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Abstract .  Nested data-parallelism can be efficiently implemented by 
mapping it to flat parallelism using Blelloch 8z Sabot's flattening trans- 
formation. So far, the only dynamic data structure supported by flat- 
tening are vectors. We extend it with support for user-defined recursive 
types, which allow parallel tree structures to be defined. Thus, important 
parallel algorithms can be implemented more clearly and efficiently. 

1 I n t r o d u c t i o n  

The flattening transformation of Blelloch ~: Sabot [6, 4] implements nested data- 
parallelism by mapping it to flat data-parallelism. Compared to flat parallelism, 
nested parallelism allows algorithms to be expressed on a higher level of ab- 
straction while providing a language-based performance model [5]; in particular, 
algorithms operating on irregular data  structures and divide-and-conquer algo- 
rithms benefit from nested parallelism. Efficient code can be generated for a wide 
range of parallel machines [2, 11, 12, 10]. However, flattening supports only vec- 
tots (i.e., homogeneous, ordered sequences) as dynamic data  structures. Thus, 
important parallel algorithms, like hierarchical n-body codes and other adaptive 
algorithms based on tree structures, are awkward to program--the tree structure 
has to be mapped to a vector structure, implying explicit index calculations, to 
keep track of the parent-child relation, and leading to a suboptimM data  distri- 
bution on distributed-memory machines. 

In this paper, we propose user-defined recursive types to tackle the men- 
tioned problems. We extend flattening such that  it maps the new structures to 
efficient, fiat data-parallel code. Our extension fits easily into existing formal- 
izations and implementations of flattening; in particular, the optimization tech- 
niques of previous work [11, 12, 10,7,9] remain applicable. This paper makes 
the following three main contributions: (1) It demonstrates the usefulness of 
recursive types for nested data-parallel languages (Section 2), (2) it formally 
specifies our extension of flattening including user-defined recursive types (Sec- 
tion 3), and (3) it provides experimental results gathered with the resulting code 
on a Cray T3E (Section 4). Regarding point (2), as a side-effect of our exten- 
sion, we contribute to a rigorous specification of flattening by formMizing the 
instantiation of polymorphic primitives. Thereby, we also introduce a new kind 
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of primitives, so-called chunkwise operations, for more efficient da ta  redistribu- 
tion on distributed-rnemory machines. We use the functional language NESL [5] 
throughout  this paper, but the discussed techniques also work for imperative 
languages [1]. Many details and discussions have been omitted in this paper due 
to shortage of space--this  material can be found in [8]. 

Section 2 discusses the benefit of recursive types for tree-based algorithms in 
a purely vector-oriented language. Section 3 formalizes our extended flattening 
transformation. Section 4 presents benchmarks. Finally, Section 5 concludes. 

2 T h e  P r o b l e m :  E n c o d i n g  T r e e s  b y  V e c t o r s  

NESL [5] is strict functional language featuring nested vectors as its central da ta  
structure. In addition to built-in parallel operations on vectors, the apply-to- 
each construct is used to express parallelism. In its general form {e : xl  in  
el . . . . .  x~ in  e~ I f}  we call e the body, the x~ in  e~ the generators, and 
f (which is optional) the filter. The body e is evaluated for each element of 
the vectors ei and the result is included in the result vector if f evaluates to 
T (true); the vectors ei are required to be of equal length and are processed in 
lock-step. For example ,{x  + y : x in  [1, -2 ,  3 ] ,  y in  [4,  5, 6] I x > 
0} evaluates to [5, 9]. Nested parallelism occurs where parallel operations ap- 
pear in the body of an apply-to-each, e.g., {plus_scan (x) : x in  xs}, which 
f o r x s  = [ [1 ,  2, 3 ] ,  [4 ] ,  [5, 6]]  yields [ [0 ,  1, 3 ] ,  [0 ] ,  [0,  5 ] ] .  The  
built-in p lus_scan  is a prescan using addition [4]. 

