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Abst rac t .  We study the dynamics of majority-based distributed sys- 
tems in presence of permanent faults. In particular, we are interested in 
the patterns of initial faults which may lead the entire system to a faulty 
behaviour. Such patterns are called dynamos and their properties have 
been studied in many different contexts. In this paper we investigate 
dynamos for meshes with different types of toroidal closures. For each 
topology we establish tight bounds on the number of faulty elements 
needed for a system break-down, under different majority rules. 

1 I n t r o d u c t i o n  

Consider the following repetitive process on a synchronous network G: initially 
each vertex is in one of two states (colors), black or white; at each step, all vertices 
simultaneously (re)color themselves either black or white, each according to the 
color of the "majority" of its neighbors (majority rule). Different processes occur 
depending on how majori ty is defined (e.g., simple, strong, weighted) and on 
whether or not the neighborhood of a vertex includes that  vertex. The problem 
is to study the initial configurations (assignment of colours) from which, after a 
finite number of steps, a monochromatic fixed point is reached, that  is, all vertices 
become of the same colour (e.g., black). The initial set of black vertices is called 
dynamo (short for "dynamic monopoly") and their study has been introduced 
by Peleg [17] as an extension of the study of monopolies. 

The dynamics of majori ty rules have been extensively studied in the context 
of cellular automata,  and much effort has been concentrated on determining the 
asymptotic behaviors of different majori ty rules on different graph structures. 
In particular, it has been shown that,  if the process is periodic, its period is at 
most two. Most of the existing research has focused, for example, on the study of 
the period-two behavior of symmetric weighted majorities on finite {0, 1 } -  and 
{ 0 , . . . ,  p}-colored graphs [9, 19], on the number of fixed points on finite {0, 1}- 
colored rings [1, 2, 10], on finite and infinite {0, 1}-colored lines [12,13], on the 
behaviors of infinite, connected {0, 1 }-colored graphs [14]. Furthermore, dynamic 
majori ty has been applied to the immune system and to image processing [1, 8]. 

Although the majori ty rule has been extensively investigated, not much is 
known regarding dynamos. Some results are known in terms of catastrophic fault 
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patterns which are dynamos based on "one-sided" majori ty for infinite chordal 
rings (e.g., [5, 15, 20]). Further results are known in the study of monopolies, that  
is dynamos for which the system converges to all black in a single step [3, 4, 16]. 

Other more subtle definitions have been posed. An irreversible dynamo is 
one where the initial black vertices do not change their colour regardless of 
their neighbourhood. This is opposed to reversible dynamos, for which a vertex 
may switch colour several times according to a changing neighborhood. Among 
the latter,monotone reversible dynamos are the ones for which black vertices 
remain Mways black because the neighborhood never forces them to turn white. 
Recently, some general lower and upper bounds on the size of monotone dynamos 
have been estabilished in [17], and a characterization of irreversible dynamos has 
been given for chordal rings in [7]. 

In this paper we consider irreversible dynamos in tori and we focus on their 
dimension, that  is, the minimum number of initial black elements needed to 
reach the fixed point. The motivation for irreversible dynamos comes from fault- 
tolerance. Initial black vertices correspond to permanent faulty elements, and the 
white correspond to non-faulty. The faulty elements can induce a faulty behavior 
in their neighbors: if the majority of its neighbors is faulty (or has a faulty 
behavior), a non-faulty element will exhibit a faulty behavior and will therefore 
be indistinguishable from a faulty one. Irreversible dynamos are precisely those 
patterns of permanent initial faults whose occurrence leads the entire system to 
a faulty behavior (or catastrophe). In addition to its practical importance and 
theoretical interest, the study of irreversible dynamos gives insights on the class 
of monotone dynamos. In particular, all lower bounds established on the size of 
irreversible dynamos are immediately lower bounds for the monotone case. 

The torus is one of the simplest and most natural way of connecting pro- 
cessors in a network. We consider different types of tori: the toroidal mesh (the 
classieM architecture used in VLSI), the torus cordalis (also known as double- 
loop interconnection networks), and the torus serpentinus (e.g., used by ILIAC 
IV). For each of these topologies we derive lower and upper bounds on the di- 
mensions of dynamos. For a summary of results see table 1. The upper bounds 
are constructive, that  is we derive the initial black vertices constituting the dy- 
namo, and we also analyze the completion t ime (i.e., the t ime necessary to reach 
the fixed point). 

