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A b s t r a c t .  This paper describes a method for creating object surfaces 
from binary-segmented data that are free from aliasing and terracing ar- 
tifacts. In this method, a net of linked surface nodes is created over the 
surface of the binary object. The positions of the nodes are adjusted iter- 
atively to reduce energy in the surface net while satisfying the constraint 
that  each element in the surface net must remain within its original sur- 
face cube. This constraint ensures that  fine detail such as cracks and thin 
protrusions that  are present in the binary data are maintained. 

1 Background 

Image data from 3D Magnetic Resonance Imaging (MRI) or Computed Tomog- 
raphy (CT) scanners can be used to create computer models of human anatomy 
for visualization and surgical simulation. Volumetric models, which are com- 
posed of 3D arrays of sampled values, are more suitable for visualization and 
physically-based modeling of complex objects than surface-based models be- 
cause they incorporate internal structure[10]. In particular, volumetric models 
are necessary for modeling object deformation using mass-spring (e.g. [21, 15, 
14]), finite element (e.g. [II,3, 2]), or other methods (e.g. [4,6]) and they have 
significant advantages over surface-based models for modeling the cutting, tear- 
ing and joining of objects and soft tissues [8]. 

Until recently, one of the disadvantages of volumetric models was that they 
could not represent surfaces well. High quality rendering with lighting and shad- 
ing effects is important for anatomical structures because it provides shape cues 
and a sense of realism in visualization and simulation. However, in medical data, 
image intensities tend to change abruptly at object surfaces, indicating the pres- 
ence of high spatial frequencies. These high spatial frequencies cause aliasing 
artifacts in volume rendered images, which are manifested as jagged or irregu- 
lar surfaces. Such artifacts are particularly noticeable when a highly reflective 
surface is rendered with a lighting model, such as the Phong lighting model [5]. 

In [9], a new method for encoding surfaces into volume-sampled data is pro- 
posed. In this method, two values are stored for each volume element: an intensity 
value which is used to calculate color and opacity at each sample point; and a 
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signed distance to the closest surface point, which is used to estimate positions 
and normal vectors of the object surface. Because the distance function varies 
slowly across object surfaces, it can be sampled at relatively low rates and still 
provide alias-free estimates of object surfaces for high quality rendering. 

In order to generate the sampled distance map for this representation, a 
model of the underlying surface is required. In [9] it was shown that when the 
object originates as an analytic or polygonal model, high quality shading can be 
accomplished. However, when objects originate in binary-segemented volumes, 
as often occurs for medical data, the underlying surface and its distance map 
must be estimated from the binary data. Several methods for estimating distance 
maps from binary data were analyzed in [7]. However, all of these methods are 
prone to artifacts. In particular, when the volume is sampled less frequently in 
one dimension (e.g. in MRI, the distance between image planes is often greater 
than the in-plane pixel spacing), existing methods for calculating distance maps 
are subject to terracing artifacts, where sloped surfaces appear as flat terraces 
separated by sharp elevation changes. 

This paper presents a method for generating a smooth surface model from 
binary segmented data that is constrained to follow the original object segmen- 
tation but that reduces aliasing and terracing artifacts. The resultant surface 
model can be used to generate distance maps for distance-based shading in 
volume rendering. In addition, it provides an alternative to methods such as 
Marching Cubes [16] for creating triangulated surface models from binary data. 

2 P r e v i o u s  W o r k  

2.1 Binary Segmented Data 

Image segmentation, where elements of the volume are labeled according to what 
structure they belong to, is the first step in creating a computer model from 3D 
data. Once elements in the volume have been labeled, elements with the same 
tissue classification are grouped into objects that represent anatomical struc- 
tures. With CT data, segmentation can be performed relatively automatically 
using intensity thresholding or other low-level image processing. However, with 
MRI, image segmentation is challenging and generally requires more sophisti- 
cated algorithms and significant human input. The knee data used to illustrate 
examples in this paper were segmented manually from an MRI data volume of 
size 512x512x87 acquired at a resolution of 0.25x0.25 mm in-plane and 1.4 mm 
between planes. 

