
A Parallel Multigrid Skeleton Using BSP 

Femi O. Osoba and Fethi A. Rabhi 

Department of Computer Science, University of Hull, 
Hull HU6 7RX 

{B. 0. Osoba, F. A. RabBi} Odcs. hull, ac. uk 

Abstrac t .  Skeletons offer the opportunity to improve parallel software 
development by providing a template-based approach to program design. 
However, due to the large number of architectural models available and 
the lack of adequate performance prediction models, such templates have 
to be optimised for each architecture separately. This paper proposes a 
programming environment based on the Bulk Synchronous Parallel(BSP) 
model for multigrid methods, where key implementation decisions are 
made according to a cost model. 

1 I n t r o d u c t i o n  

Programming environments and CASE tools are increasingly becoming popular 
for developing parallel software. Skeleton-based programming environments offer 
known advantages of intellectual abstraction and development of structured pro- 
grams [1,9]. Most skeleton-based systems are implemented at a low level using 
functional languages [3, 12] or imperative languages with parallel constructs e.g. 
PVM/C,  dataparallel languages etc. [1,9]. However such models suffer from hav- 
ing no simple cost calculus, thereby hindering the functionality of the skeleton. 
To generate the required target code for different architectures, such skeleton- 
based systems have to be optimsed for each architecture. This paper describes a 
skeleton-based programming environment that is implemented at the low-level 
with a programming model that posseses a cost calculus, namely the Bulk Syn- 
chronous Parallelism (BSP) model. 

The next section presents our case study skeleton and Section 3 presents an 
overview of the proposed programming environment. The next sections present 
an overview of the user interface, the specification analysis phase and the code 
generation process. Finally the last section presents some conclusions and future 
directions of our work. 

2 A C a s e  S t u d y  : M u l t i g r i d  M e t h o d s  

Most scientific computing problems represent a physical system by a mathemat -  
ical model equation. Presently we are considering a model differential equation 
of the form V . K V u  = f in the 2D space. To make it suitable for a computer  
solution, the continuous physical domain of the system being modelled is dis- 
cretised and this leads to a set of linear equations of the form A x  = b with 



705 

n unknowns, which needs to be solved for. A particular class of methods for 
solving such equations is known as multigrid(MG) methods. Such methods have 
been selected as a case study on the basis of their usefulness in an impor tant  
application area (CFD) and their similarity with SIT algorithms which were the 
focus of earlier work [9, 12]. 

The principle behind a multigrid method is to use a relaxation method (e.g. 
Gauss Seidel or Jacobi) on a sequence of m discretisation grids G 1 . . . G  "~ (G 1 
represents the finest grid and G '~ the coarsest). By employing several levels of 
discretisation, the multigrid method is able to accelerate the convergence rate of 
the relaxation method on the finest grid. One iteration of the MG method from 
finest to coarsest grid and back is called a cycle. During a cycle, the different 
stages in an MG algorithm are relaxation which involves the use of an iterative 
method on the current grid level, restriction which involves the transfer of the 
residual from one grid to the next coarser grid, coarsest grid solution which pro- 
vides an exact solution on the coarsest grid and interpolation which is concerned 
with the transfer of the solution obtained from a coarser grid to the next finer 
grid. Additional details on multigrid methods can be found in [2]. 

3 Overview of a Skeleton-Based Programming 
Environment 

The overall structure of the system is very similar to other skeleton-based pro- 
gramming environments [9] as figure 1 illustrates. The primary aim is separating 
the role of the user and the system developer. The user decides on how the multi- 
grid method should be used and what parameters are to determine the optimal  
performance irrespective of the underlying architecture, while the system devel- 
oper addresses issues concerned with generating efficient code and determining 
suitable or recommended parameters for different architectures based on perfor- 
mance prediction and cost modelling. The main components of the system as 
shown in figure 1 are described in turn in the next sections. 

