
Flattening Trees

Gabriele Keller 1 and Manuel M. T. Chakravarty 2

I FachbereichInformatik, Technische Universits Berlin, Germany
ke l l e r0cs . tu -be r l in .de

2 Inst. ofIn~rm. Sciences and Electronics, University of Tsukuba, Japan
chakOis.tsukuba.ae.jp

Abstract . Nested data-parallelism can be efficiently implemented by
mapping it to flat parallelism using Blelloch 8z Sabot's flattening trans-
formation. So far, the only dynamic data structure supported by flat-
tening are vectors. We extend it with support for user-defined recursive
types, which allow parallel tree structures to be defined. Thus, important
parallel algorithms can be implemented more clearly and efficiently.

1 I n t r o d u c t i o n

The flattening transformation of Blelloch ~: Sabot [6, 4] implements nested data-
parallelism by mapping it to flat data-parallelism. Compared to flat parallelism,
nested parallelism allows algorithms to be expressed on a higher level of ab-
straction while providing a language-based performance model [5]; in particular,
algorithms operating on irregular data structures and divide-and-conquer algo-
rithms benefit from nested parallelism. Efficient code can be generated for a wide
range of parallel machines [2, 11, 12, 10]. However, flattening supports only vec-
tots (i.e., homogeneous, ordered sequences) as dynamic data structures. Thus,
important parallel algorithms, like hierarchical n-body codes and other adaptive
algorithms based on tree structures, are awkward to program--the tree structure
has to be mapped to a vector structure, implying explicit index calculations, to
keep track of the parent-child relation, and leading to a suboptimM data distri-
bution on distributed-memory machines.

In this paper, we propose user-defined recursive types to tackle the men-
tioned problems. We extend flattening such that it maps the new structures to
efficient, fiat data-parallel code. Our extension fits easily into existing formal-
izations and implementations of flattening; in particular, the optimization tech-
niques of previous work [11, 12, 10,7,9] remain applicable. This paper makes
the following three main contributions: (1) It demonstrates the usefulness of
recursive types for nested data-parallel languages (Section 2), (2) it formally
specifies our extension of flattening including user-defined recursive types (Sec-
tion 3), and (3) it provides experimental results gathered with the resulting code
on a Cray T3E (Section 4). Regarding point (2), as a side-effect of our exten-
sion, we contribute to a rigorous specification of flattening by formMizing the
instantiation of polymorphic primitives. Thereby, we also introduce a new kind

710

of primitives, so-called chunkwise operations, for more efficient da ta redistribu-
tion on distributed-rnemory machines. We use the functional language NESL [5]
throughout this paper, but the discussed techniques also work for imperative
languages [1]. Many details and discussions have been omitted in this paper due
to shortage of space--this material can be found in [8].

Section 2 discusses the benefit of recursive types for tree-based algorithms in
a purely vector-oriented language. Section 3 formalizes our extended flattening
transformation. Section 4 presents benchmarks. Finally, Section 5 concludes.

2 T h e P r o b l e m : E n c o d i n g T r e e s b y V e c t o r s

NESL [5] is strict functional language featuring nested vectors as its central da ta
structure. In addition to built-in parallel operations on vectors, the apply-to-
each construct is used to express parallelism. In its general form {e : xl in
el x~ in e~ I f} we call e the body, the x~ in e~ the generators, and
f (which is optional) the filter. The body e is evaluated for each element of
the vectors ei and the result is included in the result vector if f evaluates to
T (true); the vectors ei are required to be of equal length and are processed in
lock-step. For example ,{x + y : x in [1, -2 , 3] , y in [4, 5, 6] I x >
0} evaluates to [5, 9]. Nested parallelism occurs where parallel operations ap-
pear in the body of an apply-to-each, e.g., {plus_scan (x) : x in xs}, which
f o r x s = [[1 , 2, 3] , [4] , [5, 6]] yields [[0 , 1, 3] , [0] , [0, 5]] . The
built-in p lus_scan is a prescan using addition [4].

The implementation of a tree-based algorithm in such a language implies
representing trees by nested vectors, obscuring the code with explicit index cal-
culations, to keep track of the parent-child relation. Moreover, in an implemen-
tat ion based on flattening, these nested vectors are represented by a set of flat
vectors in the target code. All data elements of the tree are mapped to a single
vector and are uniformly distributed to achieve load balancing. This, however,
leads to superfluous redistributions as those algorithms usually traverse the trees
breadth-first, i.e., level by level, all nodes on one level are processed in parallel.

