A reduction of the number of variables ~/i f rom K , ~ - K,,in + 1 to [(K,~a~ -
Kmi~ + 1)/z] , z E Z, is possible by solving the optimization problem iteratively.
In the first iteration only such j , Kmi n <_ j < K , ~ , are considered tha t satisfy
j rood z = a, where a = K,~i~ mod z. The second iteration of the opt imizat ion
problem is solved for j , ~ - z < j < j , ~ z + z, where jrnax is the solution of the
first iteration.

5.4 Causality Constraint

In order to ensure a valid partial order or the equations preserving the da ta
dependencies the scheduling function has to satisfy the causality constraint.

Definition 5 (Causality constraint). A scheduling function ri(i) = rT i + tl
has to satisfy the following constraint:

r T d (e) + t~(e) -- t~(e) _> dm(,7(c)),,7(e), Ve e ~. (6)

1025

5.5 M o d u l e S e l e c t i o n a n d P r e v e n t i o n o f Access Conf l i c t s

The assignment of a module to the operation Fj is described by I.h~jl binary
variables r} e {0,1}, where ~ r} = 1 a n d r k = 1 +~m(j) = m k .

t o t E M 3

The following resource constraint prevents access conflicts to the module.

D e f i n i t i o n 6 (R e s o u r c e c o n s t r a i n t) . For a given projection vector u a uni-
f o rm aJfine scheduling funct ion ri(i) = ~-Ti + ti has to satisfy the fdl lowing
constraint:

(tj mod /~) - (tk mod A) >__ Om(j),k,
;~ -- (tj mod ;~) + (tk mod ~) >_ om(j),j,

(tk mod)~) - (tj mod)~) > Om(j),j,
)~ - (tk mod)~) + (t j mod)~) >_ om(j) ,k ,

for all j r k, l <_ j , k

We refer to [2] for an

if (~ rood ~) > (t~ rood ~),

if (tj rood ~) <_ (tk rood ;~),
(7)

< m, with re(j) = re(k) and uj = uk, where A = I~-Tu[.

explanation and a linearization of (7).

5.6 R e s u l t o f t h e O p t i m i z a t i o n P r o b l e m

The result of the optimization problem in program 2 is a set of modules have to
be implemented in each processor and the number of processors of the fullsize
array building one partit ion and hence one processor of the resulting proces-
sor array. Program 2 is solved for each projection vector computed in program
1. Then we select the projection vector ui leading to minimal hardware costs

c = c~ + c r = N~(~ E ~te~ + met).
i=l

Example 2. (Continuation of example 1)
The admissible latency La is measured in clock cycles and supposed to be
Lg = 1200. The considered set of modules is listed in table 1. We solve the

operation

rnl add/mult
m~ add/muir,

add/mult
mr reg

Table 1. Set of modules

evaluation time di time offset oi chip area ci
in clock cycles in clock cycles normalized

3 3 297

4 4 169

8 8 44

1

optimization problem of program 2 separately for the projection vectors u l and
u2 determined in program 1. In order to justify our approach we present some
interesting solutions in table 2 instead of only the best one given by the solver
of the optimization problem.

1026

Table 2. Results of the optimization problem

projection vector Np C~ = Np m c,.

Ul = (0, 1) "r 8 L6

" 8 16
" 8] 6

u2 = (1,0) 'r 120 240
" 120 240
" 120 240

IMI
module selection K Cp = 9 ~ nlcl

1 x ma 1

1 x m 2 1
2 x m l 3
L x m,a 9

2 x m2 37
1 x m l 25

C = Cr + Cp
i = 1

704 720
1352 1368
1584 1600
586 826
1096 1336
1425 1665

Minimal hardware costs occur by using projection vector u l and implementing
one instance of module m3 in each processor of the resulting processor array.
Finally, we want to give some short notes to the computational effort of our
example. The worst case is program 2 with respect to the projection vector ul .
The program consists of 168 constraints with 51 binary, 14 integer and one ra-
tional variable. The solution takes 11.3 seconds of CPU time on a SUN SPARC
Station 10.

5.7 Se l ec t i on o f P r o j e c t i o n V e c t o r s

An alternative approach to the separate computation of a scheduling function
for each projection vector consists in consideration of the projection vectors ui
as parameters in program 2. We assume that the iteration interval A < Am~x.
A linearization of the constraint A = [TTu[is achievable using four inequalities
and one binary variable v.

