
Optimising Parallel Logic Programming Systems
for Scalable Machines

Vftor Santos Costa I and Ricardo Bianchini 2

1 LIACC and DCC-FCUP, 4150 Porto, Portugal
2 COPPE Systems Engineering, Federal University of Rio de Janeiro, Brazil

Abs t r ac t . Parallel logic programming (PLP) systems have obtained
good performance on traditional bus-based shared-memory architectures.
However, the scalable multiprocessors being developed today pose new
challenges. Our experience with a sophisticated PLP system, Andorra-I,
demonstrates that indeed performance suffers greatly on modern archi-
tectures. In order to improve performance, we perform a detailed analysis
of the cache behaviour of all Andorra-I data structures via execution-
driven simulation of a DASH-like multiprocessor. Based on this analysis
we optimise the Andorra-I code using 5 different techniques. Our results
show that the techniques provide significant performance improvements,
leading to the conclusion that PLP systems can and should perform well
on modern scalable multiprocessors.

1 I n t r o d u c t i o n

Parallel computers can improve performance of both numerical and symbolic
applications. Logic programs are good examples of symbolic applications that
often exhibit large amounts of implicit parallelism and that can greatly benefit
fl'om parallel computers. Several PLP systems have been developed so far and
have obtained good performance for tradit ional bus-based shared-memory ar-
chitectures. However, the scalable multiprocessors being developed today pose
new challenges, such as the high latency of memory accesses and the demand
for scalability.

The complexity of PLP systems and the large amount of da ta they pro-
cess raise the issue of whether PLP systems can obtain good performance on
these new parallel architectures. In order to address this issue, we experiment
with a sophisticated PLP system, Andorra-I [8], that exploits both dependent
and-parallelism and or-parallelism. Andorra-I is a particularly interesting exam-
ple of PLP system, since most of its data structures are similar to the ones of
several other PLP systems. Andorra-I has obtained good performance on the Se-
quent Symmetry, but our experience with it running on modern multiprocessors
demonstrates indeed tha t scMability suffers greatly on these architectures [7].

This paper addresses the question of whether the poor scalability of Andorra-
I is inherent to the complex structure of PLP systems or can be improved through
careful analysis and tuning. In order to answer this question, we analyse the
cache behaviour of all Andorra-i da ta areas when applied to several different

832

logic programs. The analysis pinpoints the areas that are responsible for most
misses and the main sources of the misses. Based on this analysis we remove the
main performance limiting factors in Andorra-I through a small set of opt imisa-
tions that did not require a redesign of the system. More specifically, we optimise
Andorra-I using 5 different techniques: t r imming of shared variables, da ta lay-
out modification, privatisation of shared da ta structures, lock distribution, and
elimination of locking in scheduling.

We present the isolated and combined performance improvements provided
by the optimisations on a simulated DASH-like multiprocessor with up to 24
processors. In isolation, shared variable t r imming and the modification of the
da ta layout produced the greatest improvements. The improvements achieved
when all opt imisat ion techniques are combined are substantial. A few of our
programs approach linear speedups as a consequence of our modifications. In
fact, for one program the speedup of the modified Andorra-I is a factor of 3
higher than that of the original version of the system on 24 processors. Our
main conclusion is then that, even though PLP systems are indeed complex and
sometimes irregular, these systems can and should scale well on modern scalable
multiprocessors.

2 Methodology

In this section we detail the methodology used in our experiments. The ex-
periments consisted of the simulation of the parallel execution of Andorra-I [8,
10]. The Andorra-I parallel logic p rogramming system employs a very interest-
ing method for exploiting and-parallelism, namely to execute determinate goals
first and concurrently, where determinate goals are goals that match at most
one clause in a program. The Andorra-I system also exploits or-parallelism that
arises from the non-determinate goals.

Andorra-I requires access to shared memory for both execution and schedul-
ing of work. In order to study the Andorra-I execution more fully, we divided
its shared memory into ten different areas. Andorra-I implements the s tandard
Prolog work areas. The Code Space includes the compiled code for every pro-
cedure and is read-only during execution of our benchmarks. The Heap Space
stores structured terms and variables. The Goal Frame Space keeps the goals
yet to be executed. The Choicepoint Stack maintains alternatives for open goals.
The Trail Stack records any conditional bindings of variables.

Andorra-I also requires several new areas for and /or parallelism. The Or-
Scheduler Data Structures are used to manage or-parallelism. The da ta struc-
tures for and-parallelism are in the Worker area. The Binding Arrays are used
to implement the SRI model [5] for or-parallelism, by storing conditional bind-
ings. A Lock Array was needed in our port to establish a mapping between a
shared memory position (such as a variable in the heap) and a lock. Finally, the
Miscellaneous Shared Variables include the remaining da ta structures.