We illustrate these problems at the example of Barnes ~: Hut 's hierarchicM
n-body code [3]. It minimizes the number of force calculations by grouping par-
ticles hierarchicMly into cells according to their spatial position. The hierarchy
is represented by a tree. This allows approximating the accelerations induced by
a group of particles on distant particles by using the centroid of that group's
cell. The algorithm has two phases: (1) The tree is constructed from a particle
set, and (2) the acceleration for each particle is computed in a down-sweep over
the tree. The following NESL function outlines the tree construction:

function bhTree (ps) : [MassPnt] -> [Cell] =
if #ps == I then [Cell (ps[O], [])] -- cell has only one particle
else let (split particles ps into spatial groups pgs>

subtrees = {bhTree (pg): pg in pgs};
children = {subtree[O] : subtree in subtrees}; (*)
cd = centroid ({mp : Cell (mp, is) in children});

711

ci 2 e3 I-1
r~ /\ /\ /\

I/:.7 I/=.6 F4 F6 1-7 I:-8 F9

I 'r" [r-~ [[[cl c4 c5 r6 r7 r8 r-9],[c2 r2 r-3] [c3 r4 rs] Iv.l]][
1-5 I I7-9 ! Processor 1 a. Processor 2 I

Fig. 1. Example of a Barnes-Hut tree and its representation as a vector.

sizes : {#subtree : subtree in subtrees} (*)

in [Cell (cd, s i z e s)] ++ f l a t t e n (subt rees) - - whole tree as flat vector (*)

We represent the tree as a vector o f cells. Each cell of the form C e l l (rap, szs)
corresponds to a node of the tree and is a pair of a mass point mp and the sizes
of the subtrees szs (tuples can be named in NESL). Given such a vectorized t r e e ,
the acceleration of a set of mass points raps is computed by

fUnCtiOll accels (tree, mps) : ([Cell], [MassPnt]) -> [Vec] =
if #mps == 0 then []
else let Cell (cd, chNos) = tree[O]; --get root (.)

<split raps into closeMps and farMps (direct force calculation))
farAcs -- {accel (ca, mp) : lap in farMps};
subTrees = partition (drop (tree, I), chNos); (*)
closeAcss = {accels (tree, closeMps) : tree in subTrees};

in (combine farAcs and closeAcss)

It computes the acceleration for the mass points in farMps directly (using the
function accel) and recurses into the tree for those in closeMps. The function
drop omits the first element of a vector and partition forms a nested vector
according to the lengths passed in the second argument (it is the same as 7 ~ in
the next section). The type Vec represents 'vectors ' in the sense of physics.

The lines marked by (*) in the functions are (partially) artifacts of mainta in-
ing the tree as a vector. Figure 1 depicts the grouping of an exemplary particle
distribution and the corresponding tree. The tree is both built and traversed
level by level, i.e., all nodes in one level of the tree are processed in a parallel
step. Let us consider the da ta layout (over two processors) for the example tree
in Figure 1. To ensure proper load balancing, all cells of the already constructed
subtrees have to be redistributed in each recursive step of bhTree . Similarly,
a c c e l s , while descending the tree, has to redistribute those cells tha t corre-
spond to one level of the tree. We will quantify these costs experimental ly in
Section 4.

It should be clear that it is more suitable to store the nodes of the tree
in a distinct vector for each level of the tree, and then, to chain these vectors
to represent the whole tree. At the source level, such a structure corresponds to
regarding each node as being composed from some node da ta plus a vector of tree
nodes that have exactly the same structure; in other words, we need a recursive
type. For our example, we can use d a t a t y p e Node (MassPnt , [Node]) . Then,
we simplify the function b h t r e e as follows: We omit comput ing e h i l d r e t t and

712

sizes, we compute cdby centroid ({mp : Node (rap, chs) in trees}), and
change the body of the let into Node (cd, subtrees). In accels, computing
subtrees becomes superfluous, and closeAcss is computed by accels (tree,
closeMps) : tree in subtrees} where Node (cd, snbtrees) = tree.