Limiting the discussion to meshes with toroidal connections avoids to exam- 
ine border effects for some vertices, as it would occur in simple meshes. Our 
results and techniques can be easily adapted to simple meshes. 

In the following, due to space limitations, all the proofs have been omitted;  
the interested reader is referred to [6]. 

2 B a s i c  D e f i n i t i o n s  

Let us consider an m • n mesh M and denote with #i,j, 0 ~ i < m - 1, 
0 _< j < n - 1, a vertex of M. The differences among the considered topologies 
consist only in the way that  border vertices (i.e., #i,0, Pi,n-1 with 0 < i < m -  1 



556 

Table  1. Bounds on the size of irreversible dynamos for tori of m x n vertices, with 
M = m a x { m , n } ,  N = rain{re, n}, and H , t (  = m , n  or H , I (  = n , m  (choose the 
alternative that yields stricter bounds). 

Simple majority Strong majority 
Lower Bound Upper Bound Lower Bound Upper Bouna 

Toroidal r ~ - ~ ]  - 1 [ ~ - ~ ]  - 1 ,r~+11~ , [ - ~ ] ( K +  1) 

To~.~ [~1 [~J + 1 r ' - -+~l  ~ 1) , 3 , I T ] (  n + 
cordalis 

Toru8 
serpentinus 

N M I-~1 LNJ LyJ, for > 

M M 
[T1 < LTJ, for [~J 

[Nj  + 1 [ ~ - + i  1 
3 / 

[ ~ ] ( K +  1) 

and #o,j, ]-tm-l,j with 0 < j < n -  1) are linked to other  processors. The  vertices 
#i,,~-1 on the last column are usually connected either to the opposi te  ones on 
the same rows (i.e. to  #i,o), thus forming ring connections in each row, or to  the  
opposi te  ones on the successive rows (i.e. to/Zi+l,0),  in a snake-like way. The  
same linking s t ra tegy  is applied for the last row. 

In the toroidal  mesh rings are formed in rows and columns;  in the torus  
cordalis there are rings in the columns and snake-like connections in the rows; 
finally, in torus  serpentinus there are snake-like connections in rows and columns.  
Formally,  we have: 

D e f i n i t i o n  1 Toroidal  Mesh 
A toroidal mesh o frn  x n vertices is a mesh where each vertex Ti,j, with 0 < i < 
m - l ,  0 < j < n - 1  is connected to the four  vertices v(i-1) rood re,j, V(i+D rood re,j, 
ri ,( j-1) rood n, Vi,(j+l) rood ~ (mesh connections). 

D e f i n i t i o n  2 Torus Cordalis 
A torus cordalis o f m  • n vertices is a mesh where each vertex vi,j, with 0 < i < 
rn - 1, 0 < j < n - 1 has mesh connections except for  the last vertex vi,n-1 o f  
each row i, which is connected to the first vertex r(i+l) rood m,O of  row i + 1. 

Notice tha t  this torus can be seen as a chordal  r ing with one chord. 

D e f i n i t i o n  3 Torus Serpentinus 
A torus serpentinus of  m x n vertices is a mesh where each vertex ri,j, with 
1 < i < m - 1,0 < j <_ n - 1 has mesh connections, except for  the last vertex 

ri ,n-1 o f  each row i which is connected to the first  vertex r(i+l ) rood m,O o f  row 
i + 1, and for  the last vertex r ,~-l , j  o f  each column j which is connected to the 

f irst  vertex r0,(j-1) rood n of  column j -- 1. 
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Majority will be defined as follows: 

D e f i n i t i o n  4 Irreversible-majority rule. A vertex v becomes black if  the majority 
of its neighbours are black. In case of tie v becomes black (simple m~jority),  or 
keeps its color (strong majority).  

