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Abstract .  4n this paper, we propose a robust fully non-supervised me- 
thod dedicated to  the segmentation of the brain in Tl-weighted MR 
images. The first step consists in the analysis of the scale-space of the 
histogram first and second derivative. We show first that the crossings in 
scale-space of trajectories of extrema of different derivative orders follow 
regular topological properties. These properties allow us to design a new 
structural representation of a 1D signal. Then we propose an heuristics 
using this representation to infer statistics on grey and white matter grey 
level values from the histogram. These statistics are used by an improved 
morphological process combining two opening sizes to segment the brain. 
The method has been validated with 70 images coming from 3 different 
scanners and acquired with various MR sequences. 

1 I n t r o d u c t i o n  
Brain segmentation in magnetic  resonance (MR) Tl-weighted images has been 
one of the most addressed applications of image analysis in the field of medical 
imaging. Indeed, brain segmentat ion is usually a first step before detection of 
embedded anatomical  or pathological structures (hemispheres, tissues, cortical 
folds, deep nuclei, ventricles, tumors,  vascular lesions...), registration with other 
modalities or atlases, and 3D visualisation (neurosurgical planning, brain map-  
ping...). A lot of methods have been proposed, but none of them has reached a 
level of robustness sufficient to be used routinely by clinicians. Usual methods 
rely on a few parameters  which have to be tuned manual ly to different sets of 
acquisition parameters.  In this paper  we propose a new fully non supervised ap- 
proach designed to assure a high quality result for a large range of MR sequences. 

In the following, we assume that  the only image which has been acquired 
is a 3D Tl-weighted MR image covering most of the head. Situations where 
T2-weighted or proton-density images can also be used could lead to further 
developments integrating their additional discriminative power. We do not ad- 
dress such developments, first because such images are not always acquired due 
to t iming considerations, second because slice thickness of Tl-weighted images 
is usually much lower, finally because Tl-weighted images are sufficient for our 
brain segmentation purpose. 
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The wide variety of methods proposed in literature to segment the brain in 
Tl-weighted images can be browse according to the few recurrent schemes in- 
volved. It should be noted that  a simple classification scheme based for instance 
on texture analysis is a priori not sufficient to solve the problem. Therefore, the 
more frequent approach consists in using mathematical  morphology or region 
growing algorithms to discriminate the brain from the surrounding structures 
in a preclassified binary image [9,6]. Multi-resolution or scale-space analysis 
appears to be an interesting alternative to the previous scheme [11]. Other ap- 
proaches relying on the deformable model paradigm seem to be more difficult to 
master mainly because of initialisation difficulties [10]. 

Our paper proposes several improvements of the mathematical  morphology 
based scheme, which has been the most successful one. These improvements 
lead to a segmentation method robust for a large range of images. This method 
has been validated on a set of 70 images acquired on three different scanners 
using gradient-echo and inversion-recovery sequences with various parameters. In 
the next section, a rapid survey of the mathematical  morphology based scheme 
will help us to catch some of its intrinsic weaknesses which will be overcome 
throughout the paper. 

2 T h e  classical  s c h e m e  
2.1 H i s t o g r a m  ana lys i s  
The first step consists in binarizing the initial grey level image. All voxels which 
could belong to the brain are selected according to a range [Tlow,Thigh] of grey 
level values supposed to include grey mat ter  and white mat ter  tissues (cf. Fig. 1). 
This binarization aims at disconnecting as much as possible the brain from sur- 
rounding structures. The low threshold eliminates the cerebrospinal fluid (CSF) 
and the skull while the high threshold eliminates the fat and the vascular system. 
Since the MR signal do not correspond to an absolute measure of some physical 
property, both thresholds have to be tuned for each image. This adaptation is dif- 
ficult to perform automatically because of large variations of the image contrast 
according to the MR sequence parameters (spin-echo, gradient-echo, inversion- 
recovery, echo time, repetition time, excitation number, slice thickness...) and 
according to the subjects (anatomy, pathologies...) (cf. Fig. 2). 

Fig. 1. A simple description of the various head tissues observed in Tl-weighted MR 
images. 