Generally, we extend NESL with named tuples that refer to themselves, but
only in the element type of a vector (to avoid infinite types), as we can terminate
recursion only by empty vectors--there are no arbitrary sum types. Handling
sum types efficiently in flattening seems much harder than recursive types.

3 F l a t t e n i n g T r e e s b y P r o g r a m T r a n s f o r m a t i o n

After the source language extension, we proceed to the implementation of user-
defined recursive types by flattening. The flattening transformation serves three
aims: First, it replaces all nested parallel expressions by flat parallel expressions
that contain the same degree of parallelism, second, it changes the representation
of data structures such that vectors contain only elements of base type, and third,
it replaces all polymorphic vector primitives with monomorphic instances.

In this section, we begin by introducing the flat data-parallel kernel lan-
guage FKL, which is the target language of the first part of the flattening trans-
formation. We continue with a discussion of the target representation of data
structures, and then, describe an instantiation procedure, which implements the
change of the representation of data structures as well as the generation of all
necessary monomorphic instances of the primitives. Due to changing the rep-
resentation of data structures, the instantiation of the polymorphic primitives
becomes technically challenging--especially so, in the presence of recursive types.
The representation of recursive types together with the instantiation procedure
are the central technical contributions of this paper.

Although the instantiation of the polymorphic primitives--excluding recur-
sive types-- is already implicit in previous work, it was never described in detail
(for example, Blelloch [4] merely gives some examples and leaves the non-trivial
induction of a general algorithm to the inclined reader); in particular, we provide
the first formal specification. Our treatment also leads to more efficient code on
distributed-memory machines than previous approaches (which concentrated on
vector and shared-memory machines). A central idea of our method is the fact
that only the primitive vector operations actually access or manipulate elements
of nested vectors. Therefore, we can regard nested vectors as an abstract da ta
type with some freedom in the concrete implementation.

We will not discuss the first step of the flattening, as it is already detailed
in previous work [4, 11, 10] and not affected by the addition of recursive types - -
however, a complete specification of the flattening transformation can be found
in an unabridged version of this paper [8].

3.1 The Flat Kerne l Language

A kernel language (FKL) program consists of a list of declarations produced by
the rule D-+ V (V1, . . . , V~) = Ewith variables V and expressions produced by

713

E -+ C [V I V (El , E~)I let V = Ea in E21 if E1 t h e n }~2 else Ezl [E~ , . . . , E~]

where C are constants. We assume programs are typed, with types from

T -+ Int I Bool I V I (T ~ , . . . , T~)] [T] I t~V.T

For brevity, we only have Int and Bool as pr imit ive types. In a recursive
type # x . T , all occurrences of x in T must be within element types of vectors
(to get a finite type) . For example, the type Node of Section 2 is represented as
px . (MassPn t , Ix]), where MassPnt abbreviates the tuple of a mass point .

The second component of FKL are its pr imit ive operat ions. Among the
most impor t an t are the usual ar i thmet ic and logic operat ions as well as con-
s t ruct ion of tuples r " : c~ x . . . x ~,, -+ (c ~ , . . . , c~) and the corresponding

i project ions ~r~ : (c ~ , . . . , c~) --+ cq (the funct ion type is given to the right of
the colon). The vector operat ions include operat ions length # : [c~] --+ Int, con-
ca tena t ion -H- : [c~] x [~] --+ [c~], and indexing i nd : [c~] x Int --+ o~. Moreover, we
have dis t r ibut ion dist : c~ x Int -+ [c~], where dist (a, n) yields [a , . . . , a] with
length n, pe rmuta t ion perm: [cu] x [Int] --+ [c~], where perm (as, is) permutes
xs according to the index vector is, packing pack: [c~] x [Bool] --+ [c~], where
pack (xs , fs) removes all elements f rom xs tha t correspond to a false value in
fs. Furthermore , there are families of reduct ion | : [r] --+ r and prescan
| : [r] --+ Iv] functions for associative binary primit ives | opera t ing on
da t a of basic type r . Finally, FKL contains three functions tha t form the basis for
handl ing nested vectors: U : [[c~]]--+ [c~] correspond to + + - r e d u c e and removes
one level of nesting, e.g., 5 c ([[1, 2, 31, ~, [4, 5]]) = [1, 2, 3, 4, 5]; $: [[a]] --+ [Int] cor-
responds to { # x s : xs +-- xss} and returns the toplevel nesting s t ructure , e.g.,
8 ([[1, 2, 3], ~, [4, 5]]) = [3, 0, 2]; and 7~: [a] x [Int] --+ [Jail reconstructs a nested
vector f rom the results of the previous two function, e.g., 7) ([1,2, 3, 4, 5], [3, 0, 2])
= [[1, 2, 3], ~, [4,511. For each nested vector xs, we have 7) (U (~s), $ (xs)) = xs.
We write the applicat ion of primitives like ~ infix. Some of the pr imit ives are
po lymorph ic (those with c~ in the type) and, as said, we discuss their ins tan t ia t ion
later, but we assume tha t in an I?KL program all po lymorph ism in user-defined
funct ions is already removed (by code dupl icat ion and type speciMization).

