
Predictable Communica t ion on Unpredic table
Networks: Implement ing BSP over T C P / I P

Stephen R. Donaldson 1, Jonathan M.D. HilP, and David B. Skillicorn 2

1 Oxford University Computing Laboratory, UK.
2 CISC, Queen's University, Canada

Abs t rac t . The BSP cost model measures the cost of communication
using a single architectural parameter, g, which measures permeability
of the network to continuous traffic. Architectures, typically networks of
workstations, pose particular problems for high-performance communi-
cation because it is hard to achieve high throughput, and even harder
to do so predictably. Yet both of these are required for BSP to be ef-
fective. We present a technique for controlling applied communication
load that achieves both. Traffic is presented to the communication net-
work at a rate chosen to maximise throughput and minimise its variance.
Performance improvements as large as a factor of two over MPI can be
achieved.

1 I n t r o d u c t i o n

The BSP (Bulk Synchronous Parallel) model [10, 8] views a parallel machine
as a set of processor-memory pairs, with a global communication network and
a mechanism for synchronising all processors. A BSP calculation consists of a
sequence of supersteps. Each superstep involves all of the processors and consists
of three phases: (1) processor-memory pairs perform a number of computat ions
on data held locally at the start of a superstep; (2) processors communicate data
into other processor's memories; and (3) all processors synchronise.

The BSP cost model treats communication as an aggregate operation of the
entire executing architecture, and models the cost of delivery using a single ar-
chitectural parameter, the permeability, 9. This parameter can be intuitively
understood as defining the time taken for a processor to communicate a single
word to a remote processor, in the steady state where all processors are simulta-
neously communicating. The value of the g parameter will depend upon: (1) the
bisection bandwidth of the communication network topology; (2) the protocols
used to interface with and within the communication network; (3) buffer man-
agement by both the processors and the communication network; and (4) the
routing strategy used in the communication network.

However, the BSP runtime system also makes an important contribution to
the performance by acting to improve the effective value of g by the way it
uses the architectural facilities. For example, [6] shows how orders of magnitude

971

improvements in g can be obtained, for architectures using point-to-point con-
nections, by packing messages before transmission, and by altering the order of
transmission to avoid contention at receivers.

In this paper, we address the problem raised by shared-media networks and
protocols such as TCP/ IP , where there is far greater potential to waste band-
width. For example, if two processors t ry to send more or less simultaneously,
collision in the ether means that neither succeeds, and transmission capacity is
permanently lost. The problem is compounded because it is hard for each pro-
cessor to learn anything of the global state of the network. Nevertheless, as we
shall show, significant performance improvements are possible.

We describe techniques, specific to our implementation of BSPIib [5], that
ensure that the variation in g is minimised for programs running over bus-based
gthernet networks. Compared to alternative communications libraries such as
Argonne's implementation of MPI [2], these techniques have an absolute perfor-
mance improvement over MPI in terms of the mean communication throughput ,
but also have a considerably smaller standard deviation. Good performance over
such networks is of practical importance because networks of workstations are
increasingly used as practical parallel computers.

2 Minimising g in Bus-Based Ethernet Networks

Ethernet (IEEE 802.3) is a bus-based protocol in which the media access proto-
col, 1-persistent CSMA/CD (Carrier Sense Multiple Access with Collision De-
tection) proceeds as follows. A station wishing to send a frame listens to the
medium for transmission activity by another station. If no activity is sensed, the
station begins transmission and continues to listen on the channel for a collision.
After twice the propagation delay, 2v, of the medium, no collision can occur,
as ~11 stations sensing the medium would detect that it is in use and will not
send data. However, a collision may occur during the 2v window. On detection,
the transmitt ing station broadcasts a jamming signal onto the network to en-
sure that all stations are notified of the collision. The station recovers from a
collision by using a binary exponential back-off algorithm that re-at tempts the
transmission after t x 2r, where t is a random variable chosen uniformly from the
interval [0, 2 k] (where k is the number of collisions this a t tempted transmission
has experienced). For Ethernet, the protocol allows k to reach ten, and then
allows another six at tempts at k = 10 (see, for example, King [7]).

