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A b s t r a c t .  A quick method to obtain the 3D transformation of a 3D free- 
form shape model from its 2D projection data is proposed. This method 
has been developed for the real-time registration of a 3D model of a cere- 
bral vessel tree, obtained from pre-operative data (eg. MR Angiogram), 
to a X-ray image of the vessel (eg.Digital Subtraction Angiogram) taken 
during an operation. First, the skeleton of the vessel in a 2D image is 
automatically extracted in a model-based way using a 2D projection of a 
3D model skeleton at the initial state (up to +20 degree difference in ro- 
tation). Corresponding pairs of points on the 3D skeleton and points on 
the 2D skeleton are determined based on the 2D Euclidean distance be- 
tween the projection of the model skeleton and the observed skeleton, In 
the process, an adaptive search region for each model point, which is de- 
termined according to the projected shape, effectively removes incorrect 
correspondences. Based on a good ratio of correct pairs, linearization of 
a rotation matrix can be used to rapidly calculate the 3D transformation 
of the model which produces the 2D observed projection. Experiments 
using real data show the practical usefulness of the method. 

Key words: 3D-2D registration, ICP  (Iterat ive closest point)  algori thm, multi- 
modal  fusion and augmented  reali ty visualizations. 

1 I n t r o d u c t i o n  

This work is being developed to aid the endovascular  t r ea tment  of intracranial  
aneurysms by coil embolisation. In current  practice, the neuroradiologist  guides a 
catheter  th rough  a vessel while viewing its 2D project ion (X-ray angiogram).  It  is 
hard for a neuroradiologist  to visualize the complex 3D shapes of the vessels from 
one 2D projection,  even with the 3D shape informat ion from pre-operat ive da t a  
(eg. MR A(ngiography)) .  To help the neuroradiologist 's  unders tanding,  Wilson 
and Noble[l] developed a method  for reconstruct ing a 3D model of cerebral 
vessels fl'om slices of MRA data.  Fig. l a  shows a result of the reconstructed 3D 
model. If  this 3D s t ructure  is super imposed on a 2D intra-operat ive  X-ray  image 
and the location of the ca the ter  is displayed on the 3D reconstruct ion,  it may  
aid the neuroradiologists in accurate ly  deciding how they should manipula te  the 
catheter .  For this purpose, real-t ime determinat ion of the posture  and posit ion 
of the 3D model from its 2D project ion is required. 
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The determination of the position and posture of a 3D model from its 2D 
view is a fundamental and important  problem in Computer  Vision research. In 
the case that the object has some prominent features (points, edges etc) that  
can be robustly extracted and matched between the 3D model and its 2D view, 
the approach based on feature-matching can be taken. However, usually both 
robust feature extraction and robust feature matching are not easy, especially 
in the case of a free-form object. The iterative closest point (ICP) algorithm[2], 
originally developed for 3D-3D rigid registration, has appropriate characteristics 
for free-form shape registration. The basic idea of the method is to use iterative 
transformations of the 3D model towards the correct position and posture using 
the corresponding pairs between the observed and the model points, which are 
matched on the basis of the closeness at each state. If the initial position and 
posture is not far from the correct position and posture, so that the correspond- 
ing pairs include a high ratio of correct pairs, the model can converge to the 
correct state. For registration of a 3D model registration to its 2D view, that  is, 
for obtaining the best 3D transformation of a model which produces a given 2D 
view, the difficulties of the extension of this approach are mainly two-fold: 
I) The difficulty of finding correct pairs between the projection of the 3D model 
and the observed 2D view using only the 2D distance, and; 
II) Even after finding the pairs, it is not easy to feedback the 2D difference to 
the 3D transformation of the model. 

Concerning (I), in [3], the tangent of the projection of the 3D model and 
the observed 2D curve was used to decrease the number of bad correspondences. 
Although the effectiveness of using such additional attributes (curvatures, grey 
level etc) in addition to the geometrical distance has been shown in 3D-3D 
registration of h'ee-form objects[4], it is not so effective in the 3D-2D case for two 
reasons: a) the tangent on the 2D image is not an invariant feature; and b) the 
projection of the complex 3D model often causes complicated self-overlapping, 
where the robust calculation of geometric features can be difficult. 

Concerning (II), most proposed methods take similar approaches to a gradi- 
ent descent method (eg. [5]) to find the best 3D transformation which minimizes 
the sum Of 2D distances between corresponding pairs (or maximizes the sim- 
ilarity between the projection of the model and the observed data) over the 
six degrees of freedom. However, such approaches are time consuming and are 
not suitable for use in real-time applications. Fortunately, to address this prob- 
lem, the Active Vision Research field has made advanced steps towards real-time 
object tracking from time-sequential 2D images. One solution that  has been pro- 
posed is to linearize the 3D non-linear transformation[6]. The main difference 
between their application and ours is that,  in their case, the feature correspon- 
dences are easier to find since special features (like corners) can be used. To use 
thier approach, we need to solve the problem (I) and robustly obtain a high ratio 
of correct pairs. 