3.1 User Interface 

The role of the User Interface is to allow the user to enter and edit the parameters 
of the multigrid algorithm. The User Interface also displays the results of the 
computat ion which consist of a visual representation of the solution. Figure 2 
shows three sets of parameters: multigrid parameters, physical parameters and 
implementation parameters. 

M u l t i g r i d  p a r a m e t e r s  The multigrid parameters include the number of grids, 
the relaxation method, the stencil (e.g. 4 or 8 points) and the cycling strategy 
(V or W cycles). Another parameter is the number of relaxation iterations per- 
formed at various grid levels. Some parameters (e.g. the relaxation method) are 
expected to be changed after the Specification Analyser has been invoked. When 
selecting values, the user primarily at tempts to reduce the overall execution t ime 
by minimizing the number of cycles required to converge to the solution. 



706 

t 

Fig. 1. Overall description of the system 

P A R A M E T E R S  

M U L T I G R I D  

-Number of grids 
-Number of points 
-Rclaxatmn method 
-Stenml 
-Number of iterations 
-Cycling strategy 

P H Y S I C A L  

[ -Initi~tl data 
-Boundary data 
iNumb~r ef cycles 

I M P L E M E N T A T I O N  

-BSP architecture 
(p,g,l) 

-Partitioning strategy 

-Tiles shape 

Fig. 2. User Interface parameters 

P h y s i c a l  p a r a m e t e r s  These parameters are dependent on the physical at- 
tributes of the problem e.g. the constant K describes the anisotropy in the 
problem. 

I m p l e m e n t a t i o n  p a r a m e t e r s  These parameters represent the characteristics 
of the parallel implementation. First, the BSP architecture is specified as a triplet 
(p, g, l) [6]. Another parameter represents the partitioning strategy, which is gen- 
erMly based on grid partitioning techniques. Finally, the tiles shape parameter 
refers to the shape of sub-partitions (e.g. square or rectangular tiles). 

3.2 Spec i f i ca t ion  A n a l y s e r  

The role of the Specification Analyser is to predict the optimal value of some 
of the parameters given a minimal subset of values provided by the user. These 
predictions are made based on estimates on the computation and communication 
requirements for parallel execution. We base our domain partitioning theoretical 
cost model on a simple analytic model presented in [11]. Because BSP removes 
the notion of network topology [6], the goal is to build solutions that  are optimal 



707 

with respect to total computation, total communication, and total  number of 
supersteps[6]. For our system this is represented by a parameter  set. Each set 
represents one variation of the algorithm. A parameter  set consists of Number 
of Cycles(Cy), Relaxation Method(RM),  Stencil type(St) ,  and Tileshape(Ts).  
Designing a particular program then becomes a mat ter  of choosing a parameter  
set that  is optimal for the range of machine sizes envisaged for the application. 
Our BSP theoretical cost model for a standard MG algorithm for a regular grid 
is of the form: 

Cy[C.(n~/p) + 9.(n(1/tr + 1/tc).M)] + l.S (1) 

where C is the total number of computation steps, M is the total amount  of 
communication, p is the number of processors (and also the number of tiles), t~ 
is the number of tiles in a row, tc the number of tiles in a column, and S is the 
total number of supersteps. C is a function of (RM, St, n ~ , p), M is a function of 
(Ts, RM, St) and S is a function of (t=tM, Ts). So for a given number of cycles 
(Cy), the analyser produces a parameter set (Cy, RM, St, Ts) which results in 
the lowest execution time for the particular architecture. 

3.3 T h e  C o d e  G e n e r a t o r  

The role of the Code Generator is to produce BSP code according to the current 
values of the parameters. The Code Generator uses a set of reusable library 
modules which form the MG Module Library and the BSP library (BSPlib) [4] 
for handling communication and synchronisation. The MG modules are coded 
in C and implement each of the phases identified in Section 2. 

For further details on the multigrid programming environment, the reader is 
referred to the Ph.D thesis in [8]. 