To compensa te the lack of general nested parallel ism (i.e., no apply- to-each
construct) , FKL suppor ts all pr imit ive funct ions p : T1 x �9 �9 �9 x T,~ -+ T in a vector-
ized form pt : [T~] x . . . x [T~] --+ [T], which applies p in parallel to all the elements
of its a rgument vectors (which must be of the same length). For example , we have
[1,2, 3] +tz, t [4, 5, 6] = [5, 7, 9]. In general, a pr imit ive and its vectorized form re-
late through p t (x s l , . . . , x ' s ~) = { p (x l , . . . , x ~) : xl +- x s l , . . . , x , +-- xs~}. Note,
the par t of the t ransformat ion generat ing FIlL guarantees tha t nothing like (p t) t
is needed. The next subsection introduces two addi t ional sets of primitives: One
handles recursive types and the other, a l though not str ict ly necessary, handles
some operat ions on nested vectors more efficiently. We delay the discussion of
these primit ives as it benefits f rom knowing the target da t a representat ion.

We choose FKL as the target language as there are opt imizing code-generat ion
techniques mapping it on different parallel archi tectures [2, 7, 9].

714

3.2 C o n c r e t e D a t a R e p r e s e n t a t i o n

Before presenting the instantiation procedure for polymorphic primitives, we
discuss an efficient target representation of nested vectors, vectors of tuples, and
vectors of recursive types.

N e s t e d vec tors . We can represent nested vectors of basic type using only fiat
vectors by separating the data elements from the nesting structure. For example,
[[1, 2, 3], D, [4, 5]] is represented by a pair consisting of the data vector [1, 2, 3, 4, 5]
and the segment descriptor [3, 0, 2] containing the lengths of the subvectors. The
primitives 5 r and S extract these two components, whereas 7) combines them
into an abstract compound structure representing a nested vector. In general,
this representation requires a single data vector and one segment descriptor
per nesting level of the represented vector. Instances of polymorphic primitives
operating on these nested vectors can be realised by combining primitives on
vectors of basic type with the functions jr, S, and 7), as we will see below.

This representation allows an optimized treatment of costly reordering prim-
itives, such as permutation. Consider the expression perm t (as, is), where as is
of type [[int]]. Both the data vector and the segment descriptor of as have to
be permuted. We have perm' (as, is) = 7) (perm (Jr (as), is'), perm (S (as), is)),
where perm operates on vectors of type lnt and is ~ is a new permutation vector
computed from is and S (as). So, for example, perm' ([[3, 4, 5], [1, 3]], [1, 0]) =
7) (perm ([3, 4, 5, 1, 3], [2, 3, 4, 0, 1]), perm ([3, 2], [1, 0])).

This scheme is expensive, because (a) a new index vector is' is computed for
each level of nesting, and moreover, (b) the data vector is permuted elementwise,
whereas the original expression allows to deduce that several continuous blocks
of elements (the subvectors) are permuted, i.e., we lose information about the
structure of communication. We can prevent this behaviour by employing an
additional set of primitive functions, the so-called chunkwise operations distC,
permC, arid indC. The operation distC gets a vector together with a natural
number and yields a vector that repeats the input vector as often as specified
by the second argument. The operations permC and indC both get three argu-
ments: (1) a flat data vector, (2) a segment descriptor, and (3) an index vector
or index position (depending on the function). They permute and index blocks
of the data vector chunkwise, where the chunk size is specified by the segment
descriptor. Their semantics is defined as permC (xs, s, is) = perm' (7) (xs, s), is)
and indC (xs, s, i) = i n d ' (7) (zs, s), i), respectively, where perm' and ind' oper-
ate on vectors of type [[s]] when xs is of type Is] and s is a basic type. Their
implementation using blockwise communication is straightforward.

