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A b s t r a c t .  This paper presents a method for automatic segmentation 
of the tibia and femur in clinical magnetic resonance images of knees. 
Texture information is incorporated into an active contours framework 
through the use of vector-valued geodesic snakes with local variance as a 
second value at each pixel, in addition to intensity. This additional infor- 
mation enables the system to better handle noise and the non-uniform 
intensities found within the structures to be segmented. It currently op- 
erates independently on 2D images (slices of a volumetric image) where 
the initial contour must be within the structure but not necessarily near 
the boundary. These separate segmentations are stacked to display the 
performance on the entire 3D structure. 

1 I n t r o d u c t i o n  

We address the problem of au tomat ica l ly  segmenting clinical MRI  of knees. 
There  are many  applications of this capability, including diagnosis, change- 
detection,  as a pre-cursor to regis trat ion with a model, and in the building of an 
initial model  for surgical simulation. Moreover,  the segmentat ion sys tem can be 
used as a tool  to replace or expedite the tedious process of manual  segmentat ion.  

There  are two pr imary  strategies for detect ing image boundaries.  Region 
growing uses local propert ies  of the region of interest along with techniques 
for split t ing and merging regions [2, 1]. Deformable or "active" contour  models 
("snakes") use only the b o u n d a r y  of  the object  which deforms over the image to 
minimize some energy function based on propert ies  of the curve (such as smooth-  
ness) and of the image (such as gradients)  [12, 6, 18]. Several methods  explicitly 
combine both  the region and contour  approaches  [23, 16]. Active b o u n d a r y  meth-  
ods are commonly  applied to medical  images because they can capture  the irreg- 
ular shapes and shape deformations found in anatomical  s t ructures  [14]. Several 
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approaches to knee segmentation have been explored, including a model based 
approach to segmenting both bone and cartilage using region-growing, snakes, 
and spatial information [11], and a knowledge-based approach which uses in- 
formation about  the shape and the imaging process to localize the femur [19]. 
While such approaches are important  for utilizing anatomical  knowledge in guid- 
ing segmentation, we believe that  new measurements  of similarity can improve 
basic segmentat ion methods and provide a stronger basis for knowledge-rich seg- 
mentation. We use a deformable boundary  model to capture the shape, but we 
extend it to include texture information for bet ter  performance. 

In particular,  t rabecular  bone has an apparent  visual texture in MRI da ta  
which is approximately constant; it is this texture  pat tern  that  we wish to exploit. 
This implies that  the method is best-suited to handle the portions of the bones 
near joints, since these portions contain much trabecular  structure. The shafts 
of the bones contain much less of this s tructure and may not be as readily 
segmented by our method, depending on their appearance in the MR images. 
For this work, we address the problem of segmenting the trabecular bone in the 
portions of the femur and tibia near their respective joints. The method has not 
been applied to other areas of the bones. It  should be further noted tha t  we do 
not find cortical bone directly in this work. Should that  segmentation be desired, 
our method may be useful as a pre-processing step, since it can be viewed as 
providing a rough segmentation of the interior boundary  of cortical bone. 

Segmenting the trabecular region of the bone can also be viewed as classifying 
the pixels in that  region, since the boundary  is initialized to contain intensity 
and texture corresponding to t rabecular  bone, then grows outward to find the 
true boundary  of tha t  bone region. However, no classification is performed on the 
rest of the image, and the classification of t rabecular  bone is performed locally 
only. 

For the deformable model, we use geodesic active contours ("geodesic snakes") 
which are described below [4, 3, 13]. The advantage of geodesic snakes over classi- 
cal snakes [12] is that  the former are independent of the parameterizat ion of the 
curve and can handle topological changes automatically. Moreover, implementa- 
tion by level-set methods provides accuracy and stability [15]. This segmentation 
method has been applied to various medical imaging domains in [20]. 

The energy function used by either active contour method is normally based 
on the intensity gradients in the image so the snake will lock onto strong edges. 
MRI images, however, are often too complex for gradient information alone to 
be reliable. Intensities often vary non-uniformly throughout  a single structure 
and the boundary  between neighboring structures may be noisy. This is where 
a less local approach, moving toward region-growing, is of benefit. Specifically, 
texture information can be incorporated to model these image attributes.  

