
Workshop 04
Automatic Parallelization and High-Performance

Compilers

Jean-Francois Collard

Co-chairmen

Presentation

This workshop deals with all topics concerning automatic parallelization tech-
niques and the construction of parallel programs using high performance com-
pilers. Topics of interest include the traditional fields of compiler technology, but
also the interplay between compiler technology and communication libraries or
run-time support. Of the 16 papers submitted to this workshop, 7 were accepted
as regular papers, 2 as short papers, and 7 were rejected.

Organization

The first session focuses on data placement and data access. In "Data Distribu-
tion at Run-Time: Re-Using Execution Plans," Beckmann and Kelly show how
data placement optimization techniques can be made efficiently available in run-
time systems by a mixed compile- and run-time technique. On the contrary, the
approach by Kandemir et al. in "Enhancing Spatial Locality using Data Layout
Optimizations" to improve cache performance in uni- and multi-processor sys-
tems is purely static. They propose an array restructuring framework based on a
combination of hyper-plane theory and reuse vectors. However, when data struc-
tures are very irregular, such as meshes, the compiler alone can in general extract
very little information. In "Parallelization of Unstructured Mesh Computations
Using Data Structure Formalization," Koppler introduces a small description
language for mesh structures which allows him to propose a special-purpose
parallelizer for the class of applications he tackles. It is worth noticing the wide
spectrum of techniques, ranging from completely static methods to purely run-
time ones, explored in this field. This definitely illustrates the difficulty of the
problem, and the three papers mentioned above make significant contributions
asserted by real-life case studies.

The second session starts with "Parallel Constant Propagation," where Knoop
presents an extension to parallel programs of a classical optimization of sequen-
tial programs: constant propagation. Another classical sequential optimization,
extended to parallel programs, is redundancy elimination [2]. It is well known,
however, that redundancies can be an asset in the parallel setting. Eisenbiegler
takes benefit of this property in his paper "Optimization of SIMD Programs

412

with Redundant Computations," and reports very encouraging execution time
improvements. Finally, in "Exploiting Coarse Grain Parallelism from FORTRAN
by Mapping it to IFI," Lachanas and Evripidou describe the parallelization of
Fortran programs through conversion to single assignment. This work is also
interesting for its smart use of two separately available tools: the front-end of
Parafrase 2 and the back-end of the SISAL compiler.

In the third session, Feautrier presents in "A Parallelization Framework for
Recursive Tree Programs" a novel framework to analyze dependencies in pro-
grams with recursive data. It is most noteworthy that a topically related paper
has recently been published elsewhere [3], illustrating that the analysis of pro-
grams with recursive structures currently is a matter of great interest. How to
extend the static scheduling techniques crafted by the author [1] to this frame-
work is an exciting issue. Like scheduling, tiling is a well-known technique to
express the parallelism in programs at compile-time. In their paper "Optimal
Orthogonal Tiling," Andonov, Rajopadhye and Yanev bring a new analytical
solution to the problem of determining the tile size that minimizes the total
execution time.

A mixed compile- and run-time technique is addressed in the last paper. In
"Enhancing the Performance of Autoscheduling in Distributed Shared Memory
Multiproeessors," Nikolopoulos, Polychronopoulos and Papatheodoro present a
technique to enhance the performance of autoscheduling, a parallel program com-
pilation and execution model that combines automatic extraction of parallelism,
dynamic scheduling of parallel tasks, and dynamic program adaptability to the
machine resources.

Conclusion

When trying to gain retrospect on the papers presented in this workshop, one
may notice that the borderline between compile-time and run-time is getting
blurred in data dependence techniques, data placement, and the exploitation of
parallelism. In other words, intensive research is being conducted to benefit from
the best of both worlds so as to cope with real-size applications. This orientation
is very encouraging and we can hope the end-user will soon benefit from the nice
work proposed by the papers of this workshop.

References

1. P. Feautrier. Some efficient solutions to the affine scheduling problem, part I, one
dimensional time. Int. J. of Parallel Programming, 21(5):313-348, October 1992.

2. J. Knoop, O. Riithing, and B. Steffen. Optimal code motion: Theory and practice.
ACM Transactions on Programming Languages and Systems, TOPLAS, 16:1117-
1155, 1994.

3. Y. A. Liu. Dependence analysis for recursive data. In Int. Conf. on Computer
Languages, pages 206-215, Chicago, Illinois, May 1998. IEEE.