Vectors of tup les . Vectors of tuples are represented by tuples of vectors. Ac-
cordingly, applications of vector primitives operating on such vectors are pulled
inside the tuple, as proposed by [4].

R e c u r s i v e Types . The most complicated case is the representation of vectors
of recursive types by vectors of basic type in such a way that the nodes of each

715

level of the represented tree structure are stored in a separate vector (as discussed
in Section 2). In Subsection 3.1 we required that, in a recursive type #x. T, each
occurrence of x in T has the form [x]. Let us consider the possible contexts of
these occurrences. If the outermost type constructor of T is a primit ive type (e.g.,
Int), there is no recursion and we represent T as usual. But, if the outermost type
constructor of T is a vector, we have [[x]], i.e., a nested vector of recursive type.
Similar to nested vectors of basic type, we regard them as an abstract structure
manipulated by the three functions Y, $, and P . Next, if the outermost type
constructor of T is a tuple, we have to represent it as a tuple of vectors like in
the non-recursive case, while treating the components of the resulting tuple in
the same way as T itself. Finally, if the outermost type constructor of T is a
recursive type of the form px' . T ~, no special t rea tment is necessary, apar t f rom
handling T ~ in the same way as T.

Overall, any occurrence of a recursive type variable x (except in the root of a
tree) is represented by [[x]], due to the propagat ion of vectors inside tuples and
the requirement tha t x occurs only as Ix]. Thus, these occurrences are manip-
ulated by S , 3, and P . These functions allow us to represent a tree structure
of potentially unbounded depth using only flat vectors by separating da ta from
nesting structure. Nevertheless, a problem remains: For nested vectors, the nest-
ing depth of the data is statically known (due to strong typing), but not so for
the depth of a recursive type. Hence, we get a sequence of segment descriptors
of statically unknown length. Each of these is accompanied by the da ta vector
for one level of the tree. A value of recursive type #x. T is always terminated by
empty vectors of a recursive occurrence ac in T, but due to the propagat ion of
vectors inside tuples, we need a special value to identify the recursion termina-
tion. Hence, we wrap the representation of vectors of recursive type into a maybe
type (c~}, which is either @} (where x is of type c~) or (}. To process values of
type (a}, we add two primitives (.?) : (a} --+ Bool and (.$) : (a} -+ a. Operat ion
(.?) yields true if the argument has the form {x}, in this case, ('1") returns x (it
is undefined, otherwise). The tree of Figure 1 is represented by (co, v) with

v = (([c,, c2, c3, p,])), "P (w, [2,2,2,0])) x = (([P6,pv,Pa,pg], "P (y,[0,0,0,0]))}
., <([,:~,,'~,;,~,;,~,;,~,v.q, 'P (. , : , [~,2,0,0,0,01))) v (([1, "r (<>,[]))>

3.3 In s tan t ia t i on of P o l y m o r p h i c Funct ions

Now, we are in a position to define the instantiation of the polymorphic uses of
primitives. We denote the type of an instance of a primitive by annotat ing the
type substituted for the type variable (a in the signatures from Subsection 3.1)
as a subscript. For example, -H-[Int] has type [[Int]] • [[Int]] -+ [lint]], and we
have to generate instances for all occurrences apart from -H-Int and -H-Bool. The
generic primitives r " , 7r~, ~ , ~v, 3, and 7) are not instantiated as their code is
independent of the type instance.

T h e t r a n s f o r m a t i o n a l g o r i t h m . In the presence of recursive types, we cannot
t ransform the program by replacing uses of polymorphic primitives with expres-
sions that merely use primitives on basic type; instead, we add new declarations
to a program, until all uses of primitives are either directly supported or covered

716

by a previously added declaration. The addition of a declaration may introduce
primitives occurring at new instances, which in turn triggers the addition of
declarations for these instances. We discuss the terminat ion of this process later.