Although surface normals can he estimated from the original grey-scale data 
[12], in volume rendering, grey-scale shading can fail for the same reasons that 
automatic segmentation fails. This is illustrated in the MRI image in Figure lb) 
where the grey-scale image gradient has been calculated along the manually- 
segmented surface of the femur, a bone in the knee. Because the real bone surface 
is smooth and of uniform texture, surface normals along the edge of the femur 
should have similar magnitudes and slowly varying directions. However, the grey- 
scale image gradient depends on tissues adjacent to the bone surface, whose 
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Fig. 1. a) MRI cross section through a human knee. b) Image gradient vectors cal- 
culated along the surface of the segmented femur using central differences on the 
grey-scale data. Image gradients vary much more than bone surface normals would 
be expected to vary, in some cases pointing inward when an outward facing normal 
is expected. Hence, applying a gradient operator to the grey-scale data does not pro- 
vide a good estimate of surface normals. (Data and segmentation courtesy of Surgical 
Planning Lab, Brigham and Woxnen's Hospital, Boston MA.) 

intensities and thicknesses can vary significantly. Hence, both the direction and 
magnitude of the calculated gradient can vary dramatically around the edge of 
the femur. For this reason, it can be more accurate to estimate surface normals 
from a binary segmentation of the data than from the grey-scale image. 

Unfortunately, in Volume Rendering, estimating surface normals from bi- 
nary data  poses significant challenges. Because of the high spatial frequencies 
in binary data, rendered images tend to have significant aliasing artifacts that  
are particularly apparent in shaded images. In addition, when surfaces lie at a 
shallow angle to the sampling grid, the rendered image exhibits terracing, in 
which sloped surfaces appear as a sequence of flat planes separated by sudden 
elevation changes. These elevation changes can be dramatic when the spacing 
between image planes is significantly larger than the in-plane spacing, as often 
occurs in clinical imaging. 

2.2 E x i s t i n g  M e t h o d s  for  R e n d e r i n g  Sur faces  f r o m  B i n a r y  D a t a  

There are a number of existing methods for achieving smooth surfaces from bi- 
nary segmented data. In volume rendering, several approaches have been used 
to approximate surfaces during rendering (see reviews in [13, 25]) including vari- 
ous methods using look-up tables [17], smoothing filters, and surface estimation 
filters [22] which approximate surface normals from the state of local neighbors. 
Alternatively, instead of filtering during rendering the data  can be pre-processed 
by appling a low-pass filter to the binary data [23, 24, 1, 19]. Surface normals are 
then estimated from gradients of the resulting band-limited grey-scale image. All 
of these methods reduce aliasing artifacts but, because they are applied to local 
neighborhoods, they do not eliminate terracing artifacts. As illustrated in Figure 



891 

Fig. 2. The effect of filtering on terraces in binary segmented data. a) Original binary 
terraces, b) and c) Gaussian low-pass filters reduce the slope of the terraces but do not 
eliminate terraces. In order to eliminate terraces, the filter extent must be comparable 
to the width of the terraces. 

2, local filtering reduces the slopes of terraces. However, unless the filter extent is 
significantly wider than the terraces, terracing artifacts are not removed. When 
terraces are wide (i.e. when the slope of the object is small) and deep (i.e. when 
the distance between planes is significantly larger than the in-plane sampling), a 
local filter sufficient to eliminate terracing would remove significant detail from 
the object model. Figure 3 illustrates the effect of a local smoothing filter on 
the femur data. As filter size is increased, aliasing artifacts are eliminated and 
the slope of the terrace is reduced. However, even after convolution with a large 
Gaussian filter of size 19x19x19, unacceptable terracing artifacts remain. 

In surface rendering, two basic methods have been used to fit surfaces to 
binary data. In the first, the binary data is low-pass filtered, and an algorithm 
such as Marching Cubes is applied, where the surface is built through each 
surface cube at an iso-surface of the grey-scale data. Unfortunately, the resultant 
surface is subject to the same terracing artifacts and loss of fine detail as low- 
pass filtered volumetric representations. In order to remove terracing artifacts 
and reduce the number of triangles in the triangulated surface, surface smoothing 
and decimation algorithms can be applied. However, because these procedures 
are applied to the surface without reference to the original segmentation, they 
can result in further loss of fine detail. 

In the second general method for fitting a surface to binary data, the binary 
object is enclosed by a parametric or spline surface. Control points on the surface 
are moved towards the binary data in order to minimize an energy function 
based on surface curvature and distance between the binary surface and the 
parametric surface. McInerney and Terzopoulos used such a technique to detect 
and track the surface of the left ventricle in sequences of MRI data  [18] and 
Takanahi et al. used a similar technique to generate a surface model of muscle 
from segmented data  [20]. This approach has two main drawbacks for general 
applications. First, it is difficult to determine how many control points will be 
needed to ensure sufficient detail in the final model. Second, this method does 
not handle complex topologies easily. 
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Fig. 3. Shaded, volume rendered images of low-pass filtered binary data of a human 
femur, a) was rendered from the binary data. In b), c) and d), the data was filtered 
with a Gaussian filter of size 7 3, 13 3, and 19 3 respectively. Even with a large filter size, 
significant terracing artifacts are present. 