The only a priori knowledge on the MR signal nature which seems to be 
invariant across Tl-weighted sequences is the relative positions of tissues along 
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Fig. 2. The histo9rams of 3D Tl-weighted MR images turn out to be especially variable. 

the grey level scale. The first part of this paper proposes a fully non supervised 
process using this structural information to analyse the scale-space of the image 
histogram. This analysis gives statistical parameters on brain tissue grey levels 
from which is computed the binarization. Because the classical "finger print" 
analysis based on first derivative extrema fails for some configurations where grey 
and white mat ter  are especially mixed, we have designed a new histogram mode 
detection method using the structure of the two first derivative extrema in the 
scale-space. Some crossings of extremum trajectories follow simple topological 
properties which help to analyse the scale-space structure according to a priori 
knowledge. 

2.2 Morphological processing 
Unfortunately, a reasonable estimation of the two thresholds is not always suffi- 
cient to assure a good behaviour of the segmentation process. Indeed, the quality 
of the result can be significantly lowered by a slight modification of the thresh- 
olds, especially the lowest one. Moreover, for some images, which can appear 
visually very good, not a pair of thresholds give acceptable segmentation. This 
unstability is easy to understand fi'om a description of the process (cf. Fig. 3). 

In order to achieve a whole disconnection between the brain and the sur- 
rounding structures preserved by the binarization (with "good" thresholds: scalp, 
meninges, eyes, sinuses), different methods have been proposed. They all rely on 
the effect of the morphological "opening" operation. The binary image is eroded 
to cut the remaining connections. Then the largest or the more central 3D con- 
nected component is selected as a seed of the brain. Finally the brain shape is 
recovered by a geodesic dilation of the seed conditionally to the initial binary 
image (which is often related to region growing). 

Fig. 3. The classical morphological scheme to segment the brain in Tl-weighted MR 
images. 
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Fig. 4. The classical morphological scheme (cf. Fig. 3) presents intrinsic weaknesses 
which can lead to three kinds of problems. 

The erosion and dilation structuring element diameters, like the two thresh- 
olds, influence largely the quality of the final result. Three kinds of failures can 
occur, sometimes simultaneously and with various amplitudes (cf. Fig. 4). First, 
the eyes or a large part  of the scalp can be included in the brain segmentat ion 
which means that  the erosion has not done its job, either because the binarization 
was too permissive or because the erosion diameter  was too low. These situations 
will be called first order under-opening problems. Second, a part  of the brain 
like a gyrus can be removed because of the opening effect of the erosion-dilation 
sequence. This can happen when the binarization is too selective or when the 
erosion diameter  is too large. We will talk about over-opening problems. The 
unstability of the process stems from the two conflictual constraints imposed to 
the parameter  choice by these two opposite kinds of problems. The domain of 
acceptable parameters  can be especially narrow or even empty. Finally, the last 
kind of errors called second order under-opening problems correspond to con- 
nections with some small pieces of sinus or meninges. These problems are the 
more difficult to get completely rid of because they often occur when previous 
problems have been solved. 

In this paper, the classical morphological process is modified in order to 
obtain a correct behaviour for a large parameter  domain. A first modification 
relies on a simple regularization of the binarization. Then a two step geodesic 
reconstruction process restricts the opening effect potentially removing gyri to 
the smallest one. It should be noted that  because of frequent non stationarities 
in MR images, simple thresholding operations are not always sufficient to get 
good binarizations for the whole brain. In the following, we assume that  the 
ampli tude of these non stationarities is slight, otherwise a preprocessing could 
be required which is beyond the scope of the paper [15]. 

3 1D s c a l e - s p a c e  a n a l y s i s  
In this section, we described the automat ic  analysis of the histogram scale-space 
which leads to an estimation of mean and standard deviations of grey and white 
mat te r  grey levels. Each tissue class is represented by a specific his togram mode. 
The more important  ones, which are related to background, CSF, grey matter ,  
white matter ,  fat and vascular system, always appear with the same order along 
the grey scale (cf. Fig. 2). Various approaches have been proposed to deal with 
the detection of these modes, including K-means [6] and fit with a sum of Gaus- 
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sians or with other a priori models [13]. Our own unsuccessful experiments with 
such methods when dealing with a wide set of sequence parameters led us to 
search for a more robust approach. 