To simulate Andorra-I we ported the system to a detailed on-line, execution-
driven simulator. The simulator uses the MINT front-end [9], and a back-end

2O

5

,E ' ' '

i~ealised -- i /
dash I ,/ -

5 i0 15 20
Number of Processors

Fig. l. Speedupsfor bt-cluster

2 0

915
!

5

833

i~ealised
j dash

5 i0 15 20
Number of Processors

Fig. 2. Speedups for t sp

that simulates the memory and interconnection systems. We simulate a 24-node,
DASH-like [4], directly-connected multiprocessor. Each node of the simulated
machine contains a single scalar processor, a write buffer, a 128-KB direct-
mapped data cache with 64-byte cache blocks, local memory, a full-map di-
rectory, and a network interface. We use the DASH write-invalidate protocol
with release consistency [3] in order to keep caches coherent. We classify cache
misses under this protocol using the algorithm presented in [1].

g W o r k l o a d a n d O r i g i n a l P e r f o r m a n c e

The benchmarks we used in this work are applications representing predom-
inantly and-parallelism, predominantly or-parallelism, and both and- and or-
parallelism. We next discuss application performance for the original Andorra-I
(more detailed information on the benchmarks can be found in the extended
version of this paper [6] and in Dutra's thesis [2]). Note that our results corre-
spond to the first run of an application; results would be somewhat better for
other runs.

We use two example And-parallel applications, the clustering algorithm for
network management from British Telecom, b t - c l u s t e r , and a program to
calculate approximate solutions to the traveling salesman problem, t sp . To
obtain best performance, we rewrote the original applications to make them
determinate-only computations.

Figure 1 shows the bt-cluster speedups for the simulated architecture as
compared to an idealised shared-memory machine, where data items can always
be found in cache. The i d e a l i s e d curve shows that the application has excel-
lent and-parallelism and can achieve almost linear speedups up to twenty four
processors. Unfortunately, performance for the DASH-like machine is barely ac-
ceptable. Figure 2 shows that the t s p application achieves worse speedups than
b t - c l u s t e r on a modern multiproeessor. The maximum speedup actually de-
creases for 24 processors, whereas the ideal machine would achieve a speedup of
20 for 24 processors. Figure 3 illustrates the number and sources of cache misses

834

Fig. 3. Misses by data area for
bt-cluster

Fig. 4. Misses by data area for chat80

per data area in the hi_cluster application running on 16 processors as a rep-
resentative example. The Figure shows that the overall miss rate of b t - c l u s t e r
is dominated by true and false sharing misses from the Worker and Misc areas.
This suggests that the system could be much improved by reducing false sharing
and studying activity in the Worker and Misc areas.

We use two Or-parallel applications. Our first application, chat80, is an ex-
ample from the well-known natural language question-answering system cha t -80 ,
written at the University of Edinburgh by Pereira and Warren. The second appli-
cation, fp, is an example query for a knowledge-based system for the automatic
generation of floor plans. This application should at least in theory have sig-
nificant or-parallelism. Figure 5 shows the speedups for the cha t80 application
fl'om 1 to 24 processors. These speedups are very similar to those obtained by
Andorra-I on the Sequent Symmetry architecture. In contrast, the DASH curve
reaches a maximum speedup of 4.2 for 16 processors. Figure 6 shows the speedups
for the fp application. The theoretical speedup is very good, in fact quite close
to linear, in sharp contrast to the actual speedup for the DASH-like machine.

20

~10

5

[
idealised ~ ,

d a s h i

E

5 i0 15 20
Number of Processors

20
idealised ~ /

.... dalh ~ ~ . . ~ ,~

5 l0 15 20
Number of Processors

Fig. 5. Speedups for chat80 Fig. 6. Speedups for fp

835

2O

~i0

5

idealised
dash--+

i

5 i0 15 20
NLunber of Processors

Fig. 7. Speedups for pan2

Fig. 8. Misses by data area for pan2

Figure 4 shows the number and source of misses for cha t80 running on 16 pro-
cessors, again as an example of this type of application. Note that cha t80 does
not have enough parallelism to feed 16 processors, suggesting that most shar-
ing misses should result from or-parallel scheduling areas, 0rSch and ChoiceP.
Indeed, the figure shows that these areas are responsible for a large number of
sharing misses, but the areas causing the most misses are Worker and Nisc as
in the and-parallel applications, indicating again that these two areas should be
optimised.