In the tori, simple (or strong) irreversible-majority asks for at least two (or 
three) black neighbours. We can now formally define dynamos: 

D e f i n i t i o n  5 A simple (respectively: strong) irreversible dynamo is an initial 
set of black vertices from which an all black configuration is reached in a finite 
number of steps under the simple (respectively: strong) irreversible-majority rule. 

Simple and strong majorities will be treated separately because they exhibit 
different properties and are treated by different techniques. 

3 Irreversible Dynamos with Simple Majority 

Network behaviour changes drastically if we pass from simple to strong majority. 
We start  our study from the former case. 

3.1 Toroidal Mesh 

Consider a toroidal mesh with a set T of m • n vertices, m, n > 2. Each vertex 
has four neighbors, then two black neighbors are enough to color black a white 
vertex. Let S C T be a generic subset of vertices, andRs be the smallest rectangle 
containing S. The size of Rs  is ms x as.  If S is all black, a spanning set for 
S (if any) is a connected black set c~(S) _D S derivable from S with consecutive 
applications of the simple majority rule. We have: 

Proposit ionl  L e t s  be a black set, ms  < r n - 1 ,  ns  < n - 1 .  Then, any (non 
necessarily connected) black set B derivable from S is such that B C_ Rs .  

Proposition 2 Let S be a black set. The existence of a spanning set q(S)  im- 

plies Isl  > [ ~ 1  
- -  2 l "  

From Propositions i and 2 we immediately derive our first lower bound result: 

T h e o r e m  I Let S be a simple irreversible dynamo for a toroidal mesh m x n. 
We have: 
(i) ms  >_ m -  l , n s  > n - 1 ;  

_ 1. (ii) ISl > ,  2 , - 

To build a matching upper bound we need some further results. 

Proposition 3 Let S be a black set, such that a spanning set c~(S) exists. Then 
a black set Rs  can be built from S. (note: Rs  is then a spanning set of S) .  
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D e f i n i t i o n  6 An alternating chain C is a sequence of adjacent vertices starting 
and ending with black. The vertices of C are alternating black and white, how- 
ever, i f  C has even length there is exactly one pair of consecutive black vertices 
somewhere. 

T h e o r e m  2 Let S be a black set consisting of the black vertices of an alternating 
chain C, with m s  = m -  1 and ns  = n -  1. Then, the whole torus can be colored 
black starting from S, that is S is a simple irreversible dynamo. 

An example of alternating chain of proper length, and the phases of the 
algorithm, are illustrated in Figure 1. From Theorem 2 we have: 

0000000 0000000 0000000 

OO00000 OO00000 O O O O 0 @ O  

0000000 0000000 O O O O O @ O  

O0000@O @O00000 O@O@@@O 

0000000 00000$0 O0@@O@O 

O@O00@O @O@@O@O O @ O @ O 0 0  

0 0 0 0 0 0 0  O0000@O @O@0@O0 

O0000eO O00@O@O O O O O O 0 0  

S ~(S) Rs 

Fig. 1. The initial set S, the spanning set a(S) and the smallest rectangle Rs containing 
S. 

C o r o l l a r y  1 Any  m • n toroidal mesh admits a simple irreversible dynamo S 

with ISl = [ 1. 

Note that  the lower bound of Theorem 1 matches the upper bound of Corol- 
lary 1. From the proof of this corollary we see that  a dynamo of minimal cardi- 
nality can be built on an alternating chain. Furthermore we have: 

C o r o l l a r y  2 There exists a simple irreversible dynamo S of minimal cardinality 

starting from which the whole toroidal mesh can be colored black in [ ~2L~1 steps. 

An example of such a dynamo is shown in Figure 3.1. 
An interesting observation is that  the coloring mechanism shown in corol- 

lary 2 works also for asynchronous systems. In this case, however, the number 
of steps looses its significance. 

3.2 T o r u s  C o r d a l i s  

If studied on a torus cordalis, simple irreversible-majority is quite easy. We now 
show that  any simple irreversible dynamo must have size > [~] ,  and that  there 
exist dynamos with almost optimal size. 
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Fig. 2. Examples of dynamos requiring [ m2i~l ] steps. 

