
Task Parallel Skeletons for Irregularly
Structured Problems

Petra Hofstedt*

Department of Computer Science, Dresden University of Technology,
hofst edt @inf. tu-dresden, de

Abstrac t . The integration of a task parallel skeleton into a functional
programming language is presented. Task parallel skeletons, as other al-
gorithmic skeletons, represent general parallelization patterns. They are
introduced into otherwise sequential languages to enable the develop-
ment of parallel applications. Into functional programming languages,
they naturally are integrated as higher-order functional forms.
We show by means of the example branch-and-bound that the introduc-
tion of task parallel skeletons into a functional programming language
is advantageous with regard to the comfort of programming, achieving
good computation performance at the same time.

1 I n t r o d u c t i o n

Most parallel programs were and are written in imperative languages. In many of
these languages, the programmer has to use low-level constructs to express par-
allelism, synchronization and communication. To support platform-independent
development of parallel programs standards and systems have been invented,
e.g. MPI and PVM. In functional languages, such supporting libraries have been
added in rudimentary form only recently. Hence, the advantages of functional
programs, such as their ability to state powerful algorithms in a short, abstract
and precise way, cannot be combined with the ability to control the parallel
execution of processes on parallel architectures.

Our aim is to remedy that situation. A functional language has been extended
by constructs for data and task parallel programming. We want to provide com-
fortable tools to exploit parallelism for the user, so that she is burdened as few
as possible with communication, synchronization, load balancing, data and task
distribution, reaching at the same time good performance by exploitation of
parallelism. The extension of functional languages by algorithmic skeletons is a
promising approach to introduce data parallelism as well as task parallelism into
these languages.

As demonstrated for imperative languages, e.g. by Cole [3], there are several
approaches how to introduce skeletons into functional languages as higher-order

* The work of this author was supported by the 'Graduiertenkolleg Werkzeuge zum
effektiven Einsatz paralleler und verteilter Rechnersysteme' of the German Research
Foundation (DFG) at the Dresden University of Technology.

677

parallel forms. However, most authors concentrated on data parallel skeletons,
e.g. [1], [4], [5]. Hence, our aim has been to explore the promising concept of task
parallel skeletons for functional languages by integrating them into a functional
language. A major focus of our work is on reusability of methods implemented
as skeletons.

Algorithmic skeletons are integrated into otherwise sequential languages to
express parallelization patterns. In our approach, currently skeletons are im-
plemented in a lower-level imperative programming language, but presented as
higher-order functions in the functional language. Implementation-details are
hidden within the skeletons. In this way, it is possible to combine expressiveness
and flexibility of the sequential functional language with the efficiency of paral-
lel special purpose algorithms. Depending on the type of parallelism exploited,
skeletons are distinguished in data and task parallel ones. Data parallel skele-
tons apply functions on multiple data at the same time. Task parallel skeletons
express which elements of a computation may be executed in parallel. The im-
plementation in the underlying system determines the number and the location
of parallel processes that are generated to execute the task parallel skeleton.

2 T h e B r a n c h - a n d - B o u n d S k e l e t o n in a F u n c t i o n a l

L a n g u a g e

Branch-and-bound methods are systematic search techniques for solving discrete
optimization problems. Starting with a set of variables with a finite set of dis-
crete values (a domain) assigned to each of the variables, the aim is to assign a
value of the corresponding domain to each variable in such a way that a given
objective function reaches a minimum or a maximum value and several con-
straints are satisfied. First, mutually disjunct subproblems are generated from a
given initial problenl by using an appropriate branching rule (branch). For each
of the generated subproblems an estimation (bound) is computed. By means
of this estimation, the subproblem to be branched next is chosen (select) and
decomposed (branched). If the chosen problem cannot be branched into further
subproblems, its solution (if existing) is an optimal solution. Subproblems with
non-optimal or inadmissible variable assignments can be eliminated during the
computation (elimination). The four rules branch, bound , select and elim-
ina t ion are called basic rules.

The principal difference between parallel and sequential branch-and-bound
algorithms lies in the way of handling the generated knowledge. Subproblems
generated from problems by decomposition and knowledge about local and global
optima belong to this knowledge. While with sequential branch-and-bound one
processor generates and uses the complete knowledge, the distribution of work
causes a distribution of knowledge, and the interaction of the processors working
together to solve the problem becomes necessary.

Starting point for our implementation was the functional language DFS
('Datenparallele funktionale Sprache' [6]), which already contained data par-
allel skeletons for distributed arrays. DFS is an experimental programming lan-

678

guage to be used on parallel computers. The language is strict and evaluates
DFS-programs in a call-by-value strategy accordingly.

