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Abstrac t .  The integration of a task parallel skeleton into a functional 
programming language is presented. Task parallel skeletons, as other al- 
gorithmic skeletons, represent general parallelization patterns. They are 
introduced into otherwise sequential languages to enable the develop- 
ment of parallel applications. Into functional programming languages, 
they naturally are integrated as higher-order functional forms. 
We show by means of the example branch-and-bound that the introduc- 
tion of task parallel skeletons into a functional programming language 
is advantageous with regard to the comfort of programming, achieving 
good computation performance at the same time. 

1 I n t r o d u c t i o n  

Most parallel programs were and are written in imperative languages. In many of 
these languages, the programmer has to use low-level constructs to express par- 
allelism, synchronization and communication. To support platform-independent 
development of parallel programs standards and systems have been invented, 
e.g. MPI and PVM. In functional languages, such supporting libraries have been 
added in rudimentary form only recently. Hence, the advantages of functional 
programs, such as their ability to state powerful algorithms in a short, abstract 
and precise way, cannot be combined with the ability to control the parallel 
execution of processes on parallel architectures. 

Our aim is to remedy that situation. A functional language has been extended 
by constructs for data  and task parallel programming. We want to provide com- 
fortable tools to exploit parallelism for the user, so that  she is burdened as few 
as possible with communication, synchronization, load balancing, data  and task 
distribution, reaching at the same time good performance by exploitation of 
parallelism. The extension of functional languages by algorithmic skeletons is a 
promising approach to introduce data  parallelism as well as task parallelism into 
these languages. 

As demonstrated for imperative languages, e.g. by Cole [3], there are several 
approaches how to introduce skeletons into functional languages as higher-order 
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parallel forms. However, most authors concentrated on data parallel skeletons, 
e.g. [1], [4], [5]. Hence, our aim has been to explore the promising concept of task 
parallel skeletons for functional languages by integrating them into a functional 
language. A major focus of our work is on reusability of methods implemented 
as skeletons. 

Algorithmic skeletons are integrated into otherwise sequential languages to 
express parallelization patterns. In our approach, currently skeletons are im- 
plemented in a lower-level imperative programming language, but presented as 
higher-order functions in the functional language. Implementation-details are 
hidden within the skeletons. In this way, it is possible to combine expressiveness 
and flexibility of the sequential functional language with the efficiency of paral- 
lel special purpose algorithms. Depending on the type of parallelism exploited, 
skeletons are distinguished in data and task parallel ones. Data parallel skele- 
tons apply functions on multiple data at the same time. Task parallel skeletons 
express which elements of a computation may be executed in parallel. The im- 
plementation in the underlying system determines the number and the location 
of parallel processes that are generated to execute the task parallel skeleton. 

2 T h e  B r a n c h - a n d - B o u n d  S k e l e t o n  in  a F u n c t i o n a l  

L a n g u a g e  

Branch-and-bound methods are systematic search techniques for solving discrete 
optimization problems. Starting with a set of variables with a finite set of dis- 
crete values (a domain) assigned to each of the variables, the aim is to assign a 
value of the corresponding domain to each variable in such a way that a given 
objective function reaches a minimum or a maximum value and several con- 
straints are satisfied. First, mutually disjunct subproblems are generated from a 
given initial problenl by using an appropriate branching rule (branch).  For each 
of the generated subproblems an estimation (bound) is computed. By means 
of this estimation, the subproblem to be branched next is chosen (select) and 
decomposed (branched). If the chosen problem cannot be branched into further 
subproblems, its solution (if existing) is an optimal solution. Subproblems with 
non-optimal or inadmissible variable assignments can be eliminated during the 
computation (elimination).  The four rules branch,  bound ,  select and elim- 
ina t ion  are called basic rules. 

The principal difference between parallel and sequential branch-and-bound 
algorithms lies in the way of handling the generated knowledge. Subproblems 
generated from problems by decomposition and knowledge about local and global 
optima belong to this knowledge. While with sequential branch-and-bound one 
processor generates and uses the complete knowledge, the distribution of work 
causes a distribution of knowledge, and the interaction of the processors working 
together to solve the problem becomes necessary. 