T h e o r e m  3 Let S be a simple irreversible dynamo for a torus cordalis m x n. 

we have: IS'l > 

T h e o r e m  4 Any m x n torus cordalis admits a simple irreversible dynamo S 
with ISI = [~] + 1. Starting from S the whole torus can be colored black in 

L~-~Jn + 3 steps. 

An example of such dynamos is given in Figure 3. 

00000000 

00000000 

@0@0@0@0 

0@000000 

00000000 

00000000 

00000000 

0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0  

e o o e o e o e o  

0 0 0 0 0 0 0 0 0  

o o o o o o o 0 o  

o o 0 o o o o 0 o  

0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0  

Fig. 3. Simple irreversible dynamos of [~J + 1 vertices for tori cordalis, with n even 
and n odd. 

3.3 T o r u s  S e r p e n t i n u s  

Since the torus serpentinus is symmetr ic  with respect to rows and columns, we 
assume without loss of generality that  m > n, and derive lower and upper  bounds 
to the size of any simple irreversible dynamo.  For m < n simply exchange m 
with n in the expressions of the bounds. 

Consider a white cross, that  is a set of white vertices arranged as in Figure 
5, with height m and width n. The parallel white lines from the square of nine 
vertices at the center of the cross to the borders of the mesh are called rays. 
Note tha t  each vertex of the cross is adjacent to three other vertices of the same 
cross, thus implying: 
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O 0  

O 0  

O 0  

0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0  

O 0  

O 0  

O 0  

O 0  

Fig. 4. The white cross configuration. 

P r o p o s i t i o n  4 In a torus serpentinus the presence of a white cross prevents a 
simple irreversible dynamo to exist. 

We then have: 

P r o p o s i t i o n  5 Ira torus serpentinus contains three consecutive white rows, any 
simple irreversible dynamo must contain > L~J vertices. 

Based on Proposition 5 we obtain the following lower bounds: 

T h e o r e m  5 Let S be a simple irreversible dynamo for a torus serpentinus m x n. 
We have: 

1. ISI _> [TJ, for [-~] > L~J, 

2. ISI > [ ] 1 ,  .for < L~-J. 

The upper bound for the torus serpentinus is identical to the one already 
found for the torus cordalis. In fact we have: 

T h e o r e m  6 Any m x n torus serpentinus admits a simple irreversible dynamo 
S with ISi = [~J + 1. Starting from S the whole torus can be colored black in 
L Jn + 3 steps 

4 I r r e v e r s i b l e  D y n a m o s  w i t h  S t r o n g  M a j o r i t y  

A strong majority argument allows to derive a significant lower bound valid for 
the three considered families of tori (simply denoted by tori). Since these tori 
have a neighbourhood of four, three adjacent vertices are needed to color black 
a white vertex under strong majority. We have: 

T h e o r e m  7 Let S be a strong irreversible dynamo for a torus m • n. Then 
IsI > r~__~-~l - -  / 3 / "  

We now derive an upper bound also valid for all tori. 



561 

T h e o r e m  8 Any m x n torus admits a strong irreversible dynamo S with ISI = 
Starting from S the whole torus can be colored black in [~J +1 steps. 

An example of such a dynamo is shown in Figure 5. 

@ 0 0 0 0 0 0 0  

0 @ 0 @ 0 0 0 @  

@ O @ O @ O t O  

@ 0 0 0 0 0 0 0  

O l O @ O @ O @  

@0@0@0@0 

@0000000 

0 @ 0 @ 0 @ 0 @  

@ 0 @ 0 @ 0 @ 0  

m = 9 ,  = 8 ,  IS i  = + 1) = 2 7  

Fig. 5. A strong irreversible dynamo for toroidal mesh, torus cordalis or torus serpenti- 
B U S .  

For particular values of m and n the bound of Theorem 8 can be made  
stricter for the toroidal mesh and the torus serpentinus. In fact these networks 
are symmetr ical  with respect to rows and columns, hence the pat tern  of black 
vertices reported in figure 5 can be turned of 90 degrees, still const i tut ing a 
dynamo.  We immediately have: 

C o r o l l a r y  3 Any m x n toroidal mesh or torus serpentinus admits a strong 
irreversible dynamo S with ISl = - , a x { [ - ~ ] ( n  + 1), [~](r~ + 1)}. 
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