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Abstrac t .  This paper describes the fluoroscopic X-ray image process- 
ing techniques of FRACAS, a computer-integrated orthopaedic system for 
bone fracture reduction. Fluoroscopic image processing consists of im- 
age dewarping, camera calibration, and bone contour extraction. Our 
approach focuses on bone imaging and emphasizes integration, full au- 
tomation, simplicity, robustness, and practicality. We describe the exper- 
imental setup and report results quantifying the accuracy of our methods. 
We show that after dewarping and calibration, submillimetric spatial po- 
sitioning accuracy is achievable with standard equipment. We present a 
new bone contour segmentation algorithm based on robust image region 
statistics computation which yields good results on clinical images. 

1 I n t r o d u c t i o n  

Current orthopaedic practice heavily relies on fluoroscopic images to perform 
surgical procedures. Fluoroscopic X-ray images are captured by an image inten- 
sifier mounted on a C-arm and viewed on a monitor (Fig. 1). Surgeons rely on 
the images to determine the relative position and orientation of bones, implants, 
and surgical instruments. While inexpensive and readily available, fluoroscopy 
has limitations. The images have a narrow field of view, have poor resolution 
and contrast, and show significant geometric distortion. Because they are un- 
correlated, two-dimensional static views, the surgeon must mentally recreate the 
spatio-temporal intraoperative situation. Significant skill, time, and frequent use 
of the fluoroscope are required, leading .to positioning errors and complications 
and to significant cumulative radiation exposure to the surgeon [12]. 

Recent research shows that computer-aided systems can significantly improve 
the accuracy of orthopaedic procedures by replacing fluoroscopic guidance with 
interactive display of 3D bone models created from preoperative CT studies and 
tracked in real time. Examples include systems for acetabular cup placement 
[13], for total knee replacement, and for pedicle screw insertion [9, 10]. 

Flurosoeopy can still play an important  role in computer-aided surgery sys- 
tems. By correcting, calibrating, and correlating them, a limited number of en- 
hanced fluoroscopic images can be used for accurate navigation. For example, 
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Fig. 1. Fluoroscopic images of a femur fracture with drill bit on the proximal femoral 
tronchanterie fossa (left), and medial linear fracture with guide wire (right). 

[1], [6] and [11, 161 describe systems that  use enhanced fluoroscopy and real-time 
tracking to assist surgeons in distal intramedulary nail locking. They can also 
be used for registration - establishing a common reference frame between the 
preoperative CT study and the intraoperative situation. 

We are currently developing a computer-integrated orthopaedic system, called 
FRACAS [7], for closed medullary nailing for bone fracture reduction [2]. FRACAS' 
goals are to reduce the surgeon's cumulative exposure to radiation and improve 
the positioning accuracy by replacing uncorrelated static fluoroscopic images 
with a virtual reality display of spatial bone fragment models created from pre- 
operative CT and tracked intraoperatively in real time. Fluoroscopic images are 
used to register the bone fragment models to the intraoperative situation and to 
verify that  the registration is maintained. 

This paper describes FRACAS' fluoroscopic image processing techniques and 
experimental results. To correlate the images and use them for accurate registra- 
tion and navigation, we correct the distortion, determine the fluoroscopic camera 
parameters, and extract the bone contours. While many methods for these tasks 
are described in the literature, our method emphasizes integration, full automa- 
tion, simplicity, robustness, and practicality. It focuses on fluoroscopic bone im- 
ages and their use in 2D/3D anatomy-based registration. We report experimental 
results quantifying accuracy, distortion, and camera parameter estimation, and 
present segmentation results of several sets of clinical images. 