In this paper we propose a fast registration method which overcomes the 
two difficulties noted above as follows. Concerning (I), the model-based strategy 
plays an important  role both in extracting the vessels from the X-ray image and 
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Fig. 1. The 3D model of the cerebral vessels and a digital subtraction angiography 
(DSA) image of the same vessels: (a) the 39 model of both carotid circulations; (b) 
a skeleton of the left internal carotid circulation; (c) a DSA image of the left internal 
carotid circulation. 

in finding correct point matching pairs between the vessel and the 3D model. 
In particular, the search area for finding the corresponding observed points is 
effectively adjusted for each point in the 3D model depending on the shape of the 
model projection, so tha t  most of the wrong pairs are excluded. Secondly, con- 
cerning (II), taking advantage of the high-ratio of correct pairs obtained by the 
first process, the 3D transformation of the model is calculated using separation 
of the translation effect and linearization of the rotation matrix. Although the 
correct position and posture of the model is not obtained at once, because of in- 
accurate matching pairs and linearization errors, the 3D model quickly converges 
to the correct state by iterating the point matching and model t ransformation 
processes. 

2 M o d e l - b a s e d  2D vesse l  e x t r a c t i o n  

2.1 P r e p r o c e s s i n g  
The input to our method is a skeleton of the 3D vessel model (eg. Fig. lb) ,  ob- 
tained from the full 3D vessel reconstruction (Fig. la)[7], and a digital subtrac- 
tion angiography (DSA) image of the vessels (eg. Fig. lc). For full automation,  
the region of interest (which is almost a circle) is extracted from the X-ray image 
with simple image processing. The small black rectangle containing text  is also 
removed from the region of interest. 

2.2 Ini t ia l  l o c a l i z a t i o n  
Here we briefly explain our 3D coordinate frame, (X, Y, Z). The X-ray source of 
the X-ray machine is defined as the origin of the coordinate system. The  image 
plane is on the Z = f plane, where f is the distance between the source and 
the plane. The X and Y axes are defined as the same directions as I and J 
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Fig. 2. Model-based extraction of 2D vessel skeleton: (a) initial translation (t~,ty) of 
3D model (from black to white points); (b) resultant extraction (white lines). 

of the image coordinates respectively. The 3D vessel model is placed between 
the source and the image plane and perspectively projected to the image. The 
model's initial position and posture is approximately known. 

In the registration process we use n points which have been sampled at reg- 
ular intervals from the 3D model skeleton. The 3D coordinates of these points 
are Xi = (Xi,  Yi, z i )T ( i  = 1, ...n). The 3D transformation of the model is rep- 
resented by R( the  3 x 3 rotation matrix) and T = (tx, tu, tz)V(the translation 
vector). The 2D projections of the 3D model points after the transformation of 
R and W have the 3D coordinates (xi, Yi, f )T ,  where xl = fX~/Z~,  Yi = fYi ' /Z~ 
and X+i = RXi  + T. 

When real X-ray images are acquired, the patient 's head is immobilized, and 
the X-ray source and the image plane are rotated together around the head. Here, 
inversely, we rotate the model (head) to give the same effect as the X-ray system 
rotation. Since the rotation angle of the system is known from the graduations, 
the position and posture of the 3D model can be estimated approximately. This 
includes about + 20 degrees error in rotation and about (-F100,+100,:k200)(mm) 
in translation, since the position and posture of the head is not calibrated and is 
changed a little during the acquisition of the X-ray images. It is this calibration, 
or determination of the change in the patient position and orientation between 
MR and X-ray, that we wish to find. 

In Fig. 2a black points represent the projection of the 3D model skeleton at 
its initial state. Using simple template matching between the projected shape of 
the 3D model skeleton at its initial state and the X-ray image, tx,ty is roughly 
estimated so that the projection optimally overlaps the dark regions (possible 
vessel regions) . In the case of Fig. 2a, the model is translated by ( -14.8, 39.8, 
0.0)(mm); the white points show the projection of the model after the transla- 
tion. 
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Fig. 3. Point matching search: (a) skeleton of the 3D model of the right internal carotid 
circulation; (b) initial position (black points) and extracted 2D skeleton (white lines); 
(c) anisotropy of the appropriate search regions(see text); (d) territory-based search 
regions; (e) result of point matching (only the large white dots made corresponding 
pairs); (f) the final registration result. 