As an example of And/Or application we used a program to generate naval
flight allocations, based on a system developed by Software Sciences and the
University of Leeds for the Royal Navy. Figure 7 shows the speedups for pan2.
The idealised curve shows that the application has less parallelism than all
other applications; the ideal speedup does not even reach 12 on 24 processors.
When run on the DASH simulator, pan2 exhibits unacceptable speedups for all
numbers of processors; speedup starts out at about 1.8 for 2 processors and
slowly improves to a max imum of only 4.8 for 24 processors. Figure 8 shows
the distribution of cache misses by the different Andorra-I da ta areas for 16
processors. In this case, the Worker area clearly dominates, since the contribution
from the Mist area is not as significant as in the and-parallel benchmarks. Note
tha t there is more true than false sharing activity in Worker. The true sharing
probably results from idle processors looking for work.

4 O p t i m i s a t i o n T e c h n i q u e s a n d P e r f o r m a n c e

The previous analysis suggests that relatively high miss rates may be causing
the poor scalability of Andorra-I. It is interesting to note that most misses come
from fixed layout areas, such as Worker and Misc, and not from the execution
stacks, as one would assume.

We next discuss how several optimisations can be applied to the system,
particularly in order to improve the utilisation of the Worker and Mist areas.

836

The first two optimisations were prompted by our simulation-based analysis of
caching behaviour, and they are the ones that give the best improvement. The
other three were based on our original intuitions regarding the system, and were
the ones we would have performed first without simulation data. We studied
performance for three applications, b t - c l u s t e r , chatS0 and pan2. A detailed
discussion of our experiments and results can be found in [6]. In the remainder
of this section, we simply summarise the impact of each of the techniques studied
when applied in isolation.

Variable Trimming. In this technique we investigate the areas that have un-
exepected sharing, and try to eliminate this sharing if possible. For two of our
applications, the Nisc area gave a surprisingly significant contribution to the
number of misses. The area is mostly written at the beginning of the execution
to set up execution parameters. During execution it is used by the reconfigurer
and to keep reduction and failure counters. By investigating each component in
the area, we detected that the counters were the major source of misses. As they
are only used for research and debugging purposes, we were able to eliminate
them from the Andorra-I code.

The results in [6] show that chatS0 benefits the most from this optimisation.
This is because the failure counter is never updated by and-parallel applications,
but often updated by this or-parallel application. The optimisation does not
impact the and-parallel benchmarks as much, leading to less than 10% speedup
improvements.

Data s Modification. All benchmarks but pan2 exhibit a high false shar-
ing rate, showing a need for this technique. On 16 processors, 15% of the misses
in pan2 are false sharing misses, whereas in the other applications false sharing
causes between 40% (chatS0) and 51% (b t - c l u s t e r) of all misses. These results
suggest that improving false sharing is of paramount importance. According to
our detailed analysis of caching behaviour, false sharing misses are concentrated
in the Worker, OrSch, ChoiceP and BA areas, besides the Misc area optimised
by the previous technique.

The Worker and 0rSch data areas are allocated statically. This indicates that
we can effectively reduce false sharing. We applied two common techniques to
tackle false sharing, padding between fields that belonged to different workers or
that were logically independent, and field reordering to separate fields that were
physically close but logically distinct. Although these are well-known techniques,
padding required careful analysis, as it increases eviction misses significantly.
The field reordering technique was not easily applied either, as the relationships
between fields are quite complex.

Padding may lead to serious performance degradation for the dynamic data
areas, such as ChoiceP and BA. This restricted our options for layout modifica-
tion to just field reordering for these areas. The BA area was the target of one
final data layout modification, since the analysis of cache behaviour surprised
us with a high number of false sharing misses in this area for chat80. Further
investigation showed that this was a memory allocation problem. The engines'

837

top of stacks were being shmalloc'ed separately and appeared as part of the BA
area in the analysis. This increased sharing misses in the area and was espe-
cially bad for the or-parallel applications, as different processor's top of stacks
would end up in the same cache line. We addressed the problem by moving these
pointers into the Worker area, where they logically belong. Our results show that
the b t - c l u s t e r and chat80 applications benefit the most from this optimisa-
tion; speedup improvements can be as significant as 60%. In contrast, the pan2
application achieves improvements of less than 10% fi'om this optimisation.