Each equation says that if a primitive occurs at a type matching the left
hand-side, add a declaration that is an instance of the right hand-side for tha t
type. We star t with the distribution dist, together with its chunkwise variant:

dist(T T.) (x, n) = (distw~ (Try(x), n) , . . . , distT, (7~(x), n))
dist,~.v (x, n)
dist[T] (X, n)

distCux. T (xs, n)
distQr] (xs, n)

= P(distC[T] (x, n), distr~t (#x, n))

= i f xs? t h e n distCT{pz, r /z} (xs~, n) e l s e ()
= P(distC[T] (.T (xs), n), distCznt (S (xs), n))

The rules for tuples propagate the function inside. Vectors are distr ibuted using
tile chunkwise version, of which the second rule demonstrates the handling of the
maybe type (@. We omit the rules for tuples in the following, as they have the
same structure as above. The next set of rules covers chunkwise concatenation:

xs -H-ux.T ys = i f xs? t h e n (if ys? t h e n xs? +~-T{,~.T/z} ys$ e l se as) else ys
~s +~c~1 y" = p(y(xs) ~+~ f (ys)) , s(xs) +~i~t S(ys))

We continue with plain and chunkwise indexing. Note that indexing an empty
vector of recursive type leads to an error as the index is out of bounds.

ind,~. T (xs, i) = i f xs? t h e n indT{,~. T/~:} (XS, i) else e r r o r

i .d M (~ , i) = inac~ (S(~s), s(~s), i)

indC,~.7" (xs, s, i) = i f xs? t h e n indCT{~.T/x] (xs, s, i) else ()

indqT] (xs, s, i) = P(indCr (7(xs), +z,t-~educe r (P (8(xs), s)), i),
indCr~t (S(xs), s, i))

For indC[T], the segment descriptor passed to the recursave call is computed by
summing over the segments of the current level. For space reasons, we omit the
rules for perm, pack, and combine. They are similar to ind, but, e.g., permut ing
an empty vector does not raise an error, but returns the empty vector. Finally,
considering vectorized primitives, the rules for types (T1, . �9 �9 , T~) and #x. T are
as above; for [T], the vectorized version is generated by vectorizing the above
rules-- this vectorization is essentially the same as the first step of the flattening
t ransformation that was mentioned in the beginning of the present section. The
details of this and of handling perm, pack, and combine can be found in [8].

T e r m i n a t i o n . Considering the terminat ion of the above process, we see that
for each primitive p, the rules for instances P(T,,...,T,) and P[5,] decrease the
structural depth of the type subscript. Merely the rules for P,x.T may be prob-
lematic as they recursively unfold the type in their right hand-side. However, in

717

t[sec] .

6.0 t
5.0
4.0 "1-
3.0 -1-
2.0 ~-

T
0

~ Speedup

�9 - 20 000 l)arl,icles
10

5

0
2 4 6 8 10 12 14 16 18 20DE

:. �9 absolute (20,000) .- i
- - optimal 1 /
�9 �9 relative (9 000) / / q ~
�9 �9 r e l a ; ~

�9)

0 5 10 15 20

Fig. 2. Absolute time and relative speed-up for Barnes-Hut on a Cray T3E.

the definition of the kernel languages, we required that type variables bound by
occur only as the element type of a vector. So, for all occurrences where the
type unfolding substitutes the recursive type, we get an expression tha t requires
p[u~. T]. If p is a chunk operation or -H-, the right hand-side of an instance of the
rule for P[T,] with T ~ = r T requires PU,:.T, which is exactly the instance we
star ted with and which, therefore, is already defined. I f p is neither a chunk oper-
ation nor -H-, it requires the corresponding ehunkwise operation and we already
discussed the termination for chunkwise operations.

4 Exper imenta l Resul ts

We measured the accumulated runtime of the expressions in the l e t - b i n d i n g
of b h t r e e (Section 2) for the original NEsL-program using 15,000 particles and
CMU-NESL [2] (on a single processor, 200MHz Pen t ium/Linux machine), to
quantify the overhead of mapping the tree structure to a vector. From the overall
runt ime of 1.75 seconds, 0.5 seconds (29%) are spend on the operations intro-
duced by the mapping. We gathered this da ta on a sequential machine, due to
inaccurate profiling information from CMU-NESL on the Cray T3E. The inef-
ficiencies would even be worse in a parallel run, since these operations include
algorithmically unnecessary reordering operations, which cause communicat ion.