2.3 S k e l e t o n  e x t r a c t i o n  

After the initial localization, the projection of the model is classified into hor- 
izontal and vertical segments on the image. In the vicinity of each segment, a 
histogram of the grey levels of the image is calculated to decide an adaptive 
threshold of vessel brightness. Although the est imated thickness of the vessel 
from the 3D model can be also used to establish an adaptive threshold, we have 
not yet implemented this. Using the adapt ive information of approximate  vessel 
direction and brightness, the corresponding opposite edges of vessels are tracked 
more robustly than without a model. In Fig. 2b, the skeleton is well extracted 
despite the weak image contrast. 

3 T e r r i t o r y - b a s e d  c o r r e s p o n d e n c e  s e a r c h  

Here our sub-goal is to find as many  correct corresponding points on the 2D 
vessel skeleton for each point on the 3D model while avoiding wrong pairs. Fig. 
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3 shows an example of a X-ray image of the right internal carotid circulation: 
Fig. 3a shows the 3D model skeleton; Fig. 3b shows the projection of the model 
(black points) after initial localization (Section 2.2) plus the skeleton of the 2D 
vessel extracted from the image by the method described at Section 2.3 (white 
lines). As shown in Fig. 3b, some parts of the skeleton of the 2D vessel are not 
extracted because of insufficient contrast enhancement, a sudden turn of the 
vessel (acute curve), or self-overlap. Fig. 3c is a schematic diagram at such a 
location: the solid line and the dotted line show the extracted and unextracted 
parts of 2D vessel skeleton respectively; the large dots represent the projection 
of the 3D model points. If we try to find the corresponding 2D points for all of 
the 3D model points using only the closeness on the 2D image, the model points 
whose corresponding 2D vessel has not been extracted (eg. Pk) will definitely 
have the wrong correspondences (eg. P'm or P ' )  causing serious errors. 

Removing such model points (matching outliers), is not an easy task since it is 
not known which parts are successfully extracted before the correct registration 
has been computed. For example, in [3], human interaction is required for this 
removal process. Note, however, that  in many cases wrongly selected 2D vessel 
points, like p l or P/, for Pk, are the correct corresponding points to other model 
points. If we can set an appropriate search region (eg. the shaded region in 
Fig. 3c) by considering the projected shape, model points whose corresponding 
2D vessel part has not been extracted can be rejected as a point that  has no 
correspondence. 

We propose a novel method to adaptively calculate such an anisotropic search 
region according to the projected shape of the model. The search region for 
each model point is determined by segmenting the image into territories of the 
model points as follows. On the image, each projected point tries to extend its 
territory in the vicinity of the point at the same speed as tile other points and 
to some width (the largest search width). Each pixel in the image belongs only 
to the search region of the point that  first reaches the pixel. As a result, search 
regions become akin to Voronoi regions. Concretely, we implement this process 
by region growing using mask-processing. Fig. 3d shows the resultant search 
regions. We can see that points around more complicated projected shapes tend 
to have smaller search areas. As a result, the chance that  model points find a 
wrong corresponding point (which actually corresponds to different parts of the 
model) are greatly decreased; while some points find the proper match at a far 
position as seen in Fig. 3e. This search mechanism is essential when we deal 
with complex 3D free-form models which cause complicated self-overlapping in 
the 2D projections. 

4 3 D - 2 D  m a t c h i n g  p a i r s  ~ 3 D  t r a n s f o r m a t i o n  

Now we have m corresponding pairs of the observed position x ~ (x ~176 f ) T  Z '  

and a 3D model point Xi, ( X i ,  Yi,  Z i )  T whose projection is xi, (x i ,  Yi, f ) T .  In  
many methods, tile nonlinear minimization, m i n ( Z i m  l ( ( x ~ -- x i  ) 2 Jr- (yO _ yi)2)) 
is solved iteratively to determine R and T at the same time. To speed up this 
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calculation, we take the approach presented in [6]. We explain this method very 
briefly. 

The minimization criteria is initially only based on rotation by separating out 
the translation effect using the following geometry. If we pick up two pairs from 
the m corresponding pairs, X ~  X ~  = R ( X i -  Xj )  should be perpendicular to 
the vector (x~ x x ~  Therefore the optimal rotation is obtained by computing 

m - - ]  m 

m i n ~  ~ ( ( x i •  2. 
R i = 1  3 i + l  " z '  

The rotation matrix can be represented by quaternions q = (q0, ql, q2, q3):  
and linearized with some small error as follows. 