Starting point for our implementation was the functional language DFS 
('Datenparallele funktionale Sprache' [6]), which already contained data par- 
allel skeletons for distributed arrays. DFS is an experimental programming lan- 
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guage to be used on parallel computers. The language is strict and evaluates 
DFS-programs in a call-by-value strategy accordingly. 

To give the user the possibility to exploit parallelism in a very comfortable 
way, we have extended the functional language DFS by task parallel skeletons. 
One of them was a branch-and-bound skeleton. The user provides the basic rules 
branch,  bound ,  select and e l imina t ion  using the functional language. Then 
she can make a function call to the skeleton as follows: 
branch~bound branch bound select elimination problem. 

A parallel abstract machine (PAM) represents the runtime environment for 
DFS. The PAM consists of a number of interconnected nodes communicating by 
messages. Each node consists of three units: the message administration unit, 
which handles the incoming and outgoing messages, the skeleton unit, which is 
responsible for skeleton processing, and the reduction unit, which performs the 
actual computation. Skeletons are the only source of parallelism in the programs. 

To implement the parallel branch-and-bound skeleton, several design deci- 
sions had to be made with the objective of good computation performance and 
high comfort. In the following, the implementation is characterized according to 
Trienekens' classification ([7]) of parallel branch-and-bound algorithms. 

Table 1. Classification by Trienekens 

knowledge sharing global/local knowledge base 
complete/partial knowledge base 
update strategy 

knowledge use access strategy 
reaction strategy 

dividing the work units of work 
load balancing strategy 

synchronicity synchronicity of each process 
basic rules branch,  bound ,  select, e l imina t ion  

Each process uses a local partial knowledge base containing only a part of the 
complete generated knowledge. In this way, the bottleneck arising from the access 
of all processes to a shared knowledge base is avoided, but at the expense of the 
actuality of the knowledge base. A process stores newly generated knowledge at 
its local knowledge base only; if a local optimum has been computed, the value 
is broadcasted to all other processes (update strategy). 

When a process has finished a subtask, it accesses its local knowledge base, 
to store the results at the knowledge base and to get a new subtask to solve. If 
a process receives a message containing a local optimum, the process compares 
this optimum with its actual local optimum and the bounds of the subtasks still 
to be solved (access strategy). A process receiving a local optimum from another 
process first finishes its actual task and then reacts according to the received 
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message (reaction strategy). This may result in the execution of unnecessary 
work. But the extent of this work is small because of the high granularity of the 
distributed work. 

A unit of work consists of branching a problem into subproblems and comput-  
ing the bounds of the newly generated subproblems. The load balancing strategy 
is simple and suited to the structure of the computation,  because new subprob- 
lems are generated during computation. If a processor has no more work, it asks 
its neighbours one after the other for work. If a processor receives a request for 
work, it returns a unit of work - if one is available - to the asking processor. The 
processor sends that  unit of work which is nearest to the root of the problem 
tree and has not been solved yet. 

The implemented distributed algorithm works asynchronously. 
The basic rules are provided by the user using the functional language. 

3 P e r f o r m a n c e  E v a l u a t i o n  

To evaluate the performance of task parallel skeletons, we implemented branch- 
and-bound for the language DFS as a task parallel skeleton in C for a GigaClus- 
tar GCel1024 with 1024 transputers T805(30 MHz) (each with 4 MByte local 
memory) running the operating system Parix. 

Performance measurements for several machine scheduling problems - typical 
applications of the branch-and-bound method - were made to demonstrate  the 
advantageous application of skeletons. In the following, three cases of a machine 
scheduling problem for 2 machines and 5 products have been considered. The 
number of possible orders of machine allocation is 5! = 120. This very small 
problem size is sufficient to demonstrate the consequences for the distribution of 
work and the computation performance, if the part  of the problem tree, which 
must be computed, has a different extent. In case (a) the complete problem tree 
had to be generated. In case (b) only one branch of the tree had to be computed.  
Case (c) is a case where a larger part of the problem tree than in case (b) had 
to be computed. Each of the machine scheduling problems has been defined 
first in the standard functional way and second by use of the branch-and-bound 
skeleton. The measurements were made using different numbers of processors. 