To give the user the possibility to exploit parallelism in a very comfortable
way, we have extended the functional language DFS by task parallel skeletons.
One of them was a branch-and-bound skeleton. The user provides the basic rules
branch, bound , select and e l imina t ion using the functional language. Then
she can make a function call to the skeleton as follows:
branch~bound branch bound select elimination problem.

A parallel abstract machine (PAM) represents the runtime environment for
DFS. The PAM consists of a number of interconnected nodes communicating by
messages. Each node consists of three units: the message administration unit,
which handles the incoming and outgoing messages, the skeleton unit, which is
responsible for skeleton processing, and the reduction unit, which performs the
actual computation. Skeletons are the only source of parallelism in the programs.

To implement the parallel branch-and-bound skeleton, several design deci-
sions had to be made with the objective of good computation performance and
high comfort. In the following, the implementation is characterized according to
Trienekens' classification ([7]) of parallel branch-and-bound algorithms.

Table 1. Classification by Trienekens

knowledge sharing global/local knowledge base
complete/partial knowledge base
update strategy

knowledge use access strategy
reaction strategy

dividing the work units of work
load balancing strategy

synchronicity synchronicity of each process
basic rules branch, bound , select, e l imina t ion

Each process uses a local partial knowledge base containing only a part of the
complete generated knowledge. In this way, the bottleneck arising from the access
of all processes to a shared knowledge base is avoided, but at the expense of the
actuality of the knowledge base. A process stores newly generated knowledge at
its local knowledge base only; if a local optimum has been computed, the value
is broadcasted to all other processes (update strategy).

When a process has finished a subtask, it accesses its local knowledge base,
to store the results at the knowledge base and to get a new subtask to solve. If
a process receives a message containing a local optimum, the process compares
this optimum with its actual local optimum and the bounds of the subtasks still
to be solved (access strategy). A process receiving a local optimum from another
process first finishes its actual task and then reacts according to the received

679

message (reaction strategy). This may result in the execution of unnecessary
work. But the extent of this work is small because of the high granularity of the
distributed work.

A unit of work consists of branching a problem into subproblems and comput-
ing the bounds of the newly generated subproblems. The load balancing strategy
is simple and suited to the structure of the computation, because new subprob-
lems are generated during computation. If a processor has no more work, it asks
its neighbours one after the other for work. If a processor receives a request for
work, it returns a unit of work - if one is available - to the asking processor. The
processor sends that unit of work which is nearest to the root of the problem
tree and has not been solved yet.

The implemented distributed algorithm works asynchronously.
The basic rules are provided by the user using the functional language.

3 P e r f o r m a n c e E v a l u a t i o n

To evaluate the performance of task parallel skeletons, we implemented branch-
and-bound for the language DFS as a task parallel skeleton in C for a GigaClus-
tar GCel1024 with 1024 transputers T805(30 MHz) (each with 4 MByte local
memory) running the operating system Parix.

Performance measurements for several machine scheduling problems - typical
applications of the branch-and-bound method - were made to demonstrate the
advantageous application of skeletons. In the following, three cases of a machine
scheduling problem for 2 machines and 5 products have been considered. The
number of possible orders of machine allocation is 5! = 120. This very small
problem size is sufficient to demonstrate the consequences for the distribution of
work and the computation performance, if the part of the problem tree, which
must be computed, has a different extent. In case (a) the complete problem tree
had to be generated. In case (b) only one branch of the tree had to be computed.
Case (c) is a case where a larger part of the problem tree than in case (b) had
to be computed. Each of the machine scheduling problems has been defined
first in the standard functional way and second by use of the branch-and-bound
skeleton. The measurements were made using different numbers of processors.

First we counted branching steps, i.e. we measured the average overall num-
ber of decompositions of subproblems of all processors working together in the
computat ion of the problem. These measurements showed the extend of the
computed problem tree working sequentially and parallelly. It became obvious
that the overall number of branching steps is increasing in the case of a small
number of to be branched subproblems. The local partial knowledge bases and
the asynchronous behaviour of the algorithm cause the execution of unnecessary
work. If the whole problem tree had to be generated, we observed a decrease of
the average overall number of branching steps with increasing number of proces-
sors. This behaviour is called acceleration anomaly ([2]). Acceleration anomalies
occur if the search tree generated in the parallel case is smaller than the one
generated in the sequential case. This can happen in the parallel case because of

680

branching several subproblems at the same time. Therefore it is possible to find
an optimum earlier than in the sequential case. Acceleration anomalies cause
a disproportional decrease of the average maximum number of branching steps
per processor with increasing number of processors, a super speedup.

