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Abs t rac t .  The BSP cost model measures the cost of communication 
using a single architectural parameter, g, which measures permeability 
of the network to continuous traffic. Architectures, typically networks of 
workstations, pose particular problems for high-performance communi- 
cation because it is hard to achieve high throughput, and even harder 
to do so predictably. Yet both of these are required for BSP to be ef- 
fective. We present a technique for controlling applied communication 
load that achieves both. Traffic is presented to the communication net- 
work at a rate chosen to maximise throughput and minimise its variance. 
Performance improvements as large as a factor of two over MPI can be 
achieved. 

1 I n t r o d u c t i o n  

The BSP (Bulk Synchronous Parallel) model [10, 8] views a parallel machine 
as a set of processor-memory pairs, with a global communication network and 
a mechanism for synchronising all processors. A BSP calculation consists of a 
sequence of supersteps. Each superstep involves all of the processors and consists 
of three phases: (1) processor-memory pairs perform a number of computat ions 
on data held locally at the start of a superstep; (2) processors communicate data  
into other processor's memories; and (3) all processors synchronise. 

The BSP cost model treats communication as an aggregate operation of the 
entire executing architecture, and models the cost of delivery using a single ar- 
chitectural parameter, the permeability, 9. This parameter can be intuitively 
understood as defining the time taken for a processor to communicate a single 
word to a remote processor, in the steady state where all processors are simulta- 
neously communicating. The value of the g parameter will depend upon: (1) the 
bisection bandwidth of the communication network topology; (2) the protocols 
used to interface with and within the communication network; (3) buffer man- 
agement by both the processors and the communication network; and (4) the 
routing strategy used in the communication network. 

However, the BSP runtime system also makes an important  contribution to 
the performance by acting to improve the effective value of g by the way it 
uses the architectural facilities. For example, [6] shows how orders of magnitude 
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improvements in g can be obtained, for architectures using point-to-point con- 
nections, by packing messages before transmission, and by altering the order of 
transmission to avoid contention at receivers. 

In this paper, we address the problem raised by shared-media networks and 
protocols such as TCP/ IP ,  where there is far greater potential to waste band- 
width. For example, if two processors t ry  to send more or less simultaneously, 
collision in the ether means that neither succeeds, and transmission capacity is 
permanently lost. The problem is compounded because it is hard for each pro- 
cessor to learn anything of the global state of the network. Nevertheless, as we 
shall show, significant performance improvements are possible. 

We describe techniques, specific to our implementation of BSPIib [5], that  
ensure that  the variation in g is minimised for programs running over bus-based 
gthernet  networks. Compared to alternative communications libraries such as 
Argonne's implementation of MPI [2], these techniques have an absolute perfor- 
mance improvement over MPI in terms of the mean communication throughput ,  
but  also have a considerably smaller standard deviation. Good performance over 
such networks is of practical importance because networks of workstations are 
increasingly used as practical parallel computers. 

2 Minimising g in Bus-Based Ethernet Networks 

Ethernet (IEEE 802.3) is a bus-based protocol in which the media access proto- 
col, 1-persistent CSMA/CD (Carrier Sense Multiple Access with Collision De- 
tection) proceeds as follows. A station wishing to send a frame listens to the 
medium for transmission activity by another station. If no activity is sensed, the 
station begins transmission and continues to listen on the channel for a collision. 
After twice the propagation delay, 2v, of the medium, no collision can occur, 
as ~11 stations sensing the medium would detect that  it is in use and will not 
send data. However, a collision may occur during the 2v window. On detection, 
the transmitt ing station broadcasts a jamming signal onto the network to en- 
sure that  all stations are notified of the collision. The station recovers from a 
collision by using a binary exponential back-off algorithm that re-at tempts the 
transmission after t x 2r, where t is a random variable chosen uniformly from the 
interval [0, 2 k] (where k is the number of collisions this a t tempted transmission 
has experienced). For Ethernet, the protocol allows k to reach ten, and then 
allows another six at tempts at k = 10 (see, for example, King [7]). 

Analysis of this protocol (Tasaka [9]) shows that  S --~ 0 as G --+ ec (where S 
is the rate of successful transmissions and G the rate at which messages are pre- 
sented for delivery), whereas for a p-processor BSP computer one would expect 
that  S --+ B as G --+ oe, from which one could conclude that  g = p/B; where B 
is a measure of the bandwidth. 