The implementation of a tree-based algorithm in such a language implies 
representing trees by nested vectors, obscuring the code with explicit index cal- 
culations, to keep track of the parent-child relation. Moreover, in an implemen- 
tat ion based on flattening, these nested vectors are represented by a set of flat 
vectors in the target code. All data elements of the tree are mapped to a single 
vector and are uniformly distributed to achieve load balancing. This, however, 
leads to superfluous redistributions as those algorithms usually traverse the trees 
breadth-first, i.e., level by level, all nodes on one level are processed in parallel. 

We illustrate these problems at the example of Barnes ~: Hut 's  hierarchicM 
n-body code [3]. It minimizes the number of force calculations by grouping par- 
ticles hierarchicMly into cells according to their spatial position. The hierarchy 
is represented by a tree. This allows approximating the accelerations induced by 
a group of particles on distant particles by using the centroid of that  group's 
cell. The algorithm has two phases: (1) The tree is constructed from a particle 
set, and (2) the acceleration for each particle is computed in a down-sweep over 
the tree. The following NESL function outlines the tree construction: 

function bhTree (ps) : [MassPnt] -> [Cell] = 
if #ps == I then [Cell (ps[O], [])] -- cell has only one particle 
else let (split particles ps into spatial groups pgs> 

subtrees = {bhTree (pg): pg in pgs}; 
children = {subtree[O] : subtree in subtrees}; (*) 
cd = centroid ({mp : Cell (mp, is) in children}); 
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Fig. 1. Example of a Barnes-Hut tree and its representation as a vector. 

sizes : {#subtree : subtree in subtrees} (* )  

in [Cell  (cd, s i z e s ) ]  ++ f l a t t e n  (subt rees)  - -  whole tree as flat vector (*) 

We represent the tree as a vector o f  cells. Each cell of the form C e l l  (rap,  szs) 
corresponds to a node of the tree and is a pair of a mass point mp and the sizes 
of the subtrees szs (tuples can be named in NESL). Given such a vectorized t r e e ,  
the acceleration of a set of mass points raps is computed by 

fUnCtiOll accels (tree, mps) : ([Cell], [MassPnt]) -> [Vec] = 
if #mps == 0 then [] 
else let Cell (cd, chNos) = tree[O]; --get root (.) 

<split raps into closeMps and farMps (direct force calculation)) 
farAcs -- {accel (ca, mp) : lap in farMps}; 
subTrees = partition (drop (tree, I), chNos); (*) 
closeAcss = {accels (tree, closeMps) : tree in subTrees}; 

in (combine farAcs and closeAcss) 

It computes the acceleration for the mass points in farMps directly (using the 
function accel) and recurses into the tree for those in closeMps. The function 
drop omits the first element of a vector and partition forms a nested vector 
according to the lengths passed in the second argument  (it is the same as 7 ~ in 
the next section). The type Vec represents 'vectors '  in the sense of physics. 

The lines marked by (*) in the functions are (partially) artifacts of mainta in-  
ing the tree as a vector. Figure 1 depicts the grouping of an exemplary particle 
distribution and the corresponding tree. The tree is both  built and traversed 
level by level, i.e., all nodes in one level of the tree are processed in a parallel 
step. Let us consider the da ta  layout (over two processors) for the example  tree 
in Figure 1. To ensure proper load balancing, all cells of the already constructed 
subtrees have to be redistributed in each recursive step of bhTree .  Similarly, 
a c c e l s ,  while descending the tree, has to redistribute those cells tha t  corre- 
spond to one level of the tree. We will quantify these costs experimental ly in 
Section 4. 