A - - 2VAmax < "rTll <)% A E Z ,
A - 2 (1 - v) A m a ~ < - - T T u < _ A , r E { O , 1}. (8)

Suppose, that we have to select one of P projection vectors ui, 1 < i < P. Using
P binary variables ai, 1 < i < P, we replace (8) by:

A - 2vAma~: - 2 (1 - ai)Amaz < r T u i < A + (1 - - O L i) A m a z , l < i < P,
- 2 (1 - - 2 (1 - < <_ + (1 - . { 0 , 1 } ,

P

c q = l , a i C { 0 , 1 } ,
i----.1

I<i<P.

The projection vector ui is selected if ai = 1.
Furthermore, we have to include the hardware costs for the registers. The ob-
jective function is changed to minimize the hardware costs C of the resulting
processor array. New constraints have to be introduced to take the different num-
ber of processors N~ of the fullsize arrays with respect to the projection vectors
ui into account:

i I
- - ~i)N~(Cmax + mc~), 1 < i < P. C >_ + '

1027

We do not recommend this approach since the condition of the integer linear
program deteriorates strongly.

6 C o n c l u s i o n

The presented approach is suitable to derive cost minimal processor arrays for
algorithms with the requirement of an admissible latency. The arising optimiza-
tion problems are given in a linearized form which permits the use of standard
packages to solve the problems.
Possible extensions to our approach are the inclusion of the power consumption
and the inclusion of a rough approximation of the effort needed to implement
the interconnections.

R e f e r e n c e s

1. A. Darte, Y. Robert: "Constructive Methods for Scheduling Uniform Loop Nests",
IEEE Trans. on Parallel and Distributed Systems, Vol. 5, No. 8, pp. 814-822, 1994

2. D. Fimmel, R. Merker: "Determination of the Processor Functionality in the Design
of Processor Arrays", Proc. Int. Conf. on Application-Specific Systems, Architec-
tures and Processors, pp. 199-208, Zfirich, 1997

3. D. Fimmel, R. Merker: "Determination of an Optimal Processor Allocation in the
Design of Massively Parallel Processor Arrays", Proc. Int. Conf. on Algorithms
and Parallel Processing, pp. 309-322, Melbourne, 1997

4. K. Jainandunsing: "Optimal Partitioning Scheme for Wavefront/Systolic Array
Processors", IEEE Proc. Syrup. on Circuits and Systems, 1986

5. R.M. Karp, R.E. Miller, S. Winograd: "The organization of computations for uni-
form recurrence equations", J. of the ACM, vol.14, pp. 563-590, 1967

6. D.I. Moldovan: "On the Design of Algorithms for VLSI Systolic Arrays", Proceed-
ings of the IEEE, pp. 113-I20, January 1983

7. P. Quinton: "Automatic Synthesis of Systolic Arrays from Uniform Recurrent
Equations", IEEE 11-th Int. Symp. on Computer Architecture, Ann Arbor, pp.
208-214, 1984

8. S.K. Rao: "Regular lterative Algorithms and their Implementations on Processor
Arrays", PhD thesis, Stanford University, 1985

9. J. Rossel, F. Catthoor, H. De Man: "Extension to Linear Mapping for Regular Ar-
rays with Complex Processing Elements", Proc. Int. Con]. on Application-Specific
Systems, Architectures and Processors, pp. 156-167, Princeton, 1990

10. A. Schrijver: Theory of Linear and Integer Programming, John Wiley s Sons, New
York, 1986

11. A. Schubert, R. Merker: "Systolization of Recursive Algorithms with DESA", in
Proc. 5th Int. Workshop Parcella '90, Mathematical Research, G. Wolf, T. Legendi,
U. Schendel (eds.), vol. 2, Akademie-Verlag Berlin, 1990, pp. 267-276, 1994

12. J. Teich: "A Compiler for Application-Specific Processor Arrays", PhD thesis,
Univ. of Saarland, Verlag Shaker, Aachen, 1993

13. L. Thiele: "Resource Constraint Scheduling of Uniform Algorithms", Int. Journal
on VLSI and Signal Processing, Vol. 10, pp. 295-310, 1995

14. Y. Wong, J.M. Delosme: "Optimal Systolic Implementation of n-dimensional Re-
currences", Proc. ICCD, pp. 618-621, 1985

1028

15. Y. Wong, J.M. Delosme: "Optimization of Processor Count for Systolic Arrays",
Research Report YALEU/DCS/RR-697, Yale Univ., 1989

16. X. Zhong, S. Rajopadhye, I. Wong: "Systematic Generation of Linear Allocation
Functions in Systolic Array Design", J. of VLSI Signal Processing, Vol. 4, pp.
279-293, 1992