Table 2. Average overall number of reduction steps

1 proc. 1 proc. 4 proc.] 6 proc. 8 proc.]16 proc.
functional skeleton skeleton skeleton ske!eton skeleton

(a) 17197 207271 1848,2 1792,9 1074,9 709,3
(b) 54 47 1 3 8 , 0 218,6 299,0 451,6

, (c) 138 118 1 7 9 , 8 261,8 258,6 484,8

Table 3. Average maximum number of reduction steps per processor

(a)
(b)
(c)

1 proc. 1 proc. 4 proc.] 6 proc.] 8 proc.]16 proc.
functional skeleton skeleton skeleton skeleton skeleton

17197 20727 896,0 710,2 390,5 113,1
54 47 43,2 44,7 47,0 46,4

138 118 65,5 66,1, 60,9 51,7

To compare sequential functional programs with programs defined by means
of skeletons, we counted reduction steps. The reduction steps include besides
branching a problem, the computation of a bound of the optimal solution of
a subproblem, the comparison of these bounds for selection and elimination of
a subproblem from a set of to be solved subproblems, and the comparison of
bounds to determine an optimum. Table 2 shows the average overall number of
reduction steps of all processors participating in the computation. In Table 3 the
average maximum numbers of reduction steps per processor are given. Table 2
and Table 3 clearly show the described effect of an acceleration anomaly. Because
the set of reduction steps contains comparison steps of the operation 'selection
of subproblems from a set of to be solved subproblems', the distribution of work
causes a decrease of the number of comparison steps for this operation at each
processor.

Looking at both Table 2 and Table 3 it becomes apparent that the numbers
of reduction steps in the sequential cases of (a), (b), and (c) of the computation
of the problem first defined in the standard functional way and second using
the skeleton differ. That is caused by different styles of programming in func-
tional and imperative languages. In case (a) an obvious decrease of the average
maximum number of reduction steps per processor (Table 3) caused by the dis-
tribution of the subproblems onto several processors is observable. At the same
time the average overall number of reduction steps (Table 2) is also decreasing

681

as explained before. The distribution of work onto several processors yields a
large increase of efficiency in cases when a large part of the problem tree must
be computed. In case (b) the average maximum number of reduction steps per
processor nearly does not change while the overall number of reduction steps
is increasing, because, firstly, subproblems, which are to be branched, are dis-
tributed, and secondly, a larger part of the problem tree is computed. Because
in case (b) the solution can be found in a short time, working parallelly as well
as sequentially, the use of several processors produces overhead only. In case
(c) the same phenomena as in case (b) are observable. Moreover, the average
maximum number of reduction steps decreases to nearly 50% in case of parallel
computat ion in comparison to the sequential computation.

4 C o n c l u s i o n

The concept, implementation, and application of task parallel skeletons in a
functional language were presented. Task parallel skeletons appear to be a nat-
ural and elegant extension to functional programming languages. This has been
shown using the language DFS and a parallel branch-and-bound skeleton as an
example. Performance evaluations showed that using the implemented skeleton
for finding solutions for a machine scheduling problem is performance better,
especially if a large part of the problem tree has to be generated. Also in the
case of the necessity to compute a smaller part of the problem tree only, a dis-
tr ibution of work is advantageous.

A c k n o w l e d g e m e n t s The author would like to thank Herbert Kuchen and
Hermann H~.rtig for discussions, helpful suggestions and comments.

R e f e r e n c e s

1, Botorog, G.H., Kuchen, H.: Efficient Parallel Programming with Algorithmic Skele-
tons. In: Boug, L. (Ed.): Proceedings of Euro-Par'96, Vol.1. LNCS 1123. 1996.

2. de Bruin, A., Kindvater, G.A.P., Trienekens, H.W.J.M.: Asynchronous Parallel
Branch and Bound and Anomalies. In: Ferreira, A.: Parallel algorithms for irregu-
larly structured problems. Irregular '95. LNCS 980. 1995.

3. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation.
MIT Press. 1989.

4. Darlington, J., Field, A.J., Harrison, P.G., Kelly, P.H.J., Sharp, D.W.N., Wu, Q.,
While, R.L.: Parallel Programming Using Skeleton Functions. In: Bode, A. (Ed.):
Parallel Architectures and Languages Europe : 5th International PARLE Confer-
ence. LNCS 694. 1993.

5. Darlington, J., Guo, Y., To, H.W., Yang, J.: Functional Skeletons for Parallel Co-
ordination. In: Haridi, S. (Ed.): Proceedings of Euro-Par'95. LNCS 966. 1995.

6. Park, S.-B.: lmplementierung einer datenparallelen funktionalen Programmier-
sprache auf einem Transputersystem. Diplomarbeit. RWTH Aachen 1995.

7. Trienekens, H.W.J.M.: Parallel Branch and Bound Algorithms. Dissertation. Uni-
versitgt Rotterdam 1990.