It  should be clear that  it is more suitable to store the nodes of the tree 
in a distinct vector for each level of the tree, and then, to chain these vectors 
to represent the whole tree. At the source level, such a structure corresponds to 
regarding each node as being composed from some node da ta  plus a vector of tree 
nodes that  have exactly the same structure; in other words, we need a recursive 
type. For our example,  we can use d a t a t y p e  Node (MassPnt ,  [Node]) .  Then,  
we simplify the function b h t r e e  as follows: We omit  comput ing e h i l d r e t t  and 
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sizes, we compute cdby centroid ({mp : Node (rap, chs) in trees}), and 
change the body of the let into Node (cd, subtrees). In accels, computing 
subtrees becomes superfluous, and closeAcss is computed by accels (tree, 
closeMps) : tree in subtrees} where Node (cd, snbtrees) = tree. 

Generally, we extend NESL with named tuples that  refer to themselves, but 
only in the element type of a vector (to avoid infinite types), as we can terminate 
recursion only by empty vectors--there are no arbitrary sum types. Handling 
sum types efficiently in flattening seems much harder than recursive types. 

3 F l a t t e n i n g  T r e e s  b y  P r o g r a m  T r a n s f o r m a t i o n  

After the source language extension, we proceed to the implementation of user- 
defined recursive types by flattening. The flattening transformation serves three 
aims: First, it replaces all nested parallel expressions by flat parallel expressions 
that  contain the same degree of parallelism, second, it changes the representation 
of data  structures such that vectors contain only elements of base type, and third, 
it replaces all polymorphic vector primitives with monomorphic instances. 

In this section, we begin by introducing the flat data-parallel kernel lan- 
guage FKL, which is the target language of the first part of the flattening trans- 
formation. We continue with a discussion of the target representation of data  
structures, and then, describe an instantiation procedure, which implements the 
change of the representation of data  structures as well as the generation of all 
necessary monomorphic instances of the primitives. Due to changing the rep- 
resentation of data  structures, the instantiation of the polymorphic primitives 
becomes technically challenging--especially so, in the presence of recursive types. 
The representation of recursive types together with the instantiation procedure 
are the central technical contributions of this paper. 

Although the instantiation of the polymorphic primitives--excluding recur- 
sive types-- is  already implicit in previous work, it was never described in detail 
(for example, Blelloch [4] merely gives some examples and leaves the non-trivial 
induction of a general algorithm to the inclined reader); in particular, we provide 
the first formal specification. Our treatment also leads to more efficient code on 
distributed-memory machines than previous approaches (which concentrated on 
vector and shared-memory machines). A central idea of our method is the fact 
that  only the primitive vector operations actually access or manipulate elements 
of nested vectors. Therefore, we can regard nested vectors as an abstract da ta  
type with some freedom in the concrete implementation. 

We will not discuss the first step of the flattening, as it is already detailed 
in previous work [4, 11, 10] and not affected by the addition of recursive types - -  
however, a complete specification of the flattening transformation can be found 
in an unabridged version of this paper [8]. 

3.1 The  Flat Kerne l  Language  

A kernel language (FKL) program consists of a list of declarations produced by 
the rule D-+  V (V1, . . .  , V~) = Ewith  variables V and expressions produced by 
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E -+ C [ V I V (El  . . . .  , E~)I let  V = Ea in E21 if  E1 t h e n  }~2 else Ezl [E~ , . . . ,  E~] 

where C are constants. We assume programs are typed, with types from 

T -+ Int  I Bool I V I ( T ~ , . . .  , T~)  ] [T] I t~V.T 

For brevity, we only have Int  and Bool as pr imit ive  types.  In a recursive 
type  # x . T ,  all occurrences of x in T must  be within element  types of vectors 
(to get a finite type) .  For example,  the type  Node of Section 2 is represented as 
px . (MassPn t ,  Ix]), where MassPnt  abbreviates  the tuple  of a mass  point .  

