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A b s t r a c t .  A new dynamic FEM-based subdivision surface model is pro- 
posed to reconstruct and track shapes of interest from multi-dimensional 
medical images. The model is based on the butterfly subdivision scheme, 
a popular subdivision technique for generating smooth C 1 (first deriva- 
tive continuous) surfaces of arbitrary topology, and is embedded in a 
physics-based modeling paradigm. This hierarchical model needs very 
few degrees of freedom (control vertices) to accurately recover and track 
complex smooth shapes of arbitrary topology. A novel technique for lo- 
cally parameterizing the smooth surface of arbitrary topology generated 
by the butterfly scheme is described; physical quantities required to de- 
velop the dynamic model are introduced, and the governing dynamic 
differential equation is derived using Lagrangian mechanics and the fi- 
nite element method. Our experiments demonstrate the efficacy of the 
modeling technique for efficient shape recovery and tracking in multi- 
dimensional medical images. 

1 I n t r o d u c t i o n  

Advances in the medical imaging technology over the last few decades have given 
us an opportuni ty  to obtain a detailed view of the internal anatomical structures 
using state-of-the-art high resolution imagery. However, efficient recovery and 
tracking of the embedded complex shapes from large volume data  sets is still an 
open area of research. Accurate shape recovery requires distributed parameter  
models which typically possess a large number of degrees of freedom. On the 
other hand, efficient shape representation imposes the requirement of geometry 
compression, i.e., models with fewer degrees of freedom. These requirements are 
conflicting and numerous researchers have been seeking to strike a balance be- 
tween these requirements [1-6]. A physics-based model best satisfying both the 
criteria is a good candidate for a solution to the shape recovery problem for 
obvious reasons. Deformable models, which come in many varieties, have been 
used to solve this problem in the physics-based modeling paradigm. These mod- 
els involve either fixed size [1, 6] or adaptive size [2, 5] grids. The models with 
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fixed grid size generally use less number of degrees of freedom for representa- 
tion, but  the accuracy of the recovered shape is lacking in most cases. On the 
other hand, models using adaptive grids typically use large number of degrees of 
freedom to recover the shapes accurately. In most medical imaging applications, 
the anatomical shapes being recovered from image data  are smooth in spite of 
the complex details inherent in the shapes. Under these circumstances, the finite 
element approaches as in [1, 5] need a large number of degrees of freedom for de- 
riving a smooth and accurate representation. In addition, they can not represent 
shapes with known arbi t rary topology. 

Subdivision surfaces, widely used in computer graphics for modeling shapes 
of arbi trary topology, offer a compact representation of smooth complex shapes. 
In a typical subdivision scheme, a simple polygonal mesh a.k.a, the control mesh 
is refined recursively using a fixed set of refinement rules to generate a smooth 
C 1 or C 2 (second derivative continuous) limit surface. This smooth limit sur/ace 
is described by the degrees o/ /reedom o/ the initial mesh, thereby offering a very 
compact representation of a potentially complicated shape. If these purely geo- 
metric subdivision models were to be set in a physics-based paradigm, they will 
offer an elegant solution to the problem of reconstructing arbitrarily complex 
shapes. However, the problem lies in the fact that  the limit surface obtained via 
subdivision process does not have a closed-form analytic expression. Dynamic 
subdivision surfaces were first introduced by Mandal et al. [4] to address the 
aforementioned shape recovery problem. The technique however was limited to 
a very specific subdivision scheme. The approach taken in this paper is much 
more general in the sense that  it can be used with any type of subdivision 
schemes. However, we choose the butterfly scheme [7] to demonstrate  the con- 
cept. A detailed discussion on the advantages of the proposed model can be found 
in [8]. Once we embed the chosen subdivision surface model into physics-based 
paradigm, the initialized model deforms under the influence of synthesized forces 
to fit the underlying shape in the data  set via the principle of energy minimiza- 
tion. Recalling the fact tha t  the smooth limit surface in any subdivision scheme 
is a function of the degrees of freedom of the initial mesh, once an approximate 
shape is recovered from the data, the model adopts a new initial mesh which is 
obtained via a subdivision of the original initial mesh. Note that  this new initial 
mesh and the original initial mesh have the same limit surface, but  the new 
initial mesh has more degrees of freedom thereby assisting in the recovery of the 
local features of the underlying shape. This process is continued till a prescribed 
error criteria for fitting the data  points is achieved. This model can also be used 
in the context of tracking dynamic shapes via a straight-forward extension - 
once the shape is recovered from a data  set in a time sequence, the recovered 
shape can be used as the initialization for the next data  set in the sequence. The 
experimental results show that  the proposed method outperforms the existing 
methods, including the technique in [4], in terms of the number of degrees of 
freedom to represent a given shape. We also demonstrate  bet ter  performance of 
this model in compactness of shape representation in comparison with the now 
popular balloon (FEM-based) model in the context of tracking an underlying 
shape in a time sequence of CT images. 
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2 F o r m u l a t i o n  