In the case of BSP computation over Ethernet,  the effect of the exponen- 
tial backoff is exaggerated (larger delays for the same amount  of traffic) be- 
cause the access to the medium is often synchronised by the previous barrier 
synchronisation and the subsequent computat ion phase. For perfectly-balanced 
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Fig. 1. Schematic of aggregated protocol layers and associated applied loads 

computations and barrier synchronisations, all processors a t tempt  to get their 
first message onto the Ethernet at the same time. All fail and back off. In the 
first phase of the exponential back-off algorithm, each of p processors choose a 
uniformly-distributed wait period in the interval [0, 4r]. Thus the expected num- 
ber of processors at tempting the retransmits in the interval [0, 2r] is p/2, making 
secondary collisions very likely. If the processors are not perfectly balanced, and 
a processor gains access to the medium after a short contention period, then 
that  process will hold the medium for the transmission of the packet, which will 
take just over 1000#s for 10Mbps Ethernet. With high probability, many of the 
other processors will be synchronised by this successful transmission due to the 
l-persistence of this protocol. The remaining processors will then contend as in 
the perfectly-balanced scenario. 

In terms of the performance model, this corresponds to a high applied load, 
G, albeit for a short interval of time. If S were (at least) linear in G then this 
burstiness of the applied load would not be detrimental to the throughput  and 
would average out. 
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Fortunately, the BSP model allows assumptions to be made at the global level 
based on local data  presented for transmission. At the end of a superstep and 
before any user data  is communicated, BSPIib performs a reduction, in which all 
processors determine the amount of communication that  each processor intends 
sending. From this, the number of processors involved in the communication is 
determined. For the rest of the communication the number of processors involved 
and the amount  of data  is used to regulate (at the transport  level) the rate at 
which data  is presented for transmission on the Ethernet. By using BSD Socket 
options (TCPANDELAY), the data presented at the transport  layer are delivered 
immediately to the MAC layer (ignoring the depth of the protocol stack and 
the availability of a suitable window size). Thus, by pacing the transport  layer, 
pacing can be achieved at the MAC or link layer. This has the effect of removing 
burstiness from the applied load. 

Most performance analyses give a model of random-access broadcast net- 
works which provide an analytic, often approximate, result for the successful 
traffic, S, in terms of the offered load, G. Hammond and O'Reilly [3] present 
a model for slotted 1-persistent CSMA/CD in which the successful traffic, S, 
(or efficiency achieved) can be determined in terms of the offered load G, the 
end-to-end propagation delay, r (bounded by 25.65ps, i.e., the t ime taken for a 
signal to propagate 2500m of cable and 4 repeaters), and E, the frame transmit  
t ime (which for 10Mbps Ethernet with a maximum frame size of 1500 bytes is 
approximately 1200#s). Figure 2 shows the predicted rate of successful traffic 
against applied load, assuming that that  jamming time is equal to r.  

Since both S, the rate of successful transmissions, and G are normalised with 
respect to E,  S is also the channel efficiency achieved on the cable. T, shown 
in Figure 1, also normalised with respect to E, is the load applied by BSPIib 
on the transport  layer. Our objective is to pace the injection of messages into 
the transport  layer such that  T, on average, is equal to a steady-state value of 
S without much variance. The value of T determines the position on the S-G 
curve of Figure 2 in a steady state; in particular, T can be chosen to maximise 
S. If the applied load is to the right of the maximum throughput  in Figure 2, 
then small increases in the mean load lead to a decrease in channel efficiency 
which in turn increases the backlog in terms of retries and further increases the 
load. Working to the right of the maximum therefore exposes the system to 
these instabilities which manifest themselves in variances in the communication 
bandwid th - -a  metric we try to minimise [4, 1]. In contrast, when working to the 
left of the maximum, small increases in the applied load are accompanied by 
increases in the channel efficiency which helps cope with the increased load and 
therefore instabilities are unlikely. As an aside, the Ethernet exponential backoff 
handles the instabilities towards the right by rescheduling failed transmissions 
further and further into the future, which decreases the applied load. 