First we counted branching steps, i.e. we measured the average overall num- 
ber of decompositions of subproblems of all processors working together in the 
computat ion of the problem. These measurements showed the extend of the 
computed problem tree working sequentially and parallelly. It became obvious 
that  the overall number of branching steps is increasing in the case of a small 
number of to be branched subproblems. The local partial knowledge bases and 
the asynchronous behaviour of the algorithm cause the execution of unnecessary 
work. If the whole problem tree had to be generated, we observed a decrease of 
the average overall number of branching steps with increasing number of proces- 
sors. This behaviour is called acceleration anomaly ([2]). Acceleration anomalies 
occur if the search tree generated in the parallel case is smaller than the one 
generated in the sequential case. This can happen in the parallel case because of 



680 

branching several subproblems at the same time. Therefore it is possible to find 
an optimum earlier than in the sequential case. Acceleration anomalies cause 
a disproportional decrease of the average maximum number of branching steps 
per processor with increasing number of processors, a super speedup. 

Table 2. Average overall number of reduction steps 

1 proc. 1 proc. 4 proc.] 6 proc. 8 proc.]16 proc. 
functional skeleton skeleton skeleton ske!eton skeleton 

(a) 17197 207271 1848,2 1792,9 1074,9 709,3 
(b) 54 47 1 3 8 , 0  218,6 299,0 451,6 

, (c) 138 118 1 7 9 , 8  261,8 258,6 484,8 

Table 3. Average maximum number of reduction steps per processor 

(a) 
(b) 
(c) 

1 proc. 1 proc. 4 proc.] 6 proc.] 8 proc.]16 proc. 
functional skeleton skeleton skeleton skeleton skeleton 

17197 20727  896,0 710,2 390,5 113,1 
54 47 43,2 44,7 47,0 46,4 

138 118 65,5 66,1, 60,9 51,7 

To compare sequential functional programs with programs defined by means 
of skeletons, we counted reduction steps. The reduction steps include besides 
branching a problem, the computation of a bound of the optimal solution of 
a subproblem, the comparison of these bounds for selection and elimination of 
a subproblem from a set of to be solved subproblems, and the comparison of 
bounds to determine an optimum. Table 2 shows the average overall number of 
reduction steps of all processors participating in the computation. In Table 3 the 
average maximum numbers of reduction steps per processor are given. Table 2 
and Table 3 clearly show the described effect of an acceleration anomaly. Because 
the set of reduction steps contains comparison steps of the operation 'selection 
of subproblems from a set of to be solved subproblems', the distribution of work 
causes a decrease of the number of comparison steps for this operation at each 
processor. 

Looking at both Table 2 and Table 3 it becomes apparent that the numbers 
of reduction steps in the sequential cases of (a), (b), and (c) of the computation 
of the problem first defined in the standard functional way and second using 
the skeleton differ. That is caused by different styles of programming in func- 
tional and imperative languages. In case (a) an obvious decrease of the average 
maximum number of reduction steps per processor (Table 3) caused by the dis- 
tribution of the subproblems onto several processors is observable. At the same 
time the average overall number of reduction steps (Table 2) is also decreasing 
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as explained before. The distribution of work onto several processors yields a 
large increase of efficiency in cases when a large part of the problem tree must 
be computed. In case (b) the average maximum number of reduction steps per 
processor nearly does not change while the overall number of reduction steps 
is increasing, because, firstly, subproblems, which are to be branched, are dis- 
tributed, and secondly, a larger part of the problem tree is computed. Because 
in case (b) the solution can be found in a short time, working parallelly as well 
as sequentially, the use of several processors produces overhead only. In case 
(c) the same phenomena as in case (b) are observable. Moreover, the average 
maximum number of reduction steps decreases to nearly 50% in case of parallel 
computat ion in comparison to the sequential computation.  

4 C o n c l u s i o n  

The concept, implementation, and application of task parallel skeletons in a 
functional language were presented. Task parallel skeletons appear to be a nat- 
ural and elegant extension to functional programming languages. This has been 
shown using the language DFS and a parallel branch-and-bound skeleton as an 
example. Performance evaluations showed that  using the implemented skeleton 
for finding solutions for a machine scheduling problem is performance better,  
especially if a large part of the problem tree has to be generated. Also in the 
case of the necessity to compute a smaller part of the problem tree only, a dis- 
tr ibution of work is advantageous. 
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