The butterfly subdivision scheme [7] starts with an initial triangular mesh w]hich 
is also known as control mesh. The vertices of the control mesh are known as 
control points. In each step of subdivision, the initial (control) mesh is refined 
through the transformation of each triangular face into a patch with four trian- 
gular faces�9 After one step of refinement, the new mesh in the finer level retains 
the vertices of each triangular face in the previous level and hence, "interpolates" 
the coarser mesh in the previous level�9 In addition, every edge in each triangu- 
lar face is spilt by adding a new vertex whose position is obtained by an al~ne 
combination of the neighboring vertex positions in the coarser level as shown in 
Fig.l(a).  The name, butterfly subdivision, originated from the "butterfly"--like 
configuration of the contributing vertices. The weighting factors for different con- 
tr ibuting vertex positions are shown in Fig.l(b).  The vertex -12"~J+1 in the j + 1-th 

v~ v j _ _ ~ , j  -~ -w 

(a} (b) 

Fig. 1. (a) The contributing vertices in the j-th level for the vertex in the j+ l - th  :level 
corresponding to the edge between ~ and v~; (b) the weighing factors for different 
vertices. 

level of subdivision, corresponding to the edge connecting vertices v~ and v~ at 
level j ,  is obtained by oj+l = 0.5(v{ + v~ )+  2w(v j + v j) - w ( v ~  + v~ + v~ + v~), ~1.2 

J denotes the position of the i-th vertex at the j - th  level. where 0 < w < 1, and v i 
The butterfly subdivision scheme produces a smooth C 1 surface of an arbi- 

t rary  topology in the limit (except possibly at very few degenerate points) whose 
global parameterization may not be possible�9 However, we can locally parame- 
terize the limit surface over the domain defined by the initial mesh. The idea is 
to track any arbi t rary point on the initial mesh across the meshes obtained via 
the subdivision process, so that  a correspondence can be established between 
the point being tracked in the initial mesh and its image on the limit surface. 
We note that  the smooth limit surface has as many smooth tr iangular patches 
as the triangular faces in the initial mesh. Therefore, the limit surface s can be 

n expressed as s = ~ k = l  sk, where n is the number of triangular faces in the initial 
mesh and sk is the smooth triangular patch in the limit surface corresponding 
to the k-th triangular face in the initial mesh. 

We now briefly describe the parameterization of the limit surface over the 
initial mesh, the details of which can be found in [8]. We choose a simple planar 
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(a) (b) (c) 

Fig. 2. Tracking a point x through various levels of subdivision : (a) initial mesh, (b) 
the selected section of the mesh in (a), after one subdivision step, (c) the selected 
section of the mesh in (b), after another subdivision step. 