2 P r o b l e m  c h a r a c t e r i s t i c s  

Fluoroscopic images present substantial distortion due to three factors [1, 3, 6, 
14]: (1) the image intensifier receptor screen is slightly curved, (2) the surround- 
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ing magnetic fields of the Earth and nearby instruments deflect the X-ray beam 
electrons, and (3) the C-arm armature deflects under the weight of the image 
intensifier, changing the focal length of the camera. The first effect can be mod- 
eled as radial pincushion distortion and is independent of the C-arm location. 
The second effect yields image translation and spatially variant rotation, and is 
C-arm orientation dependent. The third effect requires knowing the magnitude 
of the deflection. The distortion pattern resulting all the three factors is present 
in all units, including modern ones, and varies from unit to unit and from session 
to session, with up to 10mrn shift on the image edges [14]. 

Prior to each session, the amount of distortion and the fluoroscopic camera 
parameters must be determined for predefined C-arm orientations [3]. Usually, 
the dewarping and camera calibration steps are decoupled [8, 11, 14] and the 
parameters are obtained by imaging specially designed phantoms. To correct for 
distortion, a uniform grid of fiducials (e.g. steel balls or holes) is imaged. The 
location of the fiducial centers in the image and in the model are compared, and 
a dewarp map is computed specifying how to shift each pixel in the image to 
its real projected location. To obtain the camera characteristics, a parametric 
pinhole camera model defined by simultaneous equations relating the parameters 
is used. An object with known fiducial geometry and known location is imaged, 
and the positions of the image and the geometric points are matched. Solving 
the set of equations yields the parameter values [15]. 

Once the images have been corrected for distortion and the camera parame- 
ters are know, the next step is contour extraction of relevant anatomical struc- 
tures. The main difficulties are that the images are noisy, have limited resolution, 
exhibit non-uniform exposure variation across the field of view, and have varying 
contrast and exposure from shot to shot. Common image processing techniques 
[17] yield poor results, with under and over segmentation, high sensitivity to 
threshold values, and require frequent threshold adjustments. 

3 M a t e r i a l s  a n d  m e t h o d s  

We use Phillips BV 25 units with 9" field of view in all our experiments. The 
images were transfered from the fluoroscope's video output port to the computer 
using a frame grabber with a resolution of 720x560 and pixel size of 0.44mm. We 
built a custom dewarping grid and calibration object which is fitted via existing 
screw holes to the image intensifier plate. The design is inexpensive, simple to 
manufacture, and lightweight, to minimize additional C-arm deflection. 

The dewarping grid is a 7mm thick coated aluminum alloy plate with 405 
4mm diameter holes uniformly distributed at 10mm intervals machined to 0.02mm 
precision. It is simpler and cheaper to make than the commonly used steel balls 
mounted on a radiolucent plate and yields similar results. The calibration object 
(Fig. 2) is a hollow Delrin TM three-step cylinder with eighteen 5mm diameter 
steel balls in three parallel planes angularly distributed to avoid overlap in the 
image. An additional ball in the top circular face marks the center of the ob- 
ject. A rectangular bar, affixed to the bottom of the cylinder, has holes that 
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Fig. 2. Calibration object (left) and its fluoroscopic image (right). 

allow mounting the object directly on the image intensifier plate. The balls are 
mounted at heights of 20,100, and 180mm from the cylinder base, forming circles 
of 130, 115, and 90mm diameters respectively. The object weights 1.5kg. 

To determine the intrinsic accuracy and repeatability error of the system, we 
acquired five series of images of the dewarping grid at a fixed C-arm orientation 
and exposure. We observed small relative rigid motion between shots introduced 
by the frame grabber. We correct for this motion in all our images by shifting 
the image pixels so that  the center of the fluoroscope's circular field of view is 
always in the same position. Once this shift was corrected, we measured the dis- 
tances between matching hole centers in pairs of images. For 1389 measurements, 
the mean error was m e a n  = 0.038mm with standard deviation ~ = 0.032mm, 
minimum m i n  = 0.001mm, and maximum m a x  = 0.227mm. Since the error is 
almost an order of magnitude smaller than other errors, we conclude that  there 
is no need to take several exposures and average between them, as done in [14]. 