The  second component  of FKL are its pr imit ive  operat ions.  Among  the 
most  impor t an t  are the usual ar i thmet ic  and logic operat ions as well as con- 
s t ruct ion of tuples r "  : c~ x . . .  x ~,, -+ ( c ~ , . . .  , c~)  and the corresponding 

i project ions ~r~ : ( c ~ , . . . ,  c~)  --+ cq (the funct ion type  is given to  the right of 
the colon). The  vector operat ions include operat ions  length # : [c~] --+ Int,  con- 
ca tena t ion  -H- : [c~] x [~] --+ [c~], and indexing i nd :  [c~] x Int  --+ o~. Moreover,  we 
have dis t r ibut ion dist : c~ x Int -+ [c~], where dist (a, n) yields [a , . . .  , a] with 
length n, pe rmuta t ion  perm:  [cu] x [Int] --+ [c~], where perm (as, is) permutes  
xs according to the index vector is, packing pack:  [c~] x [Bool] --+ [c~], where 
pack (xs , fs)  removes all elements f rom xs tha t  correspond to a false value in 
fs. Furthermore ,  there are families of reduct ion | : [r] --+ r and prescan 
|  : [r] --+ Iv] functions for associative binary primit ives | opera t ing  on 
da t a  of basic type  r .  Finally, FKL contains three functions tha t  form the basis for 
handl ing nested vectors: U :  [[c~]]--+ [c~] correspond to + + - r e d u c e  and removes 
one level of nesting, e.g., 5 c ([[1, 2, 31, ~, [4, 5]]) = [1, 2, 3, 4, 5]; $ :  [[a]] --+ [Int] cor- 
responds to { # x s  : xs +-- xss} and returns the toplevel nesting s t ructure ,  e.g., 
8 ([[1, 2, 3], ~, [4, 5]]) = [3, 0, 2]; and 7~: [a] x [Int] --+ [Jail reconstructs  a nested 
vector f rom the results of the previous two function,  e.g., 7 ) ([1,2, 3, 4, 5], [3, 0, 2]) 
= [[1, 2, 3], ~, [4,511. For each nested vector xs, we have 7 ) (U (~s), $ (xs)) = xs. 
We write the applicat ion of primitives like ~ infix. Some of the pr imit ives  are 
po lymorph ic  (those with c~ in the type) and, as said, we discuss their  ins tan t ia t ion  
later,  but  we assume tha t  in an I?KL program all po lymorph ism in user-defined 
funct ions is already removed (by code dupl icat ion and type  speciMization).  

To compensa te  the lack of general nested parallel ism (i.e., no apply- to-each 
construct) ,  FKL suppor ts  all pr imit ive funct ions p : T1 x �9 �9 �9 x T,~ -+ T in a vector-  
ized form pt  : [T~] x . . .  x [T~] --+ [T], which applies p in parallel to all the elements  
of its a rgument  vectors (which must  be of the same length).  For example ,  we have 
[1,2, 3] +tz, t [4, 5, 6] = [5, 7, 9]. In general, a pr imit ive  and its vectorized form re- 
late through p t ( x s l , . . . , x ' s ~ )  = { p ( x l , . . . , x ~ )  : xl +- x s l , . . . , x ,  +-- xs~}. Note,  
the par t  of the t ransformat ion  generat ing FIlL guarantees  tha t  nothing like (p t ) t  
is needed. The  next  subsection introduces two addi t ional  sets of primitives:  One 
handles recursive types and the other, a l though not str ict ly necessary, handles 
some operat ions  on nested vectors more efficiently. We delay the discussion of 
these primit ives as it benefits f rom knowing the target  da t a  representat ion.  

We choose FKL as the target  language as there are opt imizing code-generat ion 
techniques mapping  it on different parallel archi tectures [2, 7, 9]. 



714 

3.2 C o n c r e t e  D a t a  R e p r e s e n t a t i o n  

Before presenting the instantiation procedure for polymorphic primitives, we 
discuss an efficient target representation of nested vectors, vectors of tuples, and 
vectors of recursive types. 