mesh shown in Fig.2(a) as the initial mesh. An arbi t rary  point x inside the 
tr iangular  face abc is tracked over the meshes obtained through subdivision. 
After one level of subdivision, it falls inside the tr iangular  face dbe as shown in 
Fig.2(b). Note tha t  Fig.2(b) shows the subdivided mesh for the port ion of the 
initial mesh selected by the dotted lines in Fig.2(a). After one more subdivision 
step, the tracked point x is inside the tr iangular  face dgi. We have developed 
a systematic tracking s t ra tegy and it can be shown tha t  any point inside the 
smooth triangular patch in the limit surface corresponding to the face abc in the 
initial mesh depends only on the vertices in the initial mesh which are within the 
2-neighborhood of the vertices a, b and c due to the local nature of the subdivision 
process [8]. Let Vab c ~  be the collection of vertices in the initial mesh which are 
within the 2-neighborhood of the vertices a, b and c in the initial mesh (Fig.2(a)). 
Now, the smooth  tr iangular  patch in the limit surface corresponding to the 
tr iangular  face abc in the initial mesh can be writ ten as Sabc(X) = B~bc(X)V~b c ,~  
where Babc is the collection of basis functions at the vertices of V~ . In [8], 
we describe the details of the construction of an approximation to these basis 
functions generated by the butterfly subdivision which do not have any closed- 
form expression. Finally, we can collect all the tr iangular patches in the l imit  
surface together,  and the expression for the smooth limit surface can be wri t ten 
as s(x) = J ( x ) p ,  where J is the collection of basis functions for the corresponding 
vertices in the initial mesh. The vector p is also known as the degrees of freedom 
vector of the smooth  limit surface s. 

We now t rea t  the vertex positions in the initial mesh defining the smooth 
limit surface s as a function of t ime in order to develop the new dynamic but-  
terfly subdivision model. The velocity of the surface model can be expressed as 
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s(x, p) = J(x)lb, where an overstruck dot denotes a time derivative and x E S ~ 
S O being the domain defined by the initial mesh. 

3 F i n i t e  E l e m e n t  I m p l e m e n t a t i o n  

We have already pointed out in Section 2 that  the smooth limit surface obtained 
by the recursive application of the butterfly subdivision rules can be represented 
by smooth triangular patches. We consider each patch in the limit surface as an 
element. The number of such patches is equal to the number of triangular faces 
in the initial mesh as mentioned earlier. The  governing motion equation of' the 
dynamic model is given by M~5 + Dl~ + K p  = fp, where fp is the generalized 
force vector and M,  D, and K are the mass, damping and stiffness matrices of 
the model. We now provide an outline on how to derive the mass, damping and 
stiffness matrices for these elements so that  a numerical solution to the governing 
second-order differential equation can be obtained using finite element analysis 
techniques . We use the same example as in Section 2 (refer Fig.2) to develop 
the related concepts. 

The mass matr ix for the element sabc, corresponding to the triangular face 
abc, can be written as Mabc = f• #(x)BTb~ (x)Bab~(x)dx" However, the ba- 
sis functions (stored as entries in Babe) do not have any analytic form, hence 
computing this integral is a difficult proposition. We solve the problem by ap- 
proximating the smooth triangular patch in the limit surface corresponding to 
the face abc in the initial mesh by a triangular mesh with 4 j faces obtained 
after j levels of subdivision of the original tr iangular face abc (each subdivision 
step splits one triangular face into 4 triangular faces). In addition, we choose a 
discrete mass density function which has non-zero values only at the vertex posi- 
tions of the j - th  subdivision level mesh. Then the mass matr ix  can be expressed 

k j B j  j T j vj  as Mabc = ~i=1 #(vi ){  abc(Vi)} {Babe( i)}, where k is the number of vertices 
in the triangular mesh with 4J faces. This approximation has been found to be 
very effective and efficient for implementation purposes. The elemental damping 
matr ix  can be obtained in an exactly similar fashion. 

We assign internal energy to each element in the limit surface, thereby defin- 
ing the internal energy of the smooth subdivision surface model. We take a 
similar approach as in the derivation of the elemental mass and damping matr ix  
and assign the internal energy to a j - t h  level approximation of the element. In 
this paper, we assign spring energy to the discretized model as its internal en- 
ergy. For the example used throughout  the paper, this energy at the j - th  level 
of approximation can be written as 

j 1 k,m(lV~ --VJml--Qm) " 