4 I m a g e  d e w a r p i n g  

Fluoroscopic image dewarping has received considerable attention [3]. It consists 
of computing a dewarp map from a reference image of a fiducials grid attached 
to the image intensifier plate and from the known fiducials centers geometric 
coordinates. The map is obtained in four steps: (1) identify the fiducials in the 
image from the background, (2) compute the coordinates of each fiducial center 
to sub-pixel accuracy, (3) pair the image and geometric fiducial centers, and (4) 
compute for each pairing the correction from the distances between the image 
and geometric fiducial center coordinates. New undistorted images are produced 
by computing for each pixel in the distorted image its new location and grayscale 
value in the undistorted image according to the dewarp map. 

Global methods [3,8] model the distortion across the entire image as a single 
function (e.g., a bivariate polynomial), whose coefficients are determined by least 
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Fig. 3. Fluoroscopic images of the dewarping grid in its original position (left) and in 
its new position after dewarping (right). Black dots mark detected hole center points, 

squares fitting of the image and geometric center coordinates. Local methods [6, 
14] model the distortion by tesselating the image field of view into triangles or 
quadrilaterals for which individual distortion functions are computed. The func- 
tions are determined by the distances between the image and geometric fiducial 
center coordinates, usually by bilinear interpolation. Global methods produce 
compact maps, but assume that the distortion in the image is smooth and con- 
tinuous. Local methods make no assumptions on the nature of the distortion and 
model it more accurately when it. varies considerably across the field of view. Re- 
cently [3] reported comparable results when using local bilinear interpolation and 
global 4th-order polynomials. 

We chose local bilinear interpolation because of its simplicity, computational 
efficiency, and generality in modeling unknown distortions. The procedure is 
simple to use and, unlike some others, does not require any user input for hole 
segmentation and center identification. The gray-scale value used in hole segmen- 
tation is automatically determined by finding the saddle point of the grid image 
histogram. Empirically, this proved to be an adequate threshold which yielded 
correct segmentation regardless of exposure setting and C-arm orientation. The 
center hole coordinates are computed to sub-pixel accuracy by weighted pixel 
gray scale average. To compute the dewarp map, the program tessellates the 
field of view into quadrilaterals whose endpoints are the hole center points. It 
uses the bilinear radial function to compute the undistorted coordinates of each 
image pixel. The coefficients for each region are obtained by solving a set of eight 
linear equations expressing the distances from the quadrilateral endpoints. The 
gray scale value of each new undistorted pixel is also obtained by pixel gray scale 
value bilinear interpolation. Since the C-arm orientation - its pitch and yaw - 
influences the dewarp map, we acquire distortion maps for a set of predeter- 
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Pose angle Mean Std Dev Min Max 
(0, -10) 
(0, 10) 
(0,-15) 
(o, 15) 

(lO, 15) 
(10,-15) 
(-10,15) 

0.381 0.201 0 0.890 
0.415 0.205 0 0.937 
0.390 0.203 0 0.991 
0.313 0.193 0 0.838 
0.489 0.211 0 0.946 
0.344 0.201 0 0.913 
0.310 0.193 0 0.870 

(0, 90) 1.931 0.541 0 2.917 
(80, 0) 2.708 0.861 0 4.219 

(0, 180) 2.550 0.703 0 3.717 

(a) dewarping results 

Param 
T~ (mm) 
Ty (mm) 
Rz (deg) 
R u (deg) 
n~ (deg) 
T~ (mm) 
f 
Cx 
c~ 

8 

Mean Std Dev Min Max 
0 0.882 -1.300 1.185 
0 0.251 -0.317 0.339 
0 0.342 -0.393 0.348 
0 0.145 -0.233 0.169 
0 0.213 -0.407 0.170 

915.756 15.129 891.825 929.508 
48.598 0.772 47.433 49.402 

1257.544 0.182 257.289 257.760 
203.815 0.085 203.699 203.960 
3.00013 0.00001 0.00012 0.00015 
1.00032 1.00283 1.00165 0.0009 

(b) calibration results 

Table  1. (a) Distance variation of 348 pairs of furthest center points for different 
C-arm orientations. All distance measurements are in millimeters relative