Many different distributions can be used to represent or learn texture classes 
[21, 22]. Additionally, filters at different scales can be used to decompose an im- 
age into low-level texture features [7]. Texture modeling is used for denoising, 
texture synthesis, classification, and segmentation. We have chosen to incor- 
porate  texture information directly into the weighting function of the geodesic 
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snakes. We add only variance at this time, but  more statist ics such as directional 
filters or multiscale filters could be incorpora ted  easily if needed. Specifically, we 
define the snake to be a t t rac ted  to intensity gradients  as well as variance gradi- 
ents, where variance is computed  in a small ne ighborhood  a round  each pixel. We 
use the vector-vMued snakes approach  to combine these measures in a manner  
formally consistent  with the original snakes formulat ion [17]. 

This paper  presents a system which au tomat ica l ly  detects  closed boundaries  
in 2D magnet ic  resonance images of  knees. Bo th  the femur and the tibia are 
segmented separate ly  from each image of a volumetr ic  set. Also input  must  be 
a small pa tch  tha t  is known to be within the desired s t ruc ture  but  does not  
need to be anywhere  near the t rue boundary ;  the snake flows outward  from this 
patch  until convergence. This is an improvement  over m a n y  similar opt imizat ion 
approaches where the initial contour  must  be near the boundary,  and the user 
may  need to guide the contour.  Each  2D image is segmented independent ly  at 
this time, with the results stacked to give the volumetr ic  segmentat ion.  Future  
work will generalize the method  to 3D. No user- interact ion is required. 

2 Geodesic  Snakes 

This work uses the f ramework of geodesic active contours  as in [4, 3, 13, 17]. 

2.1 . . .  B a s i c  F o r m u l a t i o n  

The  task of  finding the curve tha t  best fits the b o u n d a r y  of the object  is posed 
as a minimizat ion problem over all closed planar  curves C(q) : [0, 1] --~ R 2. The  
objective funct ion is 

o 1 9([V I(C(q) )[)[C' (q)ldq 

where I : [0, a] x [0, b] --+ R + is the image and g : [0, oc) -~ R + is a str ict ly 
decreasing function such tha t  9(r) -+ 0 as r --* oc. T h a t  is, we are looking for 
the minimal  distance curve where distance is weighted by the function g which 
acts on intensi ty gradients,  so tha t  the curve is a t t rac ted  to intensity edges in 
the image. For example, one common  choice is g ( IVI I )  = 1 l + l V l [ 2  �9 

To minimize this objective function by steepest  descent, consider C to be 
a funct ion of t ime t as well as parameter  q. Then  one can compute  the Euler- 
Lagrange  equat ion of the objective function to determine the evolution of the 
curve, i.e., its derivative with respect to time. This yields the curve evolution 
equat ion 

oc(t) 
- g ~ N -  (Vg' N ) N  

Ot 
where ~ is the Eucl idean curvature  and N is the unit  inward normal.  

In order to make this flow intrinsic to the curve ( independent  of its param-  
eterization),  a surface u : [0, a] x [0, b] ~ R can be defined to give the distance 
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from any image point to the curve C(,). Then u is evolved instead of C, which 
is identically the zero level-set of u. The evolution equation is 

u, = g,~lVul + V g .  Vu .  

An additional t e rm c can be used either to increase the speed of the flow or to 
force the contour to flow outward, similar to the balloon force in [6], to yield 

= g(c  §  )lWl § v g .  vu.  

2.2 . . . o n  V e c t o r - V a l u e d  I m a g e s  

As described above, I is assumed to have one value at each pixel. The same 
minimization can be achieved on multi-valued images [17]. Let 4~(ul, u2) : R 2 
R "  be an m-valued image, so the value of the image at any point is a vector in 
R m. The quadratic form d~b2(v) gives the rate of change of the image in the v 
direction: 

Ld  _l Lg21 g22 
�9 0~b  0 4  where gij .= ~ " ~U~Uj" The ext rema of d~ 2 are obtained in the directions of the 

eigenvectors of [gij], the at tained values are the corresponding eigenvalues A+. 
We then want to define our function g to be used in the evolution equa- 

tions according to the steepest-descent method. One approach is to make g be 
a function of either A+ or (A+ - A_), still requiring tha t  g(r)  --~ 0 as r --~ co. 