To measure our proposed techniques for implementing recursive types, we
t imed an implementat ion of Barnes-Hut generated using the presented rules. 1
Figure 2 shows the t iming of a single simulation step on a Cray T 3 E for 9000 and
20000 particles as well as the relative speedup and the absolute speed up (we only
had access to 20 processors). The relative speedup is already quite close to the
theoretical opt imal speedup, but the absolute speedup shows that there is still
room for improvement and we already know some possible optimizations. We
did not compare CMU-NEsL and our implementat ion on the Cray T 3 E directly,
since our code generation techniques for the flat language already outper form
CMU-NESL by more than an order of magni tude [9].

The code was 'hand-generated'; we m'e currently implementing a compiler.

718

5 C o n c l u s i o n

After its introduction by Blelloch & Sabot, flattening has received considerable
attention, but to the best of our knowledge, we are the first to extend flattening
to tree structures. There are other approaches to implementing nested data-
parallelism, and of course, there is a wealth of literature on trees in parallel
computing, but we do not have the space to discuss this work he re - - some of it
is discussed in [8]. Our extension is easily integrated into existing systems and
the gathered benchmarks support the efficiency of the generated code.

Acknowledgements. We are indebted to Martin Simons and Wolf Pfannenstiel
for fruitful discussions and helpful comments on earlier versions of this paper.
Furthermore, we are grateful to the anonymous referees of EuroPar '98 for their
valuable comments and the members of the CACA seminar (University of Tokyo)
for lively discussions. The first author receives a PhD scholarship from the DFG
(German Research Council). She thanks the SCORE group of the University of
Tsukuba, especially, Tetsuo Ida, for the hospitali ty while being a guest at ScoRE.

R e f e r e n c e s

1. P. K. T. Au, M. M. T. Chakravarty, J. Darlington, Yike Guo, Stefan J~nichen,
G. Keller, M. K6hler, W. Pfannenstiel, and M. Simons. Enlarging the scope of
vector-based computations: Extending Fortran 90 with nested data parallelism. In
W. K. Giloi, editor, Proc. of the Intl. Conf. on Advances in Parallel and Distributed
Computing. IEEE Computer Society Press, 1997.

2. G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, and M. Zagha. Im-
plementation of a portable nested data-parallel language. In 4th A CM SIGPLAN
Syrup. on Principles and Practice of Parallel Programming, 1993.

3. J. Barnes and P. Hut. A hierarchical O(n log n) force calculation algorithm. Nature,
324, December 1986.

4. G. E. Blelloch. Vector Models for Data-Parallel Computing. The MIT Press, 1990.
5. G. E. Blelloch. Programming parallel algorithms. Communications of the ACM,

39(3):85-97, 1996.
6. G.E. Blelloch and G. W. Sabot. Compiling collection-oriented languages onto mas-

sively parallel computers. Journal o/Parallel and Distributed Computing, 8:119-
134, 1990.

7. S. Chatterjee. Compiling nested data-parallel programs for shared-memory multi-
processors. ACM Trans. on Prog. Lang. and Systems, 15(3), 1993.

8. Gabriele Keller and Manuel M. T. Chakravarty. Flattening trees--
unabridged. Forschungsbreicht 98-6, Technical University of Berlin, 1998.
http ://cs. tu-berl in. de/cs/ifb/TechnBerichteListe, html.

9. 13. Keller. Transformation-based Implementation of Nested Parallelism for Parallel
Computers with Distributed Memory. PhD thesis, Technische Universit/it Berlin,
Fachbereich Informatik, 1998. Forthcoming.

10. G. Keller and M. Simons. A calculational approach to flattening nested data
parallelism in functional languages. In J. Jaffar, editor, The 1996 Asian Computing
Science Conference, LNCS. Springer Verlag, 1996.

719

11. J. Prins and D. Palmer. Transforming high-level data-parallel programs into vector
operations. In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 119--128, San Diego, CA., May 19-22,
1993. ACM.

12. D. Palmer, 3. Prins, and S. Westfold. Work-efficient nested data-parallelism. In
Proceedings of the Fifth Symposium on the Frontiers of Massively Parallel Process-
ing (Frontiers 95). IEEE, 1995.