3.1 Cascades  of  s ingularit ies  
Linear scale-space analysis is an appealing approach when dealing with 1D sig- 
nals because of the surprisingly simple geometry of extremum trajectories in- 
duced by the causality property [16,5]. Indeed, extrema of the signal and its 
first derivatives often have direct semantic interpretations, which make them 
good candidates for deriving structural descriptions. Usual approaches rely only 
on extrema of one single derivative. For instance, finger prints stem from first 
derivative extrema [16] while blob based primal sketches stem from signal (or 
Laplacian) extrema [7, 2]. Finger print based analysis has been proposed to ini- 
tialise the decomposition of 1D signals in mixtures of Gaussians [1,4]. In the 
case of MR image histograms, the Gaussian hypothesis may appear justified at 
first glance. In fact such an hypothesis does not take into account partial vol- 
ume effect, signal non stationarities, Gibbs artefacts, subject motions and other 
MRI specific artefacts. Therefore, to get a more robust approach, we make the 
histogram mode detection rely directly on histogram scale-space. 

The goal of our analysis is the detection of grey and white matter modes. 
Because these two neighboring modes can be especially mixed, histogram and 
first derivative extrema are not sufficient in all cases to detect them (cf. Fig. 5). 
Simple experiments with sums of Gaussians will show that higher derivatives 
have a better detection power in such situations. 

Fig.5. The derivative extrema of a histogram (DO) and its two first derivatives (D1 
and D2) in the scale-space. D i M  denotes a maximum while Dim denotes a minimum. 
Grey and white matter modes are too mixed to be detected from DO and D1 extrema. 
In return, D2 extrema reveal the mixture. 

Straightforward considerations on 1D functions with zero values on their 
domain bounds lead to the recursive property that N extrema in the i th deriva- 
tive implies at least (N + 1) nested extrema in the (i + 1) th derivative. Thus 
one single Gaussian leads to one signal extremum, two first derivative extrema, 
three second derivative extrema, etc (cf. Fig. 6). These extrema can be tracked 
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Fig. 6. The derivative extrema of a binarized Gaussian in the scale-space computed 
from heat equation. D i M  denotes a maximum while Dim denotes a minimum of the 
i th derivative. Extrema which do not reach scale 100 have not been tracked. 

throughout the scale-space (cf. Fig. 6). The sum of two Gaussians lead to dif- 
ferent extremum patterns according to their relative localizations, amplitudes, 
means and standard deviations. Intuitively, when the two Gaussians are suffi- 
ciently distant from each other, the pattern of the sum extrema corresponds to 
the juxtaposit ion of two single Gaussian extrema patterns. When the Gaussians 
are brought closer to each other, some extrema disappear. For very closed Gaus- 
sians, the sum extrema pattern differs from the single Gaussian extrema pattern 
only for high derivative extrema. 

Because of the nature of the linear scale-space, which amounts to convolutions 
with Gaussians (the Gaussian is the Green function of the heat equation), a 
sum of two Gaussians remains a sum of two Gaussians throughout the whole 
scale-space. Therefore, since smoothing the sum is similar to bringing the two 
Gaussians "closer" to each other (while increasing their standard deviations), 
the structure of the sum extrema trajectories in the scale-space corresponds to 
a sequence of extremum extinction (cf. Fig. 7). These extinctions, which are the 
well known singularities related to scale-space bifurcations [7], follow a simple 
rule giving rise to what we will call singularity cascades. 
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Fig. 7. The derivative extrema of the sum of two Gaussians in the scale-space giving 
rise to cascades of singularities (left: two cascades of order 0 and 2 are shown, right: 
the cascade of order 0 is followed until the singularity of order 4). 
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The simple syntactic rule leading to the nice nested structure of cascades 
stems from the fact that  the order i singularities are the only locations in scale- 
space where the trajectories of the i th  and ( i+l)  th derivative ext rema can "meet" 
each other. This can be understood first if one look at the expression of the 
drift velocity of a i th derivative ex t remum under scale-space smoothing. Let Di : 
IR+ x IR+ --+ IR be the scale-space representation of the histogram i th derivative. 
In non-degenerate situations, an est imate of a Di ext remum velocity vi(g, s) 
(where g denotes the grey level and s denotes the scale) along its t rajectory 
defined by Di+l(g, s) = 0, is given by the implicit function theorem [7]: 

1Di+3(g,s) Di+l(g,s) = 0 .  (1) 
v i ( g , s )  = 2 

Hence, a crossing between Di+l(g, s) = 0 and Di+2(g,s) =-0  would lead to a 
degenerate situation where the drift velocity tends to infinity. Therefore singu- 
larities of order i are the only locations where such trajectories can meet.  