N e s t e d  vec tors .  We can represent nested vectors of basic type using only fiat 
vectors by separating the data elements from the nesting structure. For example, 
[[1, 2, 3], D, [4, 5]] is represented by a pair consisting of the data  vector [1, 2, 3, 4, 5] 
and the segment descriptor [3, 0, 2] containing the lengths of the subvectors. The 
primitives 5 r and S extract these two components, whereas 7 ) combines them 
into an abstract compound structure representing a nested vector. In general, 
this representation requires a single data  vector and one segment descriptor 
per nesting level of the represented vector. Instances of polymorphic primitives 
operating on these nested vectors can be realised by combining primitives on 
vectors of basic type with the functions jr, S, and 7), as we will see below. 

This representation allows an optimized treatment of costly reordering prim- 
itives, such as permutation. Consider the expression perm t (as, is), where as is 
of type [[int]]. Both the data vector and the segment descriptor of as have to 
be permuted. We have perm' (as, is) = 7 ) (perm (Jr (as), is'), perm (S (as), is)), 
where perm operates on vectors of type lnt and is ~ is a new permutation vector 
computed from is and S (as). So, for example, perm' ([[3, 4, 5], [1, 3]], [1, 0]) = 
7) (perm ([3, 4, 5, 1, 3], [2, 3, 4, 0, 1]), perm ([3, 2], [1, 0])). 

This scheme is expensive, because (a) a new index vector is' is computed for 
each level of nesting, and moreover, (b) the data vector is permuted elementwise, 
whereas the original expression allows to deduce that several continuous blocks 
of elements (the subvectors) are permuted, i.e., we lose information about the 
structure of communication. We can prevent this behaviour by employing an 
additional set of primitive functions, the so-called chunkwise operations distC, 
permC, arid indC. The operation distC gets a vector together with a natural 
number and yields a vector that repeats the input vector as often as specified 
by the second argument. The operations permC and indC both get three argu- 
ments: (1) a flat data  vector, (2) a segment descriptor, and (3) an index vector 
or index position (depending on the function). They permute and index blocks 
of the data vector chunkwise, where the chunk size is specified by the segment 
descriptor. Their semantics is defined as permC (xs, s, is) = perm' (7) (xs, s), is) 
and indC (xs, s, i) = i n d '  (7) (zs, s), i), respectively, where perm' and ind' oper- 
ate on vectors of type [[s]] when xs is of type Is] and s is a basic type. Their 
implementation using blockwise communication is straightforward. 

Vectors  of  tup les .  Vectors of tuples are represented by tuples of vectors. Ac- 
cordingly, applications of vector primitives operating on such vectors are pulled 
inside the tuple, as proposed by [4]. 

R e c u r s i v e  Types .  The most complicated case is the representation of vectors 
of recursive types by vectors of basic type in such a way that  the nodes of each 
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level of the represented tree structure are stored in a separate vector (as discussed 
in Section 2). In Subsection 3.1 we required that,  in a recursive type #x. T, each 
occurrence of x in T has the form [x]. Let us consider the possible contexts of 
these occurrences. If the outermost  type constructor of T is a primit ive type (e.g., 
Int), there is no recursion and we represent T as usual. But, if the outermost  type 
constructor of T is a vector, we have [[x]], i.e., a nested vector of recursive type. 
Similar to nested vectors of basic type, we regard them as an abstract  structure 
manipulated by the three functions Y, $, and P .  Next, if the outermost  type 
constructor of T is a tuple, we have to represent it as a tuple of vectors like in 
the non-recursive case, while treating the components of the resulting tuple in 
the same way as T itself. Finally, if the outermost  type constructor of T is a 
recursive type of the form px' .  T ~, no special t rea tment  is necessary, apar t  f rom 
handling T ~ in the same way as T. 