--  ! l v J  ].T [l,d'J ~ [ v J  1. 
- -  2 t abcJ k ~ a b c ] t  abcJ' 

where klm is the spring constant, v~ and v ~ ,  t h e / - t h  and m-th vertex in the j - th  
level mesh, are in the 1-neighborhood of each other, ~2 is the domain defined by 
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all such vertex pairs, elm is the natural length of the spring connected between vf 
and v~ and v j is the concatenation of the (x,y,z) positions of all the vertices ' a b c  
in the j-th subdivision level of the triangular face abc in the initial mesh. Now, 
the vertex positions in v j abc are obtained by a linear combination of the vertex 
positions in Vabc,O and hence we can write Vab c j  ------ (AJ~'~abc]~VOabc where (Aabc)J is the 
transformation (subdivision) matrix. Therefore, the expression for the elemental 

j T j j 
stiffness matrix is given by Kabc ---- (Aab c) (Kabc)(Aabc)- 

The generalized force vector fp represents the net effect of all externally ap- 
plied forces. The current implementation supports spring, inflation as well as 
image-based forces. However, other types of forces like repulsion forces, gravita- 
tional forces etc. can easily be implemented. 

Mode l  Subdivis ion.  The initialized model grows dynamically according to 
the equation of motion and when an equilibrium is achieved, the number of 
control vertices can be increased by replacing the original initial mesh by a new 
initial mesh obtained through one step of butterfly subdivision. This increases 
the number of degrees of freedom to represent the same smooth limit surface 
and a new equilibrium position for the model with a better fit to the given 
data set can be achieved. The error of fit criteria for the discrete data is based 
on distance between the data points and the points on the limit surface where 
the corresponding springs are attached. In the context of image-based forces, if 
the model energy does not change between successive iterations indicating an 
equilibrium for the given resolution, the degrees of freedom for the model can be 
increased by the above-mentioned replacement scheme until the model energy is 
sufficiently small and the change in energy between successive iterations becomes 
less than a pre-specified tolerance. 

4 R e s u l t s  

In the first experiment, we present the shape extraction of a caudate nucleus 
from 64 MRI slices, each of size 256 x 256. Fig.3(a) depicts a slice from this MRI 
scan along with the points placed by an expert neuroscientist on the boundary 
of the shape of interest. Fig.3(b) depicts the data points (placed in each of the 
slices depicting the boundary of the shape of interest) in 3D along with the 
initialized model. Note that points had to be placed on the boundary of the 
caudate nucleus due to lack of image gradients delineating the caudate from 
the surrounding tissue in parts of the image. The control mesh of the smooth 
initialized model has only 14 vertices (degrees of freedom). Continuous image 
based forces as well as spring forces are applied to the model and the model 
deforms under the influence of these forces until maximal conformation to the 
data is achieved. The final fitted model, which has a control mesh comprising 
194 vertices, is shown in Fig.3(c). We like to point out the fact that the recovered 
shape in [4] for the same data set has 386 degrees of freedom and therefore, we 
achieve a factor of 2 improvement in the number of degrees of freedom required 
to represent the model in this particular example. 
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Fig. 3. (a) Data points identifying the boundary of the caudate nucleus on a MRI slice 
of human brain, (b) data points (from all slices) in 3D along with the initialized model, 
and (c) the fitted dynamic butterfly subdivision model. 

In the second experiment, we recover and track the left-ventricular chamber 
of a canine heart over a complete cardiac cycle. The data  set comprised of eight 
3D CT images, with each volume image having 118 slices each of 128 • 128 pixels. 
First, we recover the shape from one data set using image-based (gradient) as 
well as point-based forces. After achieving this, the fitted model is used as the 
initialization for the next data  set to track the shape of interest. The tracking 
results are shown in Fig.4 for the eight volume data  sets. It may be noted that  
the control mesh describing the smooth surfaces shown in Fig.4 has only 384 
triangular faces with a total  of 194 vertices. This is an improvement by a factor 
of approximately 15 over the results reported in [5] for representing the same 
data  set. 

5 C o n c l u s i o n s  

In this paper, we have presented a finite element method based dynamic butterfly 
subdivision surface model which is very useful for shape recovery and tracking. 
We have presented a local parameterization of the subdivision scheme, incorpo- 
rated the advantages of free-form deformable models in the butterfly subdivision 
scheme and introduced hierarchical dynamic control. Our experiments show that  
the model outperforms the existing shape recovery schemes in terms of the com- 
pactness in the representation of the smooth recovered shape, and can also be 
used successfully in tracking applications. 
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Fig .  4. Tracking of the LV chamber of a canine heart  over a cardiac cycle using the 
dynamic butterf ly subdivision model. 
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