In BSPIib, the mechanism of pacing the transport  layer is achieved by using 
a form of statistical time-division multiplexing that  works as follows. The frame 
size and the number of processors involved in the communication are known. As 
the processors' clocks are not necessarily synchronised, it is not possible to allow 



974 

the processors access in accordance with some permutat ion,  a technique applied 
successfully in more tightly-coupled architectures [6]. Thus the processors choose 
a slot, q, uniformly at random in the interval [0 . . .  Q - 1] (where Q is the number  
of processors communicat ing at the end of a particular superstep),  and schedule 
their transmission for this slot. The choice of a random slot is impor tan t  if the 
clocks are not synchronised as it ensures tha t  the processors do not repeatedly 
choose a bad communicat ion schedule. Each processor waits for t ime qe after the 
start  of the cycle, where e is a slot time, before passing another packet to the 
t ransport  layer. The length of the slot, ~, is chosen based on the m a x i m u m  t ime 
that  the slot can occupy the physical medium,  and takes into account collisions 
tha t  might occur when good throughput  is being achieved. The mechanism is 
designed to allow the medium to operate at the steady state that  achieves a high 
throughput .  Since the burstiness of communicat ion has been smoothed by this 
slotting protocol, the erratic behaviour of the low-level protocol is avoided, and 
a high utilisation of the medium is ensured. 

An alternative protocol, not considered here, would be to implement  a de- 
terministic token bus protocol in which each station can only send da ta  whilst 
holding a "token". This scheme was not considered viable as it is inefficient for 
small amounts  of traffic due to the need for the explicit token pass when the to- 
ken holding processor has no message for the "next to-go" processor. In the worst 
case this would double the communicat ion time. Also, token mechanisms protect  
shared resources such as a single Ethernet bus, however a network may  be par- 
tioned into several independent segments, or processors may  be connected via a 
switch. In this case, the token bus protocol would ensure only a single processor 
has access to the medium at any time, therefore wasting bandwidth.  In contrast,  
the parameters  used in the slotting mechanism can be trivially adjusted to take 
advantage of a switch based medium. For example, for a full-duplex cross-bar 
switch, Q can be assumed to be 1 (Q = 2 for half-duplex), and e encapsulates 
the rate at which the switch and protocol stacks of sender and receiver can 
absorb messages in a steady state. If  the back-plane capacity of the switch is 
less than the capacity of the sum of the links, then Q and e can be adjusted 
accordingly. Therefore, the randomised slotting mechanism is superior to a de- 
terministic token bus scheme, as Q and e can be used to model a large variety 
of LAN interconnects. 

3 D e t e r m i n i n g  t h e  V a l u e  o f  e 

In any steady state, T = S because, if this were not the case, then either un- 
bounded capacity for the protocol stacks would be required, or the stacks would 
dispense packets faster than they arrive, and hence contradict  the s teady-sta te  
assumption. Since s is the slot t ime, packets are delivered with a mean rate of 
1/~ packets per ps.  Normalising this with respect to the f rame size E gives a 
value for T = E / 6  packets per unit frame-time.  We therefore choose an S value 
from the curve and infer a value of the slot size e = E / S  as S = T in a s teady 
state. Choosing a value of S = 80% and E = 1200#s gives a slot size of 1500#s. 
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Fig. 4. Delivery time as a function of slot time for a cyclic shift of 25,000 words per 
processor, p = 2, 4, 6, 8, data for mpich shown at 1500 although slots are not used 

In practice, while the m a x i m u m  possible value for r is known, the end-to-end 
propagat ion delay of the particular network segment is not, and this influences 
the slot size via the contention interval modelled in Figure 2. The analytic model 
assumes a Poisson arrival process, whereas for a finite number  of stations, the 
arrival process is defined by independent Bernoulli trials (the limiting case of this 
process, as the number of processors increases, is Poisson, and approximates  the 
finite case after the number  of processors reaches about  20 [3]). More complicated 
topologies could also be considered where more than one segment is used. 

The slot size e can be determined empirically by running trials in which the slot 
size is varied and its effect on throughput  measured. The experiments  involved 
a 10Mbps Ethernet  networked collection of workstations. Each workstat ion is a 
266MHz Pent ium Pro processor with 64MB of memory  running Solaris 2. The 
experiments were carried out using the T C P / I P  implementa t ion of BSPlib. The 
machines and network were dedicated to the experiment,  al though the Ethernet  
segment was occasionally used for other traffic as it was a subset of a teaching 
facility. Figure 4(a) to Figure 4(d) plot the t ime it takes to realise a cyclic-shift 
communicat ion pat tern  (each processor bsp_hpputs  a 25,000 word message into 
the memory  of the processor to its right) for various slot sizes (e E [0, 2000]) and 
for 2, 4, 6 and 8 processors. The figures show the delivery t ime as a function 
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Fig. 5. Mean and standard deviation of delivery times of data from Figures 4(a,b) 

of slot size, oversampled 10 times. The horizontal line towards the bo t t om of 
each graph gives the min imum possible delivery t ime based on bits t ransmi t ted  
divided by theoretical bandwidth. 

Results for an MPI  implementat ion of the same algori thm running on top of 
the Argonne implementat ion of MPI  (mpich) [2] are also shown on these graphs. 
In this case, the da ta  is presented at a slot size of 1500 ps (even though mpich 
does not slot), so only one (oversampled) measurement  is shown. The dot ted 
horizontal line in the centre of these figures is the mean delivery t ime of the 
MPI  implementat ion.  

The BSP slot t ime should be chosen to minimise the mean delivery time. 
Choosing a small slot t ime gives some good delivery times, but  the scatter  is 
large. In practice, a good choice is the smallest slot t ime for which the scatter  is 
small. For p = 2 this is 1200 #s, for p = 4 it is 1450 ~s, for p = 6 it is 1650 #s, 
and for p = 8 it is 1700 ps. Notice that  these points do not necessarily provide 
the min imum delivery times, but they provide the best combinat ion of small  
delivery t imes and small variance in these times. 

Figure 4(b) shows a particularly interesting case at e = 1500, as bo th  the 
mean transfer rate and standard deviation of the BSPIib benchmark  is much 
smaller than  those of the corresponding mpich program. This slot-size can be 
clearly seen in Figure 5(c) and Figure 5(d) where the scatter caused by the 



9 7 7  

Fig. 6. Delivery time as a function of slot time for a cyclic shift of 8,300 words per 
processor, p = 4, 8, data for mpich shown at 1500 although slots are not used 

oversampling at each slot size in Figure 4(b) has been removed by only displaying 
the mean and standard deviation of the oversampling. In contrast,  the mean 
and largest outlier of the mpich program in Figure 4(d) is clearly lower than  
the corresponding BSPIib program when a slot size of 1500 is used. For larger 
configurations, the slot size that  gives the best behaviour increases and the mean 
value of g for BSPlib quickly becomes worse than that  for mpich. 

An increase in the best choice of slot size from Figure 4(a) to Figure 4(d) 
should be expected as the probabili ty P(n) of n processors choosing a particu- 
lar slot is binomially distributed. Thus as p increases, so does the expectat ion 
E{X >_ 2} of the amount  of contention for the slot, where 

P(n)= (P)(1/p)'~(1-1/p) p-n and 

p 

E{X > 2} = ~ i P ( i )  
i : 2  

Figure 3 shows that  for p ~ 20 and greater, the dependence on p is minimal ,  and 
therefore the increase in slot size reaches a fixed point. Below twenty processors 
the dependence varies by at most 26%. The limit as p --+ eo gives E{X >_ 2} 
1 - 1/e ~ 0.63, as shown in the figure. The same is true of the probabil i ty  of 
contention, but the range is very small, f rom 0.25 at p = 2, and as p -+ ~ ,  

> 2} 1 - 2 / c  0.26. 
In the mpich implementat ion [2] of MPI, large communicat ions are presented 

to the socket layer in a single unit. However, in the BSPIib implementa t ion  all 
communicat ions are split into packets containing at most  1418 bytes, so tha t  
we can pace the submission of packets using slotting. For this benchmark,  each 
BSPlib process sends 71 small packets in contrast  to rapich's single large message. 
Therefore, when p is small we would expect BSPIib to perform worse than  mpich 
due to the extra passes through the protocol stack, and for larger values of p we 
would expect tha t  the benefits of slotting out-weigh the extra passes through 
the protocol stack. Figures 4(a) to 4(d) show an opposite trend. 