Overall, any occurrence of a recursive type variable x (except in the root of a 
tree) is represented by [[x]], due to the propagat ion of vectors inside tuples and 
the requirement tha t  x occurs only as Ix]. Thus, these occurrences are manip-  
ulated by S ,  3, and P .  These functions allow us to represent a tree structure 
of potentially unbounded depth using only flat vectors by separating da ta  from 
nesting structure. Nevertheless, a problem remains: For nested vectors, the nest- 
ing depth of the data  is statically known (due to strong typing), but not so for 
the depth of a recursive type. Hence, we get a sequence of segment descriptors 
of statically unknown length. Each of these is accompanied by the da ta  vector 
for one level of the tree. A value of recursive type #x. T is always terminated by 
empty  vectors of a recursive occurrence ac in T, but due to the propagat ion of 
vectors inside tuples, we need a special value to identify the recursion termina-  
tion. Hence, we wrap the representation of vectors of recursive type into a maybe 
type (c~}, which is either @} (where x is of type c~) or (}. To process values of 
type (a}, we add two primitives (.?) : (a} --+ Bool and (.$) : (a} -+ a. Operat ion 
(.?) yields true if the argument  has the form {x}, in this case, ('1") returns x (it 
is undefined, otherwise). The tree of Figure 1 is represented by (co, v) with 

v = (([c,, c2, c3, p,])), "P (w, [2,2,2,0])) x = (([P6,pv,Pa,pg], "P (y,[0,0,0,0]))} 
., <([,:~,,'~,;,~,;,~,;,~,v.q, 'P ( . , : , [~,2,0,0,0,01)))  v (([1, "r (<>,[]))> 

3.3 In s tan t ia t i on  of  P o l y m o r p h i c  Funct ions  

Now, we are in a position to define the instantiation of the polymorphic  uses of 
primitives. We denote the type of an instance of a primitive by annotat ing the 
type substituted for the type variable (a in the signatures from Subsection 3.1) 
as a subscript. For example, -H-[Int] has type [[Int]] • [[Int]] -+ [lint]], and we 
have to generate instances for all occurrences apart  from -H-Int and -H-Bool. The 
generic primitives r " ,  7r~, ~ ,  ~v, 3, and 7) are not instantiated as their code is 
independent of the type instance. 

T h e  t r a n s f o r m a t i o n  a l g o r i t h m .  In the presence of recursive types, we cannot 
t ransform the program by replacing uses of polymorphic  primitives with expres- 
sions that  merely use primitives on basic type; instead, we add new declarations 
to a program,  until all uses of primitives are either directly supported or covered 
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by a previously added declaration. The addition of a declaration may  introduce 
primitives occurring at new instances, which in turn triggers the addition of 
declarations for these instances. We discuss the terminat ion of this process later. 

Each equation says that  if a primitive occurs at a type matching the left 
hand-side, add a declaration that  is an instance of the right hand-side for tha t  
type. We star t  with the distribution dist, together with its chunkwise variant:  

dist(T ...... T.) (x, n) = (distw~ (Try(x), n ) , . . . ,  distT, (7~(x), n)) 
dist,~.v (x, n) 
dist[T] (X, n) 

distCux. T (xs, n) 
distQr] (xs, n) 

= P(distC[T] (x, n), distr~t (#x,  n)) 

= i f  xs? t h e n  distCT{pz, r /z}  (xs~, n) e l s e  () 
= P(distC[T] (.T (xs), n), distCznt (S (xs), n)) 

The rules for tuples propagate the function inside. Vectors are distr ibuted using 
tile chunkwise version, of which the second rule demonstrates  the handling of the 
maybe  type (@. We omit  the rules for tuples in the following, as they have the 
same structure as above. The next set of rules covers chunkwise concatenation: 

xs -H-ux.T ys = i f  xs? t h e n  (if ys? t h e n  xs? +~-T{,~.T/z} ys$ e l se  as) else  ys 
~s +~c~1 y" = p(y(xs)  ~+~ f (ys)) ,  s(xs) +~i~t S(ys)) 

We continue with plain and chunkwise indexing. Note that  indexing an empty  
vector of recursive type leads to an error as the index is out of bounds. 