3 S e g m e n t a t i o n  A l g o r i t h m  

Our segmentation algorithm uses these evolution equations in eonju:nc~ion with 
local variance [10]. The algorithm also uses an image-dependent balloon force 
[9], requires an initial contour, and detects convergence automatically. Finally, 
a post-processing step is added to counteract the effects of smoothing and win- 
dowing on the energy function g. 

3.1 I n c o r p o r a t i n g  T e x t u r e  

Although the t rabecular  bone regions of the MR images vary in intensity, there 
is a fairly uniform texture throughout those regions. This led us to use variance 
along with intensity for segmentation. In particular, local variance S : [0, a] x 
[0, b I ---+ R + is computed over a fixed-sized window�9 We now treat  the original 
image as a two-valued image with intensity and local variance as the values at 

1 each pixel. We choose g = l+x/~-+, computed at each pixel in the image, and 

use the geodesic snakes formulation. An example of g on an image is shown in 
Figure 1. 
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Fig. 1. Intermediate steps in algorithm. (1) An example image slice. (2) The weighting 
function g used in minimization, operating on that slice. (3) The output of the seg- 
mentation algorithm: the inner boundary is the true boundary based on g, the outer 
boundary is the result after compensation for windowing and smoothing, the starting 
contour is shown in black. 

3.2 I m a g e - D e p e n d e n t  B a l l o o n  Fo rce  

Our system performs outward flow with the balloon force proportional to g at 
each point on the curve. This means that the curve will push outward quickly 
when g is high (far from the boundary) and slowly when g is near zero. Note 
that this is an important deviation from the definition of geodesic active contours 
which may change the behavior of the partial differential equation, affecting the 
existence and uniqueness of the solution. 

3.3 In i t i a l  C o n t o u r  

The algorithm requires an initial closed curve which must be within the structure 
to be segmented. Our system does not require it to be anywhere near the actual 
boundary as shown in Figure 1. The initial contour does not need to be connected 
but could be a set of "bubbles" within the object or objects to be segmented. 

3.4 C o n v e r g e n c e  

Convergence is detected automatically when the curve has not moved with re- 
spect to the image resolution over a fixed number of iterations. For the parameter 
settings used in our experiments, this number could be set between 10 and 20 
with good results. 

3.5 W i n d o w i n g  Effec t  

Because g is computed over a window of the image, the final contour more closely 
matches the centers of the respective windows which is a fixed distance (the ra- 
dius of the window) inside of the true boundary. Additionally, the smoothing used 
in the computation of the gradients of the intensity and variance images shrinks 
the apparent boundary of the structure related to the amount of smoothing and 
to the structure's curvature. For these reasons the final contour is expanded by 
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a constant k at each point as shown in Figure 1, where k depends on the window 
size used in the variance computat ion and the amount  of smoothing. This is only 
an approximation,  as k should also vary locally depending on the curvature of 
the boundary  and on the appearance of neighboring structures. These factors 
a r e  not currently incorporated, and k is constant over the curve. 

4 Exper imenta l  Resul ts  

This algorithm has been run on one clinical volumetric knee image. This image 
consists of 45 2D slices (greyscale images), each with resolution 256x256. The 
slices on the ends were not used in the experiments since the femur and tibia 
were not prominent in them, leaving 37 slices used. The program is run on each 
slice independently. The same initial contours were used in each image, except 
for slices early in the sequence and late in the sequence where separate initial 
curves had to be defined so tha t  the initial curve was within the structure. The 
femur and tibia were segmented separately, and are overlaid on the same image 
for display purposes only. The window-size for variance computat ion was 7x7, 
sigma of 4 was used in the gradient computat ions,  the compensation factor k 
was 8, and convergence was defined to be movement  less than image resolution 
over 12 iterations. Most segmentations required approximately 200 iterations for 
convergence, dependent primarily on the size of the structure in the image, and 
took approximately 30 seconds on a 250MHz UltraSparc. 