3 Surface  N e t s  

The goal of the surface net approach is to create a globally smooth surface 
model from binary segmented data  tha t  retains fine detail present in the original 
segmentation. Methods that  apply local low-pass filters to the binary da ta  can 
reduce aliasing but they are not effective at removing terracing artifacts. In 
addition, low-pass filters can eliminate fine structures tha t  can be especially 
important  in medical applications. In contrast,  surface nets produce a smooth 
surface tha t  is constrained to maintain all of the surface structure present in the 
original data. Surface nets are constructed by linking nodes on the surface of the 
binary-segmented volume and relaxing node positions to reduce energy in the 
surface net while constraining the nodes to lie within a surface cube defined by 
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Fig. 4. Terracing artifacts in binary segmented data cause smooth surfaces to appear 
jagged, a) A linked net of surface nodes is constructed, placing one node at the center 
of each surface cube. b) Constrained elastic relaxation of the surface net smooths out 
terraces but keeps each surface node within its original surface cube. 

the original segmentation. Figure 4 illustrates how a linked net of surface points 
can smooth out terracing artifacts. 

3.1 Generating Surface Nets  

The first step in generating a surface net is to locate cubes tha t  contain surface 
nodes. A cube is defined by 8 neighboring voxels in the binary segmented data,  
4 voxels each from 2 adjacent planes. If all 8 voxels have the same binary value, 
then the cube is either entirely inside or entirely outside of the object. If  at least 
one of the voxels has a binary value that  is different from its neighbors, then 
the cube is a surface cube. The net is initialized by placing a node at the center 
of each surface cube and linking nodes that  lie in adjacent surface cubes. Each 
node can have up to 6 links, one each to its right, left, top, bot tom,  front, and 
back neighbors. 

Once the surface net has been defined, the position of each node is relaxed to 
reduce an energy measure in the links. In the examples presented here, surface 
nets were relaxed iteratively by considering each node in sequence and moving 
that  node towards a position equi-distant between its linked neighbors. The 
energy was computed as the sum of the squared lengths of all of the links in 
the surface net 1. Defining the energy and relaxation in this manner  without 
constraints will cause the surface net to shrink into a sphere and eventually onto 
a single point. Hence, to remain faithful to the original segmentation, a constraint 
is applied tha t  keeps each node inside its original surface cube. This constraint 
favors the original segmentation over smoothness and forces the surface to retain 
thin structures and cracks. 

1 Alternative energy measures and relaxation schemes are also feasible. For example, a 
system that adjusts node positions to reduce local curvature would produce smoother 
surfaces and with less sharp corners than the method used here. 
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Fig .  5. Examples of surface nets applied to 2D binary objects. Each row contains the 
surface net superimposed on its 2D binary object for various numbers of relaxations of 
the surface net. In a) a surface net was fit over a circle and relaxed, from left to right, 
0, 1, and 10 times. In b) the surface net was fit over a t i l ted rectangle and relaxed 0, 
1, and 30 times. In c) the surface net was fit over an object with a thin crack and a 
thin protrusion and relaxed 0, 1, and 20 times. After relaxation, curved surfaces are 
relatively smooth, corners are sharp, and thin structures are preserved. 

Several  examples  of surface nets  app l ied  to  b i n a r y  segmented  2D ob jec t s  a re  
i l l u s t r a t ed  in F igure  5. Observe  t h a t  the  surface nets  genera te  r e la t ive ly  s m o o t h  
surfaces for curves objec ts ,  p roduce  sha rp  corners  for r e c t a n g u l a r  ob jec t s ,  and  
preserve  th in  s t ruc tu res  and  cracks.  F igu re  5 shows the  surface ne ts  af ter  in i t ia l -  
iza t ion,  af ter  1 r e l axa t ion  i t e ra t ion ,  and  af ter  several  i t e ra t ions .  The  n u m b e r  of 
i t e r a t ions  is chosen accord ing  to  the  des i red  resul t :  i t  can e i ther  be  chosen in ter -  
ac t ive ly  or set accord ing  to  the  behav io r  of the  c o m p u t e d  energy  in the  net .  In  
our  work,  we have observed  t h a t  the  ne t  energy decreases  quickly to  a m i n i m u m  
and  then  increases  slowly and  a s y m p t o t i c a l l y  to  a s l ight ly  h igher  level. A t  the  
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Fig. 6. Possible surface constructions for a 2D surface cube containing matched diag- 
onal elements, a) The two black voxels are separated by the surfaces, b) The surface 
bridges the space between the two black voxels. In Marching Cubes, one of these two 
topologies is chosen arbitrarily, c) In surface nets, neither topology is assumed but the 
surface is pinched together at the ambiguous node. 

minimum energy level, the surface appears to be smoothest, but  corners become 
sharper as the energy increases to the final level. 