Second, since at least one ex t remum of the (i + 1) th derivative has to exist 
between a pair of min imum and m ax i m um  of the i th derivative at every scale 
where this pair exists, one (i + 1) th derivative ext remum trajectory is bound to 
cross a pair extinction. Then, the structure of extinctions of Fig. 7 is invariant 
whatever the two Gaussian parameters  are, namely one cascade of order 0 linking 
singularities of order 0, 1, 2 and more (cf. Fig. 7), one cascade of order 2 linking 
singularities of order 2 and more, and higher order cascades which do not appear 
in the figures. 

Previous observations on singularity cascades lead to the conclusion that  the 
mixture  of two histogram modes can be untangled if high derivative ex t rema are 
used. Indeed, the mixture of very close modes will s imply  lead to cascades of 
higher order than usual. With MRI histograms, second derivative ext rema turn 
out to be sufficient to deal with the grey and white mat te r  mode detection for 
all the configurations in our database.  

If  we assume now that  a MRI histogram mode is relatively symmetric,  a 
good estimation of its mean value is provided by the related second derivative 
minima.  Then, an estimation of standard deviation can be derived from the 
neighboring first derivative ext rema (cf. Fig. 6). Therefore, we have devised a 
method using the cascade property to detect simultaneously first and second 
derivative ext remum trajectories related to grey and white mat te r  modes. 

3.2 F r o m  c a s c a d e s  to  m o d e s  
In the following an algorithm is described which uses the notion of cascade 
to construct a structural representation of the histogram scale-space based on 
first and second derivative ex t remum trajectories. Then, an heuristics uses this 
representation first to discriminate inversion-recovery MR sequences from other 
ones, second to detect trajectories related to grey and white mat te r  modes. 

Whatever  the histogram is, if one looks high enough in the scale-space, only 
one second derivative minimmn remains alive (cf. Fig. 6). The first step of the 
process consists in computing the scale-space of the histogram first and second 
derivatives until the first scale where only one second derivative min immn exists. 
This is done using the usual discretization of heat equation [7]. Then all extrema 
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reaching a minimum scale (in practice 5) are tracked from their extinction scale 
until scale zero. The different trajectories are gathered in families corresponding 
to the cascade notion. "Maximum/minimum" couples of trajectories of the same 
order mating in a singularity are detected first. Then each order 1 singularity 
leads to a link between one order 1 couple and one order 2 couple. Two kinds of 
families are obtained: "full ones" include two couples and "childless ones" include 
only one order 2 couple. Finally the few trajectories reaching the maximum scale 
are gathered in the "infinity family" (cf. Fig. 8). 

o so 1 ~  1 ~  ~ 2so ~ o s o  l c o  1so ~ o  

Fig. 8. First and second derivative extremum trajectories are gathered in three kinds of 
families (le]t). Each ]amily is endowed with a volume (right). 

We assume now that  a histogram mode can have different signatures in the 
scale-space according to its surrounding. A dominant mode will lead in the lowest 
scales to a signature' similar to the Gaussian signature of Fig. 6, namely a hand- 
shaped 5-uplet of trajectories SG = (D2M, D1M, D2m, D i m ,  D2M).  In case of 
competition between modes, only partial signatures appear which simply means 
that  the initial scale was to high to unravel the full signatures. Since we can not 
compute the missing part of the scale-space because of the well-known unstability 
of the inversed heat equation, we have to cope with these partial signatures [12]. 

Full or partial signatures of the modes of interest will be reconstituted step 
by step. First, the few families supposed to include the central D2m trajectories 
of these signatures will be selected, all other families being removed. Then all 
remaining trajectories are ordered according to their location at scale 0. This 
operation leads to a sequence in which full and partial signatures are detected 
by a simple pattern matching method using the signature SG as model. The 
D2m trajectories represent seeds to which are added other trajectories if the SG 
sequence is respected. 

The crucial part of the process is the initial family selection, which includes an 
automatic discrimination between inversion-recovery (IR) sequences and other 
ones because of the very different nature of both kinds of histograms (cf. Fig. 2). 