4.1 P e r f o r m a n c e  

Segmentations of the 35 central slices are pictured in Figure 2. The segmenta- 
tion was performed separately for the femur and tibia, although this is not a 
requirement of the algorithm. Notice that  the boundary is well approximated 
by most segmentations, and the s tar t ing contours are not near the boundaries. 
These segmentations were fully automatic,  with fixed initial contours used for 
the early, middle, and late slices respectively, and all other parameters  constant 
on all images. The exact settings were not crucial; many  settings yield quali- 
tat ively equivalent results. The convergence criteria can be tightened to allow 
more outward flow, and this change would fix the error in the femur segmenta- 
tion in one image in Figure 2 where a dark region within the femur causes the 
flow to stop. If the criteria is made too strict, however, the contours would leak 
into neighboring structures. The segmentations are rendered together to show 
the total  segmentation of the bones in Figure 3. 

4.2 C o m p a r i s o n  to  I n t e n s i t y  O n l y  

This algorithm was run using only the intensity gradients, as in the tradi- 
tional active contour definition. In this case, the energy function was defined 
a s  g ( I V Z l )  = 1 I+~W/V" This method worked for some images and settings but 
was much less stable than the two-valued method. Areas of low gradients (high 
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Fig.  2. 35 image slices shown with segmentations overlaid in white. Initial contour is 
shown in black. 
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Fig. 3. Segmentations from 37 slices rendered together to show volumetric information. 

Fig. 4. Segmentation using only intensity gradients. (1) The energy function g(iVII) = 
1 ~+lviF 2 . (2) Curve flow showing leaking into neighboring structures, convergence not 

yet detected. 

values of g) near the boundary  often caused the contour to leak into other ar- 
eas of the image. Figure 4 shows an example run using this energy function. 
The snake was stopped after a fixed number of iterations; it did not yet detect 
convergence. However, it had already leaked beyond the boundary  of the femur, 
and subsequent iterations would cause it to leak much more. No compensation 
for smoothing was applied, but there is less of a need than  in the two-valued 
case. Note again that  the use of a balloon force that  depends on g has changed 
the partial differential equations from the derivation of geodesic snakes, so the 
existence and uniqueness of a solution may not be assured as in the original 
formulation [4]. 

4.3 C o m p a r i s o n  to  V a r i a n c e  O n l y  

Variance was also tested alone using the energy function g(IVS[) ] 
- 1 +  i v - ~ ,  

where S is the variance image. It  at tained much bet ter  results than intensity 
alone, rivaling the two-valued approach. It  almost always converged to a reason- 
able boundary. Compared to the two-valued approach, it appeared slightly more 
likely to leak through a region boundary  but was bet ter  able to handle large in- 
tensity variation within the bone region. Three experiments in which its results 
differed from those of the two-valued algorithm are shown in Figure 5. Again, 
the inner boundary is the result before compensation for windowing. The first 
experiment was stopped after some number of iterations: convergence was not 
detected. The second segmentation is bet ter  than that  achieved in the two-valued 
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Fig. 5. Segmentation using only variance component of image. (1) The energy function 
g(iVSI) = 1 ~ ,  where S is the variance image. (2) Curve flow showing leaking into 
neighboring structures, convergence not yet detected (and stretching by k not applied). 
(3) A difficult segmentation. (4) A third segmentation where the result differs from the 
two-valued segmentation. 

case for the same image and initial contour (Figure 2). Whether or not the third 
segmentation is better than the corresponding two-valued segmentation depends 
on what a radiologist would consider ground truth for that particular image, as 
the boundary is not clear. Overall the results for variance alone were good, and 
one could use this approach for segmentation but may need to be more careful 
when choosing parameters settings. 

5 F u t u r e  W o r k  

One direction for future work is to extend the system to operate on 3D images 
directly, so that  a surface is evolved instead of curves on individual slices. The 
geodesic snakes method was generalized to volumetric data in [5], and the vector- 
valued extension will hold in 3D as well. In that case, the data would be a vector- 
valued volume where one would consider mappings from _R 3 to _R rn where m is 
the number of (3D) texture features used. 

A second direction is the incorporation of other texture measures which may 
be necessary for other applications or may improve the results for this applica- 
tion. Such measures include orientational filters and gray-level co-occurrence [8]. 
We also plan to consider textures across multiple scales to be able to handle a 
wide variety of textures and scenarios. 
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