
Long Operand Arithmetic on Instruction
Systolic Computer Architectures

and Its Application in RSA Cryptography

Bertil Schmidt 1, Manfred Schimmler 2, and Heiko Schr6der 3

1 Lehrstuhl ffir Informatik I, RWTH Aachen,
52056 Aachen, Germany,

bes@i I. inf ormat ik. rwth-aachen, de

2 Inst. f. Datenverarbeitungsan]agen, TU Braunschweig,

38106 Braunschweig, Germany,
Schimmler@ida. ing. tu-bs, de

3 Department of Computer Studies, Loughborough University,
Loughborough, LE11 3TU, England,

H. Schroder@lboro. ac. uk

Abs t r ac t . Instruction systolic arrays have been developed in order to
combine the speed and simplicity of systolic arrays with the flexibil-
ity of MIMD parallel computer systems. Instruction systolic arrays are
available as square arrays of small RISC processors capable of perform-
ing integer and floating point arithmetic. In this paper we show, that
the systolic control flow can be used for an efficient implementation of
arithmetic operations on long operands, e.g. 1024 bits. The demand for
long operand arithmetic arises in the field of cryptography. It is shown
how the new arithmetic leads to a high-speed implementation for RSA
encryption and decryption.

1 I n t r o d u c t i o n

Instruction systolic arrays (ISAs) provide a p rogrammable high performance
hardware for specific computat ional ly intensive applications [5]. Typically, such
an array is connected to a sequential host, thus operating like a coprocessor which
solves only the computat ional ly intensive tasks within a global application. The
ISA model is a mesh connected processor grid, which combines the advantages
of special purpose systolic arrays with the flexible programmabi l i ty of general
purpose machines [3].

In this paper we illustrate how the capabilities of ISAs are exploited to derive
efficient parallel algorithms of addition, subtraction, multiplication and division
of long operands. The demand for long operand ar i thmetic arises in the field of
cryptography, e.g. RSA encryption and decryption. Their implementat ions on
Systola 1024 show that the concept of the ISA is very suitable for long operand
ari thmetic and results in significant run t ime savings.

The ISA concept is explained in detail in Section 2. Section 3 gives an
overview over the architecture of Systola 1024. I t is documented how the ISA
has been integrated on an low cost add-on board for commercial PCs. The new
ISA algorithms for long operand ari thmetic are explained in Sections 4 to 6. The

917

implementat ion of RSA based o n these ar i thmetic routines is given in Section 7.
Section 8 discusses its performance and concludes the paper.

2 Principle of the ISA

The basic architecture of the ISA is a quadratic n • n array of identical pro-
cessors, each connected to its four direct neighbours by da ta wires. The array
is synchronized by a global clock. The processors are controlled by instructions,
row selectors and column selectors. The instructions are input in the upper left
corner of the processor array, and from there they move step by step in horizon-
tal and vertical direction through the array. This guarantees tha t within each
diagonal of the array the same instruction is active during each clock cycle. In
clock cycle k + 1 processor (i + 1, j) and (i, j + 1) execute the instruction tha t
has been executed by processor (i, j) in clock cycle k.

The selectors also move systolically through the array: row-selectors horizon-
tally from left to right, column-selectors vertically from top to bo t t om (Fig. 1).
The selectors mask the execution of the instructions within the processors, i.e.
an instruction is executed if and only if both selector bits, currently in tha t pro-
cessor, are equal to one. This construct leads to a very flexible structure which
creates the possibility of very efficient solutions for a large variety of applications.

instructions ~ column instructions
,~ selectors

s e;:ctor ISA

Fig. 1. Control flow in an 1SA

Every processor has read and write access to its own memory. Besides that , it
has a designated communication register (C - r e g i s t e r) tha t can also be read by
the four neighbour processors. Within each clock phase reading access is always
performed before writing access. Thus, two adjacent processors can exchange
da ta within a single clock cycle in which both processors overwrite the contents
of their own C-register with the contents of the C-register of their neighbour.
This convention avoids read/write conflicts and also creates the possibility to
broadcast information across a whole row or column with one single instruction:

R o w b r o a d c a s t : Each processor reads the value f rom its left neighbour.
Since the execution of this operation is pipelined along the row, the same value
is propagated fi'om one C-register to the next, until it finally arrives at the right-
most processor. Note that the row broadcast requires only a single instruction.

The p e r i o d of ISA programs is the number of their instructions, which is
2n - 2 clock cycles less than their execution time. The period describes the
minimM t ime from the first input of an instruction of this program to the first

918

input of an instruction of the next program. In the following the period of ISA
programs is used to specify their time-complexity. This is appropriate because
they will be used as subroutines of much larger ISA programs in Section 7.
3 Architecture of Systola 1024

The ISATEC Systola 1024 parallel computer is a low cost add-on board for
s tandard PCs. The ISA on the board is a 4 x 4 array of processor chips. Each
chip contains 64 processors, arranged as an 8 x 8 square. This provides 1024
processors on the board. In order to exploit the computat ion capabilities of this
unit, it is necessary to provide data and control information at an extremely high
speed. Therefore, a cascaded memory concept, consisting of interface processors
and board RAM, is implemented on board that forms a fast input and output
environment for the parallel processing unit (see Fig. 2).

RAM NORTH

RAM WEST]

.-[
r

[ISA-Prog.i,.._

I Controller I

T Host Computer Bus [

Interface
[I I

ISA

Fig, 2. Data paths in the parallel computer Systola 1024

4 Addition and Substraction of Long Operands

The difficulty of partitioning an addition in an array where only neighbours can
talk to each other is the carry propagation. If it meets a sum value consisting of
ones only, then an incoming carry produces a new carry in the most significant
digit. In the worst case this can hold for all blocks of the parti t ioned addition,
such that the carry-bit of the first block propagates through all other blocks.
Therefore, we use an accumulat ion technique based on the generate and
propagate signals of a carry-look-ahead-adder.

If every processor knows, whether it has to propagate an incoming carry from
the left to the right, it can set a flag (e.g. the zero-flag) to one if and only if it
propagates an incoming carry. Furthermore every processor can store the carry
generated by itself in its C-register. With the accumulation operation

(*) if zeroflag then C :=C [WEST]
all carry-bits travel to the processor one position left of their destinations. This is
again because of the skewed instruction execution: Suppose, processors (i, j - 1) ,
(i, j) , and (i , j + 1) have set their zero-flag to one (in order to propagate a
carry) and processor (i, j - 2) has generated a carry-bit one. The instruction (*)
is executed in processor (i, j - 1) which replaces its carry-bit (0) with that of
processor (i, j - 2). In the next clock cycle the same instruction is executed in
processor (i, j) , where again the own carry (0) is replaced by the value of the
left neighbour (which has been set to one in the previous instruction cycle). In
the following cycle, processor (i, j + 1) replaces its carry with the one from the
left neighbour, etc. With the final assignment C:=C [WEST] all carries are at the

919

place where they are needed. Note that the carry propagation requires only two
instructions, although the carry-bits can travel over a distance of up to n - 1
processors. Of course, this technique only works if no processor propagating a
carry has generated a carry-bit on its own. But this is obviously impossible.

The operands to be added are distributed over the rows of the ISA. If the
length of the operands is 512/1024 bits, every processor in a row of 32 proces-
sors gets 16/32 bits. The LSBs are stored in the leftmost and the MSBs in the
rightmost processor of the row. Every processor has 16 bits of the operand A in
register KA and 16 bits of B in register RB. The operations

RSUM:=RA + RB; C:=carry;

store the sum of RA and RB in RSUM and the carry-bit in C. Now every processor
must find out whether it has to propagate an incoming carry. This is the case if

and only if the value of RSUM is consisting of ones only. Thus, we can complete
the long addition as pointed out above with

if (RSUM + 1=0) t h e n C:=C[WEST]; RSUM:=C[WEST] + RSUM;

Table 1. Addition of two 24-bit numbers in a row with 6 processors

l',!(ocessor 1 2 3 4 5 6

A
B
SUM
ic
Zerofiag
ci'
SUM

010I 1100 1010 0010]101 1000 Every pr. gets 4 bits of A and B. LSB/MSB
0001 0011 0101 1010 1010 0100 in lcftmost/rightnmst bit in p[:. l/6.
0100 1111 l i l t 1001'0000 1100 SUM:=A + 13

1 0 0 0 1 0 C-register stores the carry-bit
0 1 1 0 0 0 if (SUM+I=O) then zeroflag:=l else :=0
1 [t 0 1 0 C after prol).: ifzeroflag then C:=C[WEST

010010000 0000 [)101 0C)00 0010 SUM:=SUM + C[WIi3S'I "]

The s u b t r a c t i o n works in principle in the same way as the addition, us-
ing RDIFF:=RA-RB, the propagation condition i f (RDIFF=0) and the carry-bit
subtraction RDIFF : =RDIFF-C [WEST].

Due to the systolic control flow the n-bit addit ion/subtraction is possible
using O(n) ISA processors with constant period. The complete 512/1024-bit ad-
dit ion/subtraction in one Systola 1024 processor-row requires only 5/8 instruc-
tions. However, having 32 processor-rows, 32 different additions/subtractions
can be calculated in parallel in the same time.

5 Multiplication of Long Operands

The idea behind the multiplication on the 1SA is related to the school method for
integer multiplication: One operand is cut into pieces and all pieces are multiplied
with the other operand in parallel. The results are then shifted with respect to
each other in an appropriate way and added to form the final result.

The ISA-program for the m x n-bit (m = 16 �9 p, n = 16 �9 q) multiplication in
each processor-row is explained below. Every processor stores 16 bits of the first
operand in register RA, the least significant 16 bits in the leftmost and the most
significant 16 bits in the rightmost processor. The complete second operand is
stored in RB0,. �9 RBq_ 1 in each processor. At the end the most significant m bits

920

of the result will be distributed over the rows in RPq. The least significant n bits
will be stored in the first processor of each row in RP0 RPq_I.

RP0..RPq: = RA �9 RB0. ,RBq-1 / / compute 16 x 16-q-bi t multiplication
C:=RP0 //
for i : = l t o q do / /
b e g i n

RPi_ 1 :=C
C : =C [EAST] +RPi+carry

e n d
R P q : = c / /
C : = c a r r y
if RPq+I=0 t h e n C : =C [WEST]//
RPq : =C [WEST] +RPq

load least significant result in C-register
add RP0..RPq along processor-row in q steps:
add 16 bit more significant word in C[EAST]
and RPi. Sum is stored in C and RPi
This addition is repeated up to the most
significant word
store most significant result

propagate the carry-bit of the last addition
as described in Section 4

The implementat ion on Systola 1024 requires 223/507 instructions for one single
512 • 512/1024 • 1024-bit multiplication in one row of 32 processors.

6 Division of Long Operands

Division can be efficiently reduced to multiplication and subtraction by using the
N e w t o n - R a p h s o n - m e t h o d . For a value B the reciprocal value is computed by an
iteration that converges rapidly towards ~ . To achieve a fast convergence (2m
bits precision in m iteration steps), 0.5 < B < 1 must hold for B. The i teration
is given by the equations

X 0 : = 1 , Xi+I := (2 -- B . x i) . x i (1)

Obviously, any division Q = A can be computed by multiplying A with ~ .
For division on the ISA we assume B to be in the range between 0.5 and 1. If
this is not the case, B is initially shifted in the ISA such that the most significant
one is the MSB of the rightmost word of B.

In order to understand the choice of intermediate operand lengths in our
division method it is useful to consider the behavior of the convergence in the

1 by some Newton-Raphson-algori thm. Let xi differ fi'om the precise value of
e. Then the following holds for Xi+l:

x i + l : (2 - . x , : (2 - B . (� 8 9 - - = - 8 . d (2)

Since B < 1, this means that the precision of xi+l (i. e. number of correct
leading digits) is at least double the precision of xi . This means tha t we can
restrict the operand lengths to 2 i bits for B and xi-1 while comput ing the i th
iteration xi . E.g. the first four iterations can be performed in one processor,
since the required precision of the operands is < 16. Only the last i teration step
needs full precision of m bits. The subtractions and multiplications are performed
efficiently on the ISA as explained above.

7 Parallel Implementation of RSA Encryption
For obtaining a high-speed implementat ion of RSA encryption a fast m o d u l a r

exponen t ia t ion (M c mod N) is necessary. To achieve a sufficient degree of se-
curity the operand-lengths have to be relatively large (currently ranging f rom

9 2 I

512 up to 2048 bits). Modular exponentiation can be accomplished by iterating
modular multiplications using the square-and-multiply algorithm [2].

The difficulty in implementing an efficient modular multiplication (A. B mod
N) is the modular reduction step. In the case of RSA encryption the modulus N

is known in advm~ce to each modular multiplication. Thus, the precomputat ion
of ~- requires only a negligible amount of work. Now, the division x div N can be
replaced by the more efficient multiplication x. -~. Of course, we cannot produce
1 precisely. We instead produce a number # such that x �9 # is close enough to x N
div N; i. e. the result needs only a smM1 correction by at most 4 subtractions with
N. Thus, the modular multiplication for RSA can be implemented efficiently on
the ISA by three multiplications and at most four subtractions.

One single n-bit modular multiplication for n = 512/1024 requires 581/1709
instructions in one processor- row of Systola 1024.

8 P e r f o r m a n c e Eva luat ion and C o n c l u s i o n s

The performance of the parallel implementation is compared with an optimized
sequential implementation on a PC (see Table 2). The current ISA-prototype
Systola 1024 is a machine based on technology far from being state-of-the-art.
Extrapolating to technology used for processors such as the Pentium II 266 MHz
would lead to a speedup of the ISA by a factor of at least 80. Thus resulting
in encryption/decryption speeds of more than 500 K b i t / s for 1024-bit RSA
(without taking advantage of the Chinese Remainder Theorem). Such perfor-
mance can be expected from the already announced next generation Systola
board S y s t o l a 4096.

Table 2. Performance of RSA encryption
ISystola 1024IPentium II 2661Speedupl

512-bit RSA with full length exponent 128 KBit/s I 18 KBit/s 7 I
1024-bit RSA with full length exponent 56 KBit/s I 6 KBit/s 9

We have presented ideas for fast implementations of addition, subtraction,
multiplication and division on operands that are too long to be handled within
one processor. We take advantage of the ability of the ISA to implement accu-
mulation operations extremely efficiently. We have used the results for finding a
high-speed instruction systolic implementation of RSA encryption and decryp-
tion. This leads to efficient software solutions with respect to performance and
hardware cost. We also used the long operand arithmetic routines for the imple-
mentation of a prime number generator for RSA keys on Systola 102411].

R e f e r e n c e s

1. Hahnel, T.: The Rabin-Miller Prime Number Test on Systola 1024 on the Back-
ground of Cryptography. Master Thesis, University of Karlsruhe (1998)

2. Knuth, D.E.: The Art of Computer Programming: Seminumerical Algorithms. Vol-
ume 2, Reading, Addison-Wesley, second edition (1981)

3. Kunde, M., et al.: The Instruction Systolic Array and its Relation to other Models
of Parallel Computers. Parallel Computing 7 (1988) 25-39

922

4. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digitM signatures
and public key cryptosystems. Comm. of the ACM 21 (1978) 120-126

5. Schmidt, B., Schimmler, H., SchrSder, H.: Morphological Hough Transform on the
Instruction Systolic Array. Euro-Par'97, LNCS 1300, Springer (1997) 798 806