2 2 2 2 _ 2(qlq3 + qoq2) ] [(qo + q: - q2 - q3) 2(q, q2 qoq3) 
R = | 2(qlq2 + qoq3) (qo 2 _ q12 + q2 _ q32) 2(q2q3 - qoql)  | 

L 2(qlq3 - qoq2) 2(q2q3 + qoqi) (q2 _ q2 _ q22 + q~)j 

q0 -2q3 2q2] 
2q3 q0 -2q l  

[ -2q2  2q: qo J 
Using this linearization, the equation of minimization on R becomes 

min ~ ((xi • x j ) .  (q0(Xi - Xj)  + 2q' • (Xi - Xj)) )  2, q 
i=l j=-i+l 

where q' = (ql, q2,q3):- The q which minimizes this function is obtained by 
solving the simultaneous equations of the partial differentials on q. 

Once the rotation is known, the translation can be calculated by solving 2m 
simultaneous equations on (t=, ty, tz): 

f ( x  ' + tx) , y(yo ,  + ty) , 
" ' - x i and - Yi, z o ' + t z  z o ' + t :  

where X ~  using the calculated R. 
We tested this method using synthetic data. Although we omit the detail of 

the results, the experiments indicated that a high ratio of correct pairs (at least 
50 %) is imperative for the success of this method. 

5 R e s u l t s  

Fig. 3f shows a registration result on a real example. Although a lower part of 
the internal carotid artery is faded owing to insufficient contrast enhancement 
and many of the other arteries are self-overlapping, the 3D model is properly 
transformed so that  the projection overlaps well with the 2D observed vessel. 
The final transformation is a 16.6 degree rotation around the axis (0.39, 0.67 , 
-0.64) and a (6.6, 6.5, -5.6)(mm) translation. Computational time for each step 
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Fig. 4. Result: (a) initial localization (white points); (b) initial point correspondence; 
(c) final registration result. 

was (1)preprocessing (0.2 sec), (2)initial localization (0.08 sec), (3)2D skeleton 
extraction (0.5 sec), (4)point correspondence (0.13sec) and (5)3D transformation 
(0.01 sec). Steps (4) and (5) were iterated 30 times for convergence and hence 
the total time was 5.5 sec (SUN IPX/ULTRA1). 

Fig. 4 shows another result using a X-ray image of the vessels of the 3D 
model which is shown in Fig. lb. Although the projected shape of the model at 
initial state is quite different from the observed vessel, the 3D transformation 
of the model is correctly obtained. The transformation is a 14.6 degree rotation 
around the axis (-0.77,-0.61,-0.18) and a translation of (-9.7, 4.8,-127.9)(mm). 
The large translation in the Z direction agrees with the fact that the height of the 
bed where the human subject lay was altered by approximately 10~15 cm during 
the acquisition of the images. Even though, at the middle of the internal carotid 
artery in the image, there is very complicated self-overlapping at which the topol- 
ogy of the initial projected shape is different from the actual one, territory-based 
search restriction helps to retain the high ratio of correct corresponding pairs. 
Computational time for each step was (1)preprocessing (0.2 sec), (2)initial local- 
ization (0.11 sec), (3)2D skeleton extraction (1.5 sec), (4)point correspondence 
(0.31 sec) and (5)3D transformation (0.01 sac). A total of 18 iterations were 
required for convergence and the total time was 5.7 sec (SUN IPX/ULTRA 1). 
We have applied the method to a total of 9 X-ray images for the two 3D models. 
All data  have similar results except one which failed because of poor 2D skeleton 
extraction. 

6 C o n c l u s i o n  

We have proposed a method for the real-time determination of the pose and 
position of a complicated 3D free-form shape with respect to its 2D projection. 
The method is fully automated. The robustness and speed of the method are 
supported by two characteristics: 
1. Robust model-based 3D-2D point matching using territory-based search re- 
striction. 



1133 

2. Linear solution to obtain the 3D transformation from 3D-2D point correspon- 
dences. 
Although the second part is not original, the first part enables the second part 
to work effectively even on complication data. The results using real data show 
that the proposed method is quite promising. 

Our future work will focus on: 
1. Assessment of the method by comparing it with aD ground truth data. Un- 
fortunately, we do not have the true value of the 3D transformation of the model 
in the experiments shown here. We will apply the method to real data where 
fiducial markers have been used to compute the transformation. 
2. hnprovement of the 2D skeleton extraction process. Since the model gradually 
becomes closer to tile correct state, incremental extraction is more desirable. 

Other aspects we will consider include: 
1. Comprehensible display of the aD model with the 2D view. 
2. Fusion of two (or more) 2D views. The information about the distance in Z 
direction is fundamentally poor if we use just one view. Fusion of two different 
views is desirable to increase the accuracy of the localization of the model. It is 
especially important in the case where the 3D model has a simple linear shape. 
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