All families apart  from the infinity one are sorted according to what will 
be called the "family volmne", which is a rough measure of importance (of. 
Fig. 8). It should be noted that the highest scale reached by a family is not a 
good selection criterion because it depends only on mode surrounding. Therefore, 
extrema stemming from grey level highest values can survive a very long time 
in the scale-space (cf. Fig. 8). 
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We assume that two types of families exist, which are related to the two 
cascades of Fig. 7. Those which are related to the order 0 cascade include the 
D2m trajectory of one specific histogram mode. They can be full or childless. 
The other families, related to order 2 cascade of Fig. 7 are just bringing the D 2 M  
trajectories required to complete the signatures. They are necessarily childless. 
A family volume corresponds to the integral of the histogram over a specific 
range which is illustrated in Fig. 8. 

The two biggest families are selected. Then the two scales sl  and s2 where 
occur their respective order 2 singularities are compared. If s2 / s l  > 0.25 where 
s l  > s2, the histogram is supposed to stem from an [R sequence. Indeed, this 
ratio discriminates situations where grey and white mat ter  modes merge into 
a "brain mode" which survive during a long scale range (standard sequences) 
versus situations where the brain mode has a very short life time ( IR sequences) 
(aft Fig. 9 and 10). This simple rule led to a 100% successful discrimination with 
our database (20 IR sequences, 50 standard sequences). 

~ '  ! ' ;' , < "  ~ ' ' D r  t , ) e l ~ c ~  

I,/ .,:.." ,,, ~, / ql, ,',-" ,, , / , ~ J ..... "" ....... " ' ...... 

I ~ l  r ! :: ....... ' . . . .  
,',, .*, , I I' ' , ] 

IL," i' ,I ,~ , ~ i I .................................... : " H -  ! ,~-'. . . :  . ~  ~"I ~, ..... -" ........ "", ~-, ' ,~, '  

,,, , , . y ; ,  ; ,  1 t"'r, ,,,,,,'r',r, ..... ::"'" ' ' , , , "  ,,' : , ..... 4 t~!i i ::::: ...... ~ ," : ......... 

. . . .  . . . . .  

Fig. 10. The signatures and scale selections of grey and white matter modes in six 
different histograms stemming from standard Tl-weighted MR sequences. 

Then, in the IR situation, the pattern matching algorithm previously de- 
scribed is applied to the trajectory set made up by the infinity family and the 

Fig. 9. The signatures and scale selections of grey and white matter modes in four 
different histograms stemming from Inversion Recovery MR sequences. 
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two biggest families. This analysis provides the grey and white mat ter  signatures 
(cf. Fig. 9). 

In the other situations, a first signature analysis is applied to the trajec- 
tory set made up by the infinity family and the family endowed with the high- 
est order 2 singularity in scale-space. This first analysis provides the "brain 
mode" signature. Then two new families are added to the trajectory set. The 
first one is selected as the highest family (once again highest means highest 
order 2 singularity in scale-space) which loco(D2m) is located in the range 
[loco(D1Mb~ai,~),loco(Dlmb~ai~)], where Dlibrai,~ denotes order 1 trajectories 
belonging to the brain mode signature and loco denotes location at 0 scale. The 
second one is selected as the highest family which loco(D2m) is located in the 
range [loco (Dlmbackground), loco (DiMbrain)]. Finally a second analysis is applied 
with this four family set which provides the grey and white mat ter  signatures 
(of. Fig. 10). 
3.3 Sca le  s e l e c t i o n  
In this section, we describe how mean and standard deviation of a mode are 
estimated from its signature. Scale selection is one major problem of linear scale- 
space analysis, mainly because the hypothesis that an extremum trajectory in 
scale-space arises from a single event is rarely true. Therefore, the simple "select 
at high scale and track until lowest scale" strategy is far from being sufficient. 
Intuitively, at highest scales extrema are related to a:mixture of modes (like 
the brain) while at lowest scales they are related to noise or minor histogram 
modes. We propose an heuristics based on local minima of the second derivative 
minimum drift, absolute velocity. This particular points turn out to be espe- 
cially similar from. his togram to histogram which make them good candidates 
to develop a new kind of primal sketch (cf. Fig. 9 and 10), but such an ap 
proach is beyond the scope of this paper. Our heuristics stems from the idea 
that extremum trajectories alternate periods of high drift velocity with periods 
of stability which could be related to scale ranges where they are catched by 
some underlying event. It should be noted that  drift velocity minima are also 
strongly related to crossings between order i and order (i + 2) trajectories, which 
can be understood from Eq. 1 (cf. Fig. 7). 