ind,~. T (xs, i) = i f  xs? t h e n  indT{,~. T/~:} (XS, i) else  e r r o r  

i .d M (~ ,  i) = inac~ (S(~s), s(~s), i) 

indC,~.7" (xs, s, i) = i f  xs? t h e n  indCT{~.T/x] (xs, s, i) else  () 

indqT] (xs, s, i) = P( indCr (7(xs), +z,t-~educe r (P (8(xs), s) ), i), 
indCr~t (S(xs), s, i)) 

For indC[T], the segment descriptor passed to the recursave call is computed  by 
summing  over the segments of the current level. For space reasons, we omit  the 
rules for perm, pack, and combine. They are similar to ind, but, e.g., permut ing  
an empty vector does not raise an error, but  returns the empty  vector. Finally, 
considering vectorized primitives, the rules for types (T1, .  �9 �9 , T~) and #x. T are 
as above; for [T], the vectorized version is generated by vectorizing the above 
rules-- this  vectorization is essentially the same as the first step of the flattening 
t ransformation that  was mentioned in the beginning of the present section. The 
details of this and of handling perm, pack, and combine can be found in [8]. 

T e r m i n a t i o n .  Considering the terminat ion of the above process, we see that  
for each primitive p, the rules for instances P(T,,...,T,) and P[5,] decrease the 
structural  depth of the type subscript. Merely the rules for P,x.T may  be prob- 
lematic as they recursively unfold the type in their right hand-side. However, in 
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Fig. 2. Absolute time and relative speed-up for Barnes-Hut on a Cray T3E. 

the definition of the kernel languages, we required that  type variables bound by 
# occur only as the element type of a vector. So, for all occurrences where the 
type unfolding substitutes the recursive type, we get an expression tha t  requires 
p[u~. T]. If p is a chunk operation or -H-, the right hand-side of an instance of the 
rule for P[T,] with T ~ = r T requires PU,:.T, which is exactly the instance we 
star ted with and which, therefore, is already defined. I f p  is neither a chunk oper- 
ation nor -H-, it requires the corresponding ehunkwise operation and we already 
discussed the termination for chunkwise operations. 

4 Exper imenta l  Resul ts  

We measured the accumulated runtime of the expressions in the l e t - b i n d i n g  
of b h t r e e  (Section 2) for the original NEsL-program using 15,000 particles and 
CMU-NESL [2] (on a single processor, 200MHz Pen t ium/Linux  machine),  to 
quantify the overhead of mapping  the tree structure to a vector. From the overall 
runt ime of 1.75 seconds, 0.5 seconds (29%) are spend on the operations intro- 
duced by the mapping.  We gathered this da ta  on a sequential machine, due to 
inaccurate profiling information from CMU-NESL on the Cray T3E.  The inef- 
ficiencies would even be worse in a parallel run, since these operations include 
algorithmically unnecessary reordering operations, which cause communicat ion.  

To measure our proposed techniques for implementing recursive types, we 
t imed an implementat ion of Barnes-Hut generated using the presented rules. 1 
Figure 2 shows the t iming of a single simulation step on a Cray T 3 E  for 9000 and 
20000 particles as well as the relative speedup and the absolute speed up (we only 
had access to 20 processors). The relative speedup is already quite close to the 
theoretical opt imal  speedup, but the absolute speedup shows that  there is still 
room for improvement  and we already know some possible optimizations.  We 
did not compare CMU-NEsL and our implementat ion on the Cray T 3 E  directly, 
since our code generation techniques for the flat language already outper form 
CMU-NESL by more than an order of magni tude [9]. 

The code was 'hand-generated'; we m'e currently implementing a compiler. 
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5 C o n c l u s i o n  

After its introduction by Blelloch & Sabot, flattening has received considerable 
attention, but to the best of our knowledge, we are the first to extend flattening 
to tree structures. There are other approaches to implementing nested data-  
parallelism, and of course, there is a wealth of literature on trees in parallel 
computing,  but we do not have the space to discuss this work he re - - some  of it 
is discussed in [8]. Our extension is easily integrated into existing systems and 
the gathered benchmarks support  the efficiency of the generated code. 
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