Privatisation of Shared Variables. This technique reduces the number of
shared memory accesses by making local copies in each node of the machine. In
the best case, the shared variables are read-only and hence local copies can ac-
tually be allocated in private memory. The high nmnber of references to Worker
suggested that privatisation could be applied there. In fact, Andorra-I did al-
ready use private copies of the variables in Worker and there was little room
for improvement. The Locks and Code data areas are the major candidates to
privatisation in Andorra-I. The Locks area only includes pointers to the actual
locks, is thus read-only during execution, and can be easily privatised. Another
area that is also read-only during parallel execution of our benchmarks is Code.
Unfortunately, logic programs in general can change the database and, therefore,
update Code, making privatisation complex. Our results show that privatisation
improves speedups by up to 10% at most and that the impact of this optimisation
decreases as the number of processors increases.

Lock Distribution. This technique was considered to reduce contention on
accesses to logical variables, and-scheduling, or-scheduling, and stack manage-
ment. The original implementation used a single array of locks to implement
these operations. In the worst case, several workers would contend for the same
lock causing contention. To improve scalability, we implemented different lock
data structures for different purposes. We expected best results for or-parMlel
applications, as the optimisation prevents different teams from contending on
accesses to logical variables. The cost of this optimisation is that , if the arrays
of locks are shared, there will be more expensive remote cache misses. Our re-
sults show that the b t - c l u s t e r and chatS0 applications benefit somewhat from
this optimisation, but that the pan2 application already exhibited a significant
number of misses in the Locks area and suffers a slowdown.

Elimination of Locking in Scheduling. This technique improves perfor-
mance in benchmarks with significant and-parallelism by testing whether there
is available work, before actually locking the work queue. This modification is
equivalent to replacing a test_and_set lock with a test_and_test_and_set lock. This
optimisation provides a small speedup improvement for pan2, as it avoids lock-
ing when there is no and-work. For b t - c l u s t e r the technique does not improve
speedups as this application exhibits enough and-work to keep processors busy.

838

2O

@10

5

idealised~ /
dash (optimised)l /

dash (initial)~

i i i

5 i0 15 20
Number of Processors

Fig. 9. Speedups for b t - c l u s t e r

2O

@i0

5

dash (optimisedb ,/
dash (initial), "~/,,..

5 i0 15 20
Number of Processors

Fig. 10. Speedups for t sp

Fig. 11. Misses by data area for
b t - c l u s t e r Fig. 12. Misses by data area for chat80

5 Combined Performance of Optimisation Techniques

We next discuss the overall system performance with all optimisat ions com-
bined. We compare speedups against the i d e a l i s e d and o r i g i n a l results. The
i d e a l i s e d speedups were recalculated for the new version of Andorra-I, but, as
it is shown in the figures, the optimisations did not have any significant impact
for the • machine. Figures 9 and 10 show the speedups for the two
and-parallel applications running on top of the modified Andorra-I system. The
m a x i m u m speedup for b t - c l u s t e r j u m p e d from 12 to 20, whereas the m a x i m u m
speedup for t s p jumped from 6.3 to 19. This indicates tha t the realistic machine
is now able to exploit the available parallelism more fully. The explanation for
the bet ter speedups is a significant decrease in miss rates. For b t - c l u s t e r , the
new version of Andorra-I exhibits a miss rate of only 0.6% for 16 processors,
versus the 1.6% of the previous version. In the case of t sp , the opt imisat ions
decreased the miss rate from 3% to 1.2% again on 16 processors.

Figure 11 shows the number and source of misses for b t - c l u s t e r on 16
processors. Note that the figure keeps the same Y-axis as in Figure 3 to simplify

839

comparisons against the cache behaviour of the original version of Andorra-I.
The figure shows that the number of misses in the Worker area was reduced by a
factor of 4, while the number of misses in the Misc area was reduced by an order
of magnitude. The figure also shows that there is still significant true sharing in
Worker, but false sharing is much less significant. The number of misses from
Misc is now almost irrelevant.

The or-parallel benchmarks also show remarkable improvements due to the
combination of the optimisation techniques we applied. Figure 13 shows the
speedups for cha t00 and Figure 14 shows the speedups for fp. The maximum
speedup for cha t80 almost doubles from one version of the system to the other.
Note that speedups for the optimised system still flatten out on 16 processors,
but at a much better efficiency. The other benchmark, fp, displays our most im-
pressive result. The speedup for 24 processors jumps from 6.2 with the original
Andorra-I system to 20 when all our optimisations are applied. This result rep-
resents more than a three-fold improvement. Figure 12 shows the distribution of
misses for cha t80 with 16 processors. The figure demonstrates that the number
of misses in the Worker and Misc areas was reduced by an order of magnitude.
The large number of eviction and cold start misses in the Code area remains
however. Sharing misses are now concentrated in the 0rSch and ChoiceP areas,
as they should.