Using Eq. I to detect velocity minima leads to bad results induced by trajec- 
tory discretization effect. Therefore we have developed a more robust approach 
which inferred drift velocity estimations with discrete computations. The tra- 
jectory is considered has a sequence of segments of constant abcisse. Then each 
segment is endowed with a velocity inversely proportional to its length. Finally, 
using also velocity sign, all absolute velocity minima are detected. 

This method provides the points pointed out in Fig. 9 and 10. Then, the 
scale 8,,od~ from which is estimated a mode mean value is given by the first local 
minimum of the drift velocity appearing along the D2rn,~od~ trajectory under 
the lowest order 2 singularity of the whole family set. Finally, the two "standard 
deviations" are estimated from the DIMgr~y and Dlmwhite trajectories, which 
always exist. 

The whole histogram analysis algorithm has been applied with success on 
the 70 histograms of our database. The analysis takes less than one second on a 
standard sparc station. 
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4 M o r p h o l o g i c a l  p r o c e s s  
Now, we propose briefly an improved morphological process qualitatively robust 
to small variations of the values extracted from the histogram. 

4.1 R e g u l a r i z e d  b i n a r l z a t i o n  
The first step of the process consists in a regularized binarization. The regular- 
izing effect is classically obtained from the classical Markovian approach relying 
on Ising model [3, 9]. The closing effect on the binarization allows us to use a 
relatively selective low threshold ma  - 2 ~ .  This improves the effect of the fol- 
lowing erosion and reduces the risk of first order under opening (eft Fig. 4). It 
should be noted that the regularization is restricted to a range of grey levels 
which limits the risk of creating thick connections between the brain and the 
surrounding tissues (meninges, sinus, skull marrow). 

4.2  B r a i n  s e g m e n t a t i o n  
In order to reduce over-opening effects often induced by the standard morpho- 
logical process (cf. Fig. 3, 4), we propose to combine two morphological openings 
related to two different structuring element diameters. The largest opening Ol 
will have to fully disconnect the brain from surrounding tissues, leading to the 
brain seed. The smallest opening Us will have to define the final brain shape, 
which means mainly removing meninges and noise. The whole process can be 
summarized as follows: 

- Apply Us opening to binarization B to get object O~(B) (structuring ele- 
ment: 26-neighbourhood); 

- Apply 3ram erosion to (.9~(B) (structuring element: 3ram radius ball) [8]); 
- Select largest 26-connected component as brain seed S; 
- Compute geodesic chamfer distance to S conditionally to O,(B) (denoted 

- Threshold the previous distance to get brain complement T>smm (d(S)); 
- Dilate brain complement conditionally to T>4m,~ (d(S)) until convergence; 
- Removes the dilation result from T<=s,~,,(d(S)) to get the final brain seg- 

mentation. 

The largest opening C0l is related to the 3ram radius ball structuring element, 
which is defined from a chamfer distance adapted to the voxel anisotropy [8]. 
This choice makes the opening effect of COl independent of the voxel geometry. 
The 26-neighborhood has been chosen for Os to assure a minimum opening effect 
in all directions whatever the voxel geometry is. Geodesic chamfer distances are 
efficiently implemented using a thick front propagation [14]. 

The whole segmentation has been applied to the 70 images of our database 
(40 healthy subjects/30 epileptic subjects involved in a neurosurgery protocol). 
The process takes about one minute on standard sparc stations. In 68 cases, the 
process was globally successfull apart from some second order under-opening 
errors in a few cases and slight over-opening errors in temporal lobes for one 
specific MR sequence with non-homogeneities (see. Fig. 4). For one of the re- 
maining cases, the Ot structuring element radius had to be increased to 4ram to 
get a good result. The last case was presenting large non-homogeneities which 
call for a preprocessing step [15]. 
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5 C o n c l u s i o n  
We have proposed a robust fully non-supervised method to segment the brain in 
Tl-weighted MR images. Hence, this method can now be considered as a reliable 
preprocessing before more sophisticated image analysis approaches. The statis- 
tics inferred from the histogram can be used for other segmentation purposes 
when the contrast between grey and white mat ter  is of interest. The scale-space 
based approach proposed in this paper could be used to analyse other kinds 
of histograms. Finally, the extension of the cascade notion to higher dimension 
signals would be very interested but the question appears rather involved at first 
glance. 
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