4 Conclusion and Future Work 

This paper described a skeleton-based programming environment for multigrid 
methods which generates BSP code. The user is offered an interface that  ab- 
stracts from the underlying hardware thus ensures portabili ty and intellectual 
abstraction. By combining the skeletons idea with BSP, accurate analysis and 
predictions of the performance of the code on architectures can be made. Since 
the system is aware of the global properties of the underlying BSP architec- 
ture, the system can decide which aspects of the MG algorithm may need to be 
changed to provide optimal performance and then performs the code generation. 

Future work will refine the performance prediction model according to prac- 
tical results, develop a systematic framework for automatic code generation and 
increase the parameter set to cater for more realistic problems. Finally, we will 
also investigate a suitable notation for specifying and modifying parameters and 
evaluate the proposed system with real users who work with such methods. 



708 

5 Acknowledgements 

We would like to thank members of the BSP team at Oxford University Comput-  
ing Laboratory U.K, for their continuous support on the use of the BSP library, 
and also for making the SP-2 available to us. 

References 

1. G.H. Botorog and H. Kuchen, Algorithmic skeletons for adaptive multigrid meth- 
ods, In Proceedings of Irregular '95, LNCS 980, Springer Verlag , 1995, pp. 27-41. 

2. J.H. Bramble, Multigrid methods, Pitman Research Notes in Mathematics, Series 
294, Longman Scientific & Technical, 1993. 

3. J. Darlington, A. Field, P. Harrison,P. Kelly, D. Sharp, Q. Wu, R. While, Paral- 
lel Programming using Skeleton Functions, In Proceedings o] PARLE '93, LNCS, 
Munich, Springer Verlag, June 1993. 

4. M. W. Goudreau, J.M.D. Hill, K. Lang, W.F. McColl, S. B. Rao, D.C. Stefanescu, 
T. Suel, and T. Tsantilas, A proposM for the BSP worldwide standard library, July 
1996, available on WWW ht tp  ://wuw. bsp-worldwide, org/. 

5. O.A. McBryan, P.O. Frederickson, J. Linden, A. Schuller, K. Solchenbach, K. 
Stuben, C.A. Thole, and U. Trottenberg, Multigrid methods on parallel computers 
- a survey of recent developments, IMPACT Comput. Sci. Eng., vol, 3, pp. 1-75, 
1991. 

6. W.F. McColl, Bulk synchronous parallel computing, In Abstract Machine Models 
/or Highly Parallel Computers, J.R. Davy and P.M. Dew (eds), Oxford University 
Press, 1995, pp. 41-63. 

7. M. Nibhanupudi, C. Norton, and B. Szymanski, Plasma Simulation On Networks 
of Workstations using the Bulk Synchronous Parallel mode, in Proceedings of the 
International Conference on Parallel and Distributed Processing Techniques and 
Applications, Athens, GA, November 1995. 

8. B.O. Osoba, Design o] a Parallel Multigrid Skeleton-Based System using BSP, 
Ph.D thesis in preparation in the Department of Computer Science, University of 
Hull, 1998. 

9. P.J. Parsons and F.A. Rabhi, Generating parallel programs from paradigm-based 
specifications, to appear in the Journal of Systems Architectures, 1998. 

10. F.A. Rabhi, A Parallel Programming Methodology Based on Paradigms, In Trans- 
purer and Occam Developments, P. Nixon (Ed.), lOS Press, 1995, pp. 239-252. 

11. P. Ramanathan and S. Chalasani, Parallel multigrid algorithms on CM-5. In IEE 
Proc. Computers and Digital Techniques, vol. 142, no 3, May 1995. 

12. J. Schwarz and F.A. Rabhi, A skeleton-based implementation of iterative trans- 
formation algorithms using functional languages, In Abstract Machine Models ]or 
Parallel and Distributed Computing, M. Kara et al. (eds), IOS Press, 1996, 