Analysis of this protocol (Tasaka [9]) shows that S --~ 0 as G --+ ec (where S
is the rate of successful transmissions and G the rate at which messages are pre-
sented for delivery), whereas for a p-processor BSP computer one would expect
that S --+ B as G --+ oe, from which one could conclude that g = p/B; where B
is a measure of the bandwidth.

In the case of BSP computation over Ethernet, the effect of the exponen-
tial backoff is exaggerated (larger delays for the same amount of traffic) be-
cause the access to the medium is often synchronised by the previous barrier
synchronisation and the subsequent computat ion phase. For perfectly-balanced

972

BSPIib

T
Transpor t Layer

(TCP)

G - S

Analytic Model

IS

Cable

Fig. 1. Schematic of aggregated protocol layers and associated applied loads

computations and barrier synchronisations, all processors a t tempt to get their
first message onto the Ethernet at the same time. All fail and back off. In the
first phase of the exponential back-off algorithm, each of p processors choose a
uniformly-distributed wait period in the interval [0, 4r]. Thus the expected num-
ber of processors at tempting the retransmits in the interval [0, 2r] is p/2, making
secondary collisions very likely. If the processors are not perfectly balanced, and
a processor gains access to the medium after a short contention period, then
that process will hold the medium for the transmission of the packet, which will
take just over 1000#s for 10Mbps Ethernet. With high probability, many of the
other processors will be synchronised by this successful transmission due to the
l-persistence of this protocol. The remaining processors will then contend as in
the perfectly-balanced scenario.

In terms of the performance model, this corresponds to a high applied load,
G, albeit for a short interval of time. If S were (at least) linear in G then this
burstiness of the applied load would not be detrimental to the throughput and
would average out.

0B

O7

o~
i

O.3

0.2

20 40 G, ~ o a ~ad eO 80 100

Fig. 2. Plot of applied load (G) against
successful transmissions (S)

062

i 0 S6

OH

0 S2

O.S

048

/

14

Fig. 3. Contention expectation for a par-
ticular slot as a function of p

973

Fortunately, the BSP model allows assumptions to be made at the global level
based on local data presented for transmission. At the end of a superstep and
before any user data is communicated, BSPIib performs a reduction, in which all
processors determine the amount of communication that each processor intends
sending. From this, the number of processors involved in the communication is
determined. For the rest of the communication the number of processors involved
and the amount of data is used to regulate (at the transport level) the rate at
which data is presented for transmission on the Ethernet. By using BSD Socket
options (TCPANDELAY), the data presented at the transport layer are delivered
immediately to the MAC layer (ignoring the depth of the protocol stack and
the availability of a suitable window size). Thus, by pacing the transport layer,
pacing can be achieved at the MAC or link layer. This has the effect of removing
burstiness from the applied load.

Most performance analyses give a model of random-access broadcast net-
works which provide an analytic, often approximate, result for the successful
traffic, S, in terms of the offered load, G. Hammond and O'Reilly [3] present
a model for slotted 1-persistent CSMA/CD in which the successful traffic, S,
(or efficiency achieved) can be determined in terms of the offered load G, the
end-to-end propagation delay, r (bounded by 25.65ps, i.e., the t ime taken for a
signal to propagate 2500m of cable and 4 repeaters), and E, the frame transmit
t ime (which for 10Mbps Ethernet with a maximum frame size of 1500 bytes is
approximately 1200#s). Figure 2 shows the predicted rate of successful traffic
against applied load, assuming that that jamming time is equal to r.

Since both S, the rate of successful transmissions, and G are normalised with
respect to E, S is also the channel efficiency achieved on the cable. T, shown
in Figure 1, also normalised with respect to E, is the load applied by BSPIib
on the transport layer. Our objective is to pace the injection of messages into
the transport layer such that T, on average, is equal to a steady-state value of
S without much variance. The value of T determines the position on the S-G
curve of Figure 2 in a steady state; in particular, T can be chosen to maximise
S. If the applied load is to the right of the maximum throughput in Figure 2,
then small increases in the mean load lead to a decrease in channel efficiency
which in turn increases the backlog in terms of retries and further increases the
load. Working to the right of the maximum therefore exposes the system to
these instabilities which manifest themselves in variances in the communication
bandwid th - -a metric we try to minimise [4, 1]. In contrast, when working to the
left of the maximum, small increases in the applied load are accompanied by
increases in the channel efficiency which helps cope with the increased load and
therefore instabilities are unlikely. As an aside, the Ethernet exponential backoff
handles the instabilities towards the right by rescheduling failed transmissions
further and further into the future, which decreases the applied load.

In BSPIib, the mechanism of pacing the transport layer is achieved by using
a form of statistical time-division multiplexing that works as follows. The frame
size and the number of processors involved in the communication are known. As
the processors' clocks are not necessarily synchronised, it is not possible to allow

974

the processors access in accordance with some permutat ion, a technique applied
successfully in more tightly-coupled architectures [6]. Thus the processors choose
a slot, q, uniformly at random in the interval [0 . . . Q - 1] (where Q is the number
of processors communicat ing at the end of a particular superstep), and schedule
their transmission for this slot. The choice of a random slot is impor tan t if the
clocks are not synchronised as it ensures tha t the processors do not repeatedly
choose a bad communicat ion schedule. Each processor waits for t ime qe after the
start of the cycle, where e is a slot time, before passing another packet to the
t ransport layer. The length of the slot, ~, is chosen based on the m a x i m u m t ime
that the slot can occupy the physical medium, and takes into account collisions
tha t might occur when good throughput is being achieved. The mechanism is
designed to allow the medium to operate at the steady state that achieves a high
throughput . Since the burstiness of communicat ion has been smoothed by this
slotting protocol, the erratic behaviour of the low-level protocol is avoided, and
a high utilisation of the medium is ensured.

An alternative protocol, not considered here, would be to implement a de-
terministic token bus protocol in which each station can only send da ta whilst
holding a "token". This scheme was not considered viable as it is inefficient for
small amounts of traffic due to the need for the explicit token pass when the to-
ken holding processor has no message for the "next to-go" processor. In the worst
case this would double the communicat ion time. Also, token mechanisms protect
shared resources such as a single Ethernet bus, however a network may be par-
tioned into several independent segments, or processors may be connected via a
switch. In this case, the token bus protocol would ensure only a single processor
has access to the medium at any time, therefore wasting bandwidth. In contrast,
the parameters used in the slotting mechanism can be trivially adjusted to take
advantage of a switch based medium. For example, for a full-duplex cross-bar
switch, Q can be assumed to be 1 (Q = 2 for half-duplex), and e encapsulates
the rate at which the switch and protocol stacks of sender and receiver can
absorb messages in a steady state. If the back-plane capacity of the switch is
less than the capacity of the sum of the links, then Q and e can be adjusted
accordingly. Therefore, the randomised slotting mechanism is superior to a de-
terministic token bus scheme, as Q and e can be used to model a large variety
of LAN interconnects.

3 D e t e r m i n i n g t h e V a l u e o f e

In any steady state, T = S because, if this were not the case, then either un-
bounded capacity for the protocol stacks would be required, or the stacks would
dispense packets faster than they arrive, and hence contradict the s teady-sta te
assumption. Since s is the slot t ime, packets are delivered with a mean rate of
1/~ packets per ps. Normalising this with respect to the f rame size E gives a
value for T = E / 6 packets per unit frame-time. We therefore choose an S value
from the curve and infer a value of the slot size e = E / S as S = T in a s teady
state. Choosing a value of S = 80% and E = 1200#s gives a slot size of 1500#s.

975

Fig. 4. Delivery time as a function of slot time for a cyclic shift of 25,000 words per
processor, p = 2, 4, 6, 8, data for mpich shown at 1500 although slots are not used

In practice, while the m a x i m u m possible value for r is known, the end-to-end
propagat ion delay of the particular network segment is not, and this influences
the slot size via the contention interval modelled in Figure 2. The analytic model
assumes a Poisson arrival process, whereas for a finite number of stations, the
arrival process is defined by independent Bernoulli trials (the limiting case of this
process, as the number of processors increases, is Poisson, and approximates the
finite case after the number of processors reaches about 20 [3]). More complicated
topologies could also be considered where more than one segment is used.

The slot size e can be determined empirically by running trials in which the slot
size is varied and its effect on throughput measured. The experiments involved
a 10Mbps Ethernet networked collection of workstations. Each workstat ion is a
266MHz Pent ium Pro processor with 64MB of memory running Solaris 2. The
experiments were carried out using the T C P / I P implementa t ion of BSPlib. The
machines and network were dedicated to the experiment, al though the Ethernet
segment was occasionally used for other traffic as it was a subset of a teaching
facility. Figure 4(a) to Figure 4(d) plot the t ime it takes to realise a cyclic-shift
communicat ion pat tern (each processor bsp_hpputs a 25,000 word message into
the memory of the processor to its right) for various slot sizes (e E [0, 2000]) and
for 2, 4, 6 and 8 processors. The figures show the delivery t ime as a function

976

70 , ,

MPIch s l ~ d ~ d d e v l a f l o n . . -

6 ~

S O

4 0

.

3 0

2 0

1 0

(a) p = 4, mean per slot-size

(c) p = 8, mean per slot-size (d) p

o l

(b) p ---- 4, standard deviation per slot-size
l e o

~ s o

1 4 o

1 2 o

i o o

.

. ~ l o , l] ~ U$~ 2

= 8, s t a n d a r d d e v i a t i o n p e r s l o t - s i ze

Fig. 5. Mean and standard deviation of delivery times of data from Figures 4(a,b)

of slot size, oversampled 10 times. The horizontal line towards the bo t t om of
each graph gives the min imum possible delivery t ime based on bits t ransmi t ted
divided by theoretical bandwidth.

Results for an MPI implementat ion of the same algori thm running on top of
the Argonne implementat ion of MPI (mpich) [2] are also shown on these graphs.
In this case, the da ta is presented at a slot size of 1500 ps (even though mpich
does not slot), so only one (oversampled) measurement is shown. The dot ted
horizontal line in the centre of these figures is the mean delivery t ime of the
MPI implementat ion.

The BSP slot t ime should be chosen to minimise the mean delivery time.
Choosing a small slot t ime gives some good delivery times, but the scatter is
large. In practice, a good choice is the smallest slot t ime for which the scatter is
small. For p = 2 this is 1200 #s, for p = 4 it is 1450 ~s, for p = 6 it is 1650 #s,
and for p = 8 it is 1700 ps. Notice that these points do not necessarily provide
the min imum delivery times, but they provide the best combinat ion of small
delivery t imes and small variance in these times.

Figure 4(b) shows a particularly interesting case at e = 1500, as bo th the
mean transfer rate and standard deviation of the BSPIib benchmark is much
smaller than those of the corresponding mpich program. This slot-size can be
clearly seen in Figure 5(c) and Figure 5(d) where the scatter caused by the

9 7 7

Fig. 6. Delivery time as a function of slot time for a cyclic shift of 8,300 words per
processor, p = 4, 8, data for mpich shown at 1500 although slots are not used

oversampling at each slot size in Figure 4(b) has been removed by only displaying
the mean and standard deviation of the oversampling. In contrast, the mean
and largest outlier of the mpich program in Figure 4(d) is clearly lower than
the corresponding BSPIib program when a slot size of 1500 is used. For larger
configurations, the slot size that gives the best behaviour increases and the mean
value of g for BSPlib quickly becomes worse than that for mpich.

An increase in the best choice of slot size from Figure 4(a) to Figure 4(d)
should be expected as the probabili ty P(n) of n processors choosing a particu-
lar slot is binomially distributed. Thus as p increases, so does the expectat ion
E{X >_ 2} of the amount of contention for the slot, where

P(n)= (P)(1/p)'~(1-1/p) p-n and

p

E{X > 2} = ~ i P (i)
i : 2

Figure 3 shows that for p ~ 20 and greater, the dependence on p is minimal , and
therefore the increase in slot size reaches a fixed point. Below twenty processors
the dependence varies by at most 26%. The limit as p --+ eo gives E{X >_ 2}
1 - 1/e ~ 0.63, as shown in the figure. The same is true of the probabil i ty of
contention, but the range is very small, f rom 0.25 at p = 2, and as p -+ ~ ,

> 2} 1 - 2 / c 0.26.
In the mpich implementat ion [2] of MPI, large communicat ions are presented

to the socket layer in a single unit. However, in the BSPIib implementa t ion all
communicat ions are split into packets containing at most 1418 bytes, so tha t
we can pace the submission of packets using slotting. For this benchmark, each
BSPlib process sends 71 small packets in contrast to rapich's single large message.
Therefore, when p is small we would expect BSPIib to perform worse than mpich
due to the extra passes through the protocol stack, and for larger values of p we
would expect tha t the benefits of slotting out-weigh the extra passes through
the protocol stack. Figures 4(a) to 4(d) show an opposite trend.

As can be seen from the Figures 4(b)-(d) , as p increases, there is a noticeable
"hump" in the da ta as the slot size increases. This phenomenon is not explained

978

4cO

3 ~

~.0 I
340

3 2 0

~ e

2NI

2C~0

2 4 0

220

200

. %,o, ,~.,A,
(a) p = 8, mean per slot-size

2~

24

22

20

~B

IS

14

12

10

e

S

(b) p = 8, standard deviation per slot-size

Fig. 7. Mean and standard deviation of delivery times of data from Figure 6(b)

by the discussion above. The problem arises because we are modelling the com-
municat ion as though it were directly accessing the Ethernet, without taking into
account the T C P / I P stack. What we are observing is the T C P acknowledgement
packets, which interfere with data traffic as they are not controlled by our slot-
ting mechanism. The effect of this is to increase the op t imum slot size to a value
that ensures that there is enough extra bandwidth on the medium such tha t
the extra acknowledgement packets do not negatively impact the transmission
of da ta packets.

Implementa t ions of T C P use a delayed acknowledgement scheme where mul-
tiple packets can be acknowledged by a single acknowledgement transmission.
To minimise delays, a 200ms t imeout t imer is set when T C P receives da ta [11].
If during this 200ms period data is sent in the reverse direction then the pending
acknowledgement is piggy-backed onto this da ta packet, acknowledging all da ta
received since the t imer was set. If the t imer expires, the da ta received up to
tha t point is acknowledged in a packet without a payload (a 512 bit packet).

In the benchmark program that determines the opt imal slot size, a cyclic shift
communicat ion pat tern is used. When p > 2 there is no reverse traffic during the
da ta exchange upon which to piggy-back acknowledgements. If the entire com-
municat ion takes less than 200ms then only p acknowledgement packets will be
generated for each superstep; as the total t ime exceeds 200ms, considerably more
acknowledgement packets are generated. In Figure 4(a) the communicat ion takes
approximate ly 200ms and a minimal number of acknowledgements are generated
as can be seen by the lack of a hump. In Figures 4(b)-(d) , the size of the humps
increases in line with the increased number of acknowledgements. The mpizh
program does not suffer as severely from this artifact as BSPlib. When slotting
is not used (for example in mpich) there is potential for a rapid injection of pack-
ets onto the network by a single processor for a single destination, which means
that it is likely that more packets arrive at their destination before the delayed
acknowledgement t imer expires. This reduces the number of acknowledgement
packets. When slotting is used, packets are paced onto the network with a mean
inter-packet t ime between the same source-destination pair of pc. This drasti-

979

cally decreases the possibility of accumulated delayed acknowledgements. For
example, in Figure 4(c), as the total t ime for communicat ion is approximate ly
800ms, and as the slot size steadily increases, the number of acknowledgements
increases. This in turn steadily increases the s tandard deviation and mean of the
communicat ion time. From the figure it can be seen that this suddenly drops off
when the slot size becomes large as the probabil i ty of collision decreases due to
the under-utilisation of the network.

The global nature of BSP communicat ion means that da ta acknowledgement
and error recovery can be provided at the superstep level as opposed to the packet
by packet basis of T C P / I P . By moving to UDP/ IP , we can implement acknowl-
edgements and error recovery within the framework of slotting. This lower-level
communicat ion scheme is under development, al though the hypothesis tha t it
is the acknowledgements limiting the scalability of slotting can be tested by
performing a benchmark on a dataset size that requires a total communicat ion
t ime that is less than 200ms. Figures 6(a)-(d) shows the slotting benchmark
for an 8333-relation where there are no obvious humps. In all configurations the
mean and standard deviations of the BSPIib results are considerably smaller
than mpich. Also, as can be seen from Figure 7 the opt imal slot size at p = 8 is
approximate ly 1200#s.

4 C o n c l u s i o n s

We have addressed the ability of the BSP runtime system to improve the perfor-
mance of shared-media systems using T C P / I P . Using BSP's global perspective
on communicat ion allows each processor to pace its transmission to maximise
throughput of the system as a whole. We show a significant improvement over
MPI on the same problem.

The approach provides high throughput, but also stable throughput because
the s tandard deviation of delivery times is small. This maintains the accuracy
of the cost model, and ensures the scalability of systems.

A c k n o w l e d g e m e n t s

The work of Jonathan Hill was supported in part by the EPSRC Portable Software
Tools for Parallel Architectures Initiative, as Research Grant GR/K40765 "A BSP Pro-
gramming Environment", October 1995-September 1998. David Skillicorn is supported
in part by the Natural Science and Engineering Research Council of Canada.

References

1. S. R. Donaldson, J. M. D. Hill, and D. B. Skillicorn. Communication performance
optimisation requires minimising variance. In High Perfomance Computing and
Networking (HPCN'98), Amsterdam, April 1998.

2. W. Gropp and E. Lusk. A high-performance MPI implementation on a shared-
memory vector supercomputer. Parallel Computing, 22(11):1513-1526, Jan. 1997.

980

3. J. L. Hammond and P. J. P. O'Reilly. Performance Analysis of Local Computer
Networks. Addison Wesley, 1987.

4. J. M. D. Hill, S. Donaldson, and D. B. Skillicorn. Stability of communication
performance in practice: from the Cray T3E to networks of workstations. Technical
Report PRG-TR-33-97, Oxford University Computing Laboratory, October 1997.

5. J. M. D. Hill, B. McColl, D. C. Stefanescu, M. W. Goudreau, K. Lang, S. B. Rao,
T. Suel, T. Tsantilas, and R. Bisseling. BSPlib: The BSP Programming Library.
Parallel Computing, to appear 1998. see www. bsp-wor ldwide , org for more details.

6. J. M. D. Hill and D. B. Skillicorn. Lessons learned from implementing BSP. Journal
of Future Generation Computer Systems, 13(4-5):327-335, April 1998.

7. P. J. B. King. Computer and Communication Systems Performance Modelling.
International series in Computer Science. Prentice Hall, 1990.

8. D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and answers about
BSP. Scientific Programming, 6(3):249-274, Fall 1997.

9. S. Tasaka. Performance Analysis of Multiple Access Protocols. Computer Systems
Series. MIT Press, 1986.

10. L. G. Valiant. A bridging model for parallel computation. Communications of the
ACM, 33(8):103-111, August 1990.

11. G. R. Wright and W. R. Stephens. TCP/IP Illustrated, Volume 2. Addison-Wesley,
1995.

