
ViPIOS: The Vienna Parallel Input/Output
System*

Erich Schikuta, Thomas Fuerle and Helmut Wanek

Institute for Applied Computer Science and Information Systems
Department of Data Engineering, University of Vienna,

Rathausstr. 19/4, A-1010 Vienna, Austria
schikiOif s .univie. ac. at

Abstract . In this paper we present the Vienna Parallel Input Output
System (ViPIOS), a novel approach to enhance the I/O performance of
high performance applications. It is a client-server based tool combin-
ing capabilities found in parallel I/O runtime libraries and parallel file
systems.

1 I n t r o d u c t i o n

In the last few years the applications in high performance computing (Grand
Challenges [1]) shifted from being CPU-bound to be I/O-bound. Performance
can not be scaled up by increasing the number of CPUs any more, but by
increasing the bandwidth of the I /O subsystem. This situation is commonly
known as the I /O bottleneck in high performance computing ([5])

In reaction all leading hardware vendors of multiprocessor systems provided
powerful concurrent I /O subsystems. In accordance researchers focused on the
design of appropriate programming tools to take advantage of the available hard-
ware resources.

1.1 T h e ViPIOS Approach

Conventionally two different directions in developing programming support are
distinguished: Runtime libraries for high-performance languages (e.g. Passion
[6]) and parallel file systems, (e,g. IBM Vesta [4]).

We see a solution to the parallel I /O problem in a combination of both
approaches, which results in a dedicated, smart, concurrently executing runtime
system, gathering all available information of the application process both during
the compilation process and the runtime execution. Initially it can provide the
optimal fitting data access profile for the application and may then react to
the execution behavior dynamically, allowing to reach optimal performance by
aiming for maximum I /O bandwidth.

* This work was carried out as part of the research project "Language, Compiler, and
Advanced Data Structure Support for Parallel I/O Operations" supported by the
Austrian Science Foundation (FWF Grant Pll006-MAT)

954

This approach led to the design and development of the Vienna Input Output
System, ViPIOS ([2,3]).

ViPIOS is an I /O runtime system, which provides efficient access to persistent
files, by optimizing the data layout on the disks and allowing parallel read/wri te
operations. ViPIOS is targeted as a supporting I /O module for high performance
languages (e.g. HPF).

2 Sys tem Archi tecture

The basic idea to solve the I /O bottleneck in ViPIOS is de-coupling. The disk
access operations are de-coupled from the application and performed by an inde-
pendent I /O subsystem, ViPIOS. This leads to the situation that an application
just sends general I /O requests to ViPIOS, which performs the actual disk ac-
cesses in turn. This idea is caught by figure 1.

coupled I/O

data i requests

I isk~ ~ e t di ass

de-coupled I/0

Fig. 1. Disk access de-coupling

application processes

disk sub-system
ViPIOS

Fig, 2. ViPIOS system architecture

Thus ViPIOS's system architecture is built upon a set of cooperating server
processes, which accomplish the requests of the application client processes. Each
application process AP is linked by the ViPIOS interface VI to the ViPIOS
servers VS (see figure 2).

The server processes run independently on all or a number of dedicated pro-
cessing nodes on the underlying MPP. It is also possible that an application
client and a server share the same processor.

Generally each application process is assigned exactly one ViPIOS server
(which is called the buddy server to the application), but one ViPIOS server
can serve a number of application processes, i.e. there exists a one-to-many
relationship between the application and the servers (see figure 3). The other
ViPIOS servers are called foe server to the application.

A is
'buddy'
to app.

.•i I BDL
A Dl

B <D4, D3, DI>

"'. B is 'foe' to application

Fig. 3. "Buddy" and "Foe" Servers

ViPIOS proprietory interface

messagemanager

I directory fragmenter manager

memory manager

disk manager

Fig. 4. ViPIOS server architecture

955

2.1 V i P I O S Server

A ViPIOS server process consists of several functional units as depicted by figure
4.

Basically we differentiate between 3 layers:

The Interface layer provides the connection to the "outside world" (i.e. appli-
cations, programmers, compilers, etc.). Different interfaces are supported by
interface modules to allow flexibility and extendibility. Until now we imple-
mented an HPF interface module (aiming for the VFC, the HPF derivative
of Vienna FORTRAN) a (basic) MPI-IO interface module, and the specific
ViPIOS interface which is also the interface for the specialized modules.

- The Kernel layer is responsible for all server specific tasks.
- The Disk Manager layer provides the access to the available and supported

disk sub-systems. This layer too is modularized to allow extensibility and to
simplify the porting of the system. At the moment ADIO [7], MPI-IO, and
Unix style file systems are supported.

The ViPIOS kernel layer is built up of four cooperating functional units:

- The Message manager is responsible for the external (to the applications)
and internal (to other ViPIOS servers) communication.

- The Fragmenter can be seen as "ViPIOS's brain". It represents a smart da ta
administration tool, which models different distribution strategies and makes
decisions on the effective data layout, administration, and ViPIOS actions.

- The Directory Manager stores the meta information of the data. We designed
3 different modes of operation, centralized (one dedicated ViPIOS directory
server), replicated (all servers store the whole directory information), and
localized (each server knows the directory information of the data it is storing
only) management. Until now only localized management is implemented.

- The Memory Manager is responsible for prefetehing, caching and buffer man-
agement.

956

Requests are issued by an application via a call to one of the functions of
the ViPIOS interface, which in turn translates this call into a request message
which is sent to the buddy server.

The local directory of the buddy server holds all the information necessary
to map a client's request to the physical files on the disks. The fragmenter uses
this information to decompose (fragment) a request into sub-requests which can
be resolved locally and sub-requests which have to be communicated to other
ViPIOS-servers (foe servers). The I /0 subsystem actually performs the necessary
disk accesses and the transmission of data to / f rom the AP.

2 . 2 S y s t e m M o d e s

ViPIOS can be used in 3 different system modes, as

- runtime library,
- dependent system, or
- independent system.

These modes are depicted by figure 5.

v

i

w

ViPIOS

runtime library

[app. I

viPIOS

dependent system independent system

Fig. 5. ViPIOS system m o d e s

Runtime Library. Application programs can be linked with a ViPIOS runtime
module, which performs all disk I /O requests of the program. In this case ViP-
IOS is not running on independent servers, but as part of the application. The
ViPIOS interface is therefore not only calling the requested data action, but
also performing it itself. This mode provides only restricted functionality due to
the missing independent I /O system. Parallelism can only be expressed by the
application (i.e. the programmer).

Dependent System. In this case ViPIOS is running as an independent module
in parallel to the application, but is started together with the application. This

application clients
view pointer

persistent file
global pointer

f

ViPIOS servers ~
local pointer

@ Problem layer

~-'..."'~ I I[.![[File layer

mapping functions

Fig. 6. ViPIOS data abstraction

Data layer

957

is inflicted by the MPI 1 specific characteristic that cooperating processes have
to be started together in the same communication world. Processes of different
worlds can not communicate until now. This mode allows smart parallel data
administration but objects a preceeding preparation phase�9

Independent System. This is the mode of choice to achieve highest possible I / 0
bandwidth by exploiting all available data administration possibilities. In this
case ViPIOS is running similar to a parallel file system or a database server
waiting for applications to connect via the ViPIOS interface. This connection is
realized by a proprietary communication layer bypassing MPI. We implemented
two different approaches, one by using PVM, the other by patching MPI. A third
promising approach is just evaluated by employing PVMPI, a possibly uprising
standard under development for coupling MPI worlds by PVM layers.

3 D a t a A b s t r a c t i o n in V i P I O S

ViPIOS provides a data independent view of the stored data to the application
processes.

Three independent layers in the ViPIOS architecture can be distinguished,
which are represented by file pointer types in ViPIOS.

- Problem layer. Defines the problem specific data distribution among the
cooperating parallel processes (View file pointer).

- File layer. Provides a composed view of the persistently stored data in the
system (Global file pointer)�9

- Data layer. Defines the physical data distribution among the available disks
(Local file pointer)�9

1 The MPI standard is the underlying message passing tool of ViPIOS to ensure
portability

958

Thus da ta independence in ViPIOS separates these layers conceptually from
each other, providing mapping functions between these layers. This allows logical
data independence between the problem and the file layer, and physical data
independence between the file and da ta layer.

This concept is depicted in figure 6 showing a cyclic da ta distribution.

4 C o n c l u s i o n s and F u t u r e W o r k

In this paper we presented the Vienna Parallel Input Output System (ViPIOS), a
novel approach to parallel I / O based on a client server concept which combines
the advantages of existing parallel file systems and parallel I / O libraries. We
described the underlying design principles of our approach and gave an in-depth
presentation of the developed system.

R e f e r e n c e s

1. A Report by the Committee on Physical, Math., and Eng. Sciences Federal Coor-
dinating Council for Science, Eng. and Technology. High-Performance Computing
and Communications, Grand Challenges 1993 Report, pages 41 - 64. Committee on
Physical, Math., and Eng. Sciences Federal Coordinating Council for Science, Eng.
and Technology, Washington D.C., October 1993.

2. Peter Brezany, Thomas A. Mueck, and Erich Schikuta. Language, compiler and
parallel database support for I/O intensive applications. In Proceedings of the In-
ternational Conference on High Performance Computing and Networking, volume
919 of Lecture Notes in Computer Science, pages 14-20, Milan, Italy, May 1995.
Springer-Verlag. also available as Technical Report of the Inst. f. Software Technol-
ogy and Parallel Systems, University of Vienna, TR95-8, 1995.

3. Peter Brezany, Thomas A. Mueck, and Erich Schikuta. A software architecture
for massively parallel input-output. In Third International Workshop PARA'96
(Applied Parallel Computing - Industrial Computation and Optimization), volume
1186 of Lecture Notes in Computer Science, pages 85-96, Lyngby, Denmark, August
1996. Springer-Verlag. Also available as Technical Report of the Inst. f. Angewandte
Informatik u. Informationssysteme, University of Vienna, TR 96202.

4. Peter F. Corbett and Dror G. Feitelson. The Vesta parallel file system. A CM
Transactions on Computer Systems, 14(3):225-264, August 1996.

5. Juan Miguel del Rosario and Alok Choudhary. High performance l /O for parallel
computers: Problems and prospects. IEEE Computer, 27(3):59-68, March 1994.

6. Rajeev Thakur, Alok Choudhary, Rajesh Bordawekar, Sachin More, and Sivara-
makrishna Kuditipudi. Passion: Optimized I/O for parallel applications. IEEE
Computer, 29(6):70-78, June 1996.

7. Rajeev Thakur, William Gropp, and Ewing Lusk. An abstract-device interface for
implementing portable parallel-I/O interfaces. In Proceedings of the Sixth Sympo-
sium on the Frontiers of Massively Parallel Computation, pages 180-187, October
1996.