The thin protrusion in Figure 5c) demonstrates that  the surface net approach 
can produce surfaces that  are topologically different from surfaces that  would 
be produced by Marching Cubes. When a surface cube contains like elements 
on opposite corners, there may be more than one topological surface that  can 
be constructed. This is illustrated in 2D in Figures 6a) and b). The separating 
surfaces in Figure 6a) and the bridging surface in Figure 6b) both keep black 
voxels inside the constructed surface and white voxels out of the constructed 
surface but  they result in topologically different structures. In Marching Cubes, 
one of these surfaces would be chosen arbitrarily. In the surface net approach, 
illustrated in Figure 6c), the surface is pinched in at the net node, but  neither 
a separating nor a bridging surface is created. Because arbitrary topological 
decisions are not made arbitrarilyly, higher level algorithms could be applied 
after surface smoothing to separate or bridge the surface at ambiguous surface 
points. 

3.2 T r i a n g u l a t i n g  the Surface a n d  E s t i m a t i n g  the Distance Map 

Once a smooth surface net has been constructed, the surface net can be trian- 
gulated to form a 3D surface model. To create a triangulated surface from the 
surface net, each node and its links are considered one at a time. As illustrated in 
Figure 7, there are 12 possible triangles joining each node to pairs of neighbors. 
By determining which pairs of neighbors are present in the surface, possible sur- 
face triangles are identified. In order to avoid creating redundant triangles in the 
surface model (see Figure 8), only 6 of the 12 possible triangles are considered 
for each node. 

In order to volume render these surfaces, distance maps were generated from 
the triangulated surfaces by calculating the distances from each point in the 
distance map to the nearest surface triangle. This was done using a brute force 
method by considering each triangle one at a time, calculating the distance to 
each point in the distance map within a local neighborhood of the triangle, and 
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Fig. 7. For each node in the surface net, the center node can be connected to its 6 
neighbors with 12 possible triangles. In the triangulation, each of the 12 triangles is 
created only if the two relevent neighbors are nodes of the surface net. 

Fig. 8. To avoid redundant triangulation of the surface net, if triangles DAB and BCD 
are created when considering nodes A and C, then triangles CDA and ABC should 
not be created when considering nodes D and B. 

replacing the current distance value stored at that  point with the new distance 
value if the new magnitude was smaller. 

Figure 9 shows images that  have been volume rendered with distance maps 
created from binary data  using a simple, front-to-back ray casting algorithm and 
Phong shading. Surface normals were calculated from the distance map using a 
6-neighbor central difference gradient estimator.  For purposes of comparison, the 
images of Figures 3, and 9 were generated using the same rendering algorithm 
and imaging parameters.  Object opacities were set to 1.0 and large diffuse and 
specular reflection coefficients were used to emphasize surface artifacts. 

Figure 9 compares images rendered from distance maps created from a surface 
net that  has been relaxed by 10 and 100 iterations. Compared with Figure 3, 
there is a significant reduction in terracing artifacts. In addition, the surface 
net approach is guaranteed to preserve fine structures that  can be important  in 
medical applications. 

4 D i s c u s s i o n  

Applications such as surgical simulation or computer assisted surgery require 
computer  models of patient anatomy. The best models available are often in 
the form of a binary-segmented MRI or CT image volume ~. Depending on the 

2 A probabilistic classification of the data would help to alleviate some of these arti- 
facts. However generating probabilistic classifiers is still the subject of active research. 
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Fig. 9. Femur rendered and shaded using distance maps generated from surface nets 
after a) 10 relaxations and b) 100 relaxations. Compare with Figure 3, noting a signifi- 
cant reduction of terracing artfacts and that all surface elements have been constrained 
to lie within 1 voxel of the original binary segmentation. 

application, these binary volumes must be converted into volumetric models or 
t r iangulated surface models for graphical representation. However, because of 
the high spatial frequencies in binary data, the surfaces of these models are 
subject to artifacts known as aliasing and terracing. 

In this paper,  a method has been presented that  produces smooth surfaces 
with reduced aliasing and terracing artifacts. The resultant surface net can be 
used to generate either volumetric models or tr iangulated surface models. The 
surface net is created by linking surface nodes generated from the binary surface. 
Node positions are adjusted to reduce energy in the surface net while following 
constraints set by the original binary surface of the data. This creates a relatively 
smooth surface that  retains fine detail and structures tha t  can be important  in 
medical applications. 
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