Figure 15 shows the speedups of the new version of Andorra-I for the pan2
benchmark. In this case, the improvement resulting from our optimisations
was quite small. Figure 16 shows the cache miss distribution for the optimised
Andorra-I. The main source of misses was true sharing originating in the Worker
region. A more detailed analysis proved that these misses originate from lack of
work. Workers are searching each other's queues and generating misses. We are
investigating more sophisticated scheduling strategies to address this problem.

6 C o n c l u s i o n s a n d F u t u r e W o r k

Andorra-I is an example of an and/or-parallel system originally designed for
traditional bus-based shared-memory architectures. We have demonstrated that

20

15

~i0

idealise6~--
dash (optlmised)I--+~: --

dash (initial),-

: :

i ._..2 i

. Q i , , ,

5 I0 15 20
Number of Processors

20

~15

~i0

, E , ,

i idealised~ /
dash (opt~mised) i / .

dash (initialL /

i /i I

I0 15 20
N~ber of Processors

Fig. 13. Speedups for chat80 Fig. 14. Speedups for fp

840

20

9 1 5

idealised~
dash (optimised),-

dash (initial): --a

I i i

i Z

5 i0 15 20
Number of Processors

Fig. 15. Speedups for pan2
Fig. 16. Misses by data area for pan2

the system can also achieve good performance on scalable shared-memory sys-
tems. The key to these results was the extensive da ta available from detailed
simulations of Andorra-I. This information showed tha t there was no need to
restructure the system or its schedulers. Instead, performance could be d rama t -
ically improved by focusing on accesses to shared data.

We believe there is potential for improving the performance of PLP systems
even further. To prove so will require more radical changes to da ta structures
within Andorra-I itself, as the system was simply not designed for such large
numbers of processors. Last, but not least, we are interested in studying per-
formance of other parallel logic programming systems, such as the systems tha t
exploit independent and-parallelism.

Acknowledgements The authors would like to thank Leonidas Kontothanassis
and Jack Veenstra for their help with the simulation infrastructure, and Rong
Yang, Tony Beaumont, D. H. D. Warren for their work in Andorra-I . This paper
results from collaboration work with In~s Dutra, and has benefited from Ms
da Silva's studies. Vftor Santos Costa would like to thank support from the
Praxis P R O L O P P E and F C T MELODIA projects. Ricardo Bianchini would
like to thank the support of the Brazilian CNPq.

R e f e r e n c e s

1. R. Bianchini and L. I. Kontothanassis. Algorithms for categorizing multiprocessor
communication under invalidate and update-based coherence protocols. In Pro-
ceedings of the 28th Annual Simulation Symposium, April 1995.

2. In~s Dutra. Distributing And- and Or-Work in the Andorra-I Parallel Logic Pro-
gramming System. PhD thesis, University of Bristol, Department of Computer
Science, February 1995.

3. D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy. The directory-
based cache coherence protocol for the DASH multiprocessor. Proceedings of the

841

17th International Symposium on Computer Architecture, pages 148-159, May
1990.

4. D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A. Gupta, and J. Hennessy.
The dash prototype: Logic overhead and performance. IEEE Transactions on
Parallel and Distributed Systems, 4(1):41-61, Jan 1993.

5. Ewing Lusk, David H. D. Warren, Self Haridi, et al. The Aurora Or-parallel Prolog
System. New Generation Computing, 7(2,3):243-271, 1990.

6. V. Santos Costa and R. Bianchini. Optimising Parallel Logic Programming Systems
for Scalable Machines. Technical Report DCC-97-7, DCC - FC &: LIACC, UP,
October 1997.

7. V. Santos Costa, R. Bianchini, and I. C. Durra. Evaluating the impact of coher-
ence protocols on parallel logic programming systems. In Proceedings of the 5th
EUROMICRO Workshop on Parallel and D~str~buted Processing, pages 376-381,
1997.

8. V. Santos Costa, D. H. D. Warren, and R. Yang. Andorra-h A Parallel Prolog
System that Transparently Exploits both And- and Or-Parallelism. In Third ACM
SIGPLAN PPOPP, pages 83-93. ACM press, April 1991.

9. J. E. Veenstra and R. J. Fowler. Mint: A front end for efficient simulation of
shared-memory multiprocessors. In Proceedings of MASCOTS '9~), 1994.

.0. Rong Yang, Tony Beaumont, In~s Durra, Vftor Santos Costa, and David H. D.
Warren. Performance of the Compiler-Based Andorra-I System. In Proceedings of
the Tenth International Conference on Logic Programming, pages 150-166. MIT
Press, June 1993.