As can be seen from the Figures 4(b)-(d) ,  as p increases, there is a noticeable 
"hump" in the da ta  as the slot size increases. This phenomenon is not explained 
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by the discussion above. The problem arises because we are modelling the com- 
municat ion as though it were directly accessing the Ethernet,  without taking into 
account the T C P / I P  stack. What  we are observing is the T C P  acknowledgement 
packets, which interfere with data  traffic as they are not controlled by our slot- 
ting mechanism. The effect of this is to increase the op t imum slot size to a value 
that  ensures that  there is enough extra bandwidth on the medium such tha t  
the extra acknowledgement packets do not negatively impact  the transmission 
of da ta  packets. 

Implementa t ions  of T C P  use a delayed acknowledgement scheme where mul- 
tiple packets can be acknowledged by a single acknowledgement transmission. 
To minimise delays, a 200ms t imeout  t imer is set when T C P  receives da ta  [11]. 
If  during this 200ms period data  is sent in the reverse direction then the pending 
acknowledgement is piggy-backed onto this da ta  packet, acknowledging all da ta  
received since the t imer was set. If  the t imer expires, the da ta  received up to 
tha t  point is acknowledged in a packet without a payload (a 512 bit packet). 

In the benchmark program that  determines the opt imal  slot size, a cyclic shift 
communicat ion pat tern  is used. When p > 2 there is no reverse traffic during the 
da ta  exchange upon which to piggy-back acknowledgements. If  the entire com- 
municat ion takes less than 200ms then only p acknowledgement packets will be 
generated for each superstep; as the total  t ime exceeds 200ms, considerably more 
acknowledgement packets are generated. In Figure 4(a) the communicat ion takes 
approximate ly  200ms and a minimal number  of acknowledgements are generated 
as can be seen by the lack of a hump. In Figures 4(b)-(d) ,  the size of the humps  
increases in line with the increased number  of acknowledgements. The mpizh 
program does not suffer as severely from this artifact as BSPlib. When slotting 
is not used (for example in mpich) there is potential  for a rapid injection of pack- 
ets onto the network by a single processor for a single destination, which means  
that  it is likely that  more packets arrive at their destination before the delayed 
acknowledgement t imer expires. This reduces the number of acknowledgement 
packets. When slotting is used, packets are paced onto the network with a mean 
inter-packet t ime between the same source-destination pair of pc. This drasti- 
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cally decreases the possibility of accumulated delayed acknowledgements. For 
example,  in Figure 4(c), as the total  t ime for communicat ion is approximate ly  
800ms, and as the slot size steadily increases, the number  of acknowledgements 
increases. This in turn steadily increases the s tandard deviation and mean of the 
communicat ion time. From the figure it can be seen that  this suddenly drops off 
when the slot size becomes large as the probabil i ty of collision decreases due to 
the under-utilisation of the network. 

The global nature of BSP communicat ion means that  da ta  acknowledgement 
and error recovery can be provided at the superstep level as opposed to the packet 
by packet basis of T C P / I P .  By moving to UDP/ IP ,  we can implement  acknowl- 
edgements and error recovery within the framework of slotting. This lower-level 
communicat ion scheme is under development,  al though the hypothesis tha t  it 
is the acknowledgements limiting the scalability of slotting can be tested by 
performing a benchmark on a dataset size that  requires a total  communicat ion 
t ime that  is less than 200ms. Figures 6(a)-(d) shows the slotting benchmark  
for an 8333-relation where there are no obvious humps. In all configurations the 
mean and standard deviations of the BSPIib results are considerably smaller 
than mpich. Also, as can be seen from Figure 7 the opt imal  slot size at p = 8 is 
approximate ly  1200#s. 

4 C o n c l u s i o n s  

We have addressed the ability of the BSP runtime system to improve the perfor- 
mance of shared-media systems using T C P / I P .  Using BSP's  global perspective 
on communicat ion allows each processor to pace its transmission to maximise 
throughput  of the system as a whole. We show a significant improvement  over 
MPI  on the same problem. 

The approach provides high throughput,  but also stable throughput  because 
the s tandard deviation of delivery times is small. This maintains  the accuracy 
of the cost model, and ensures the scalability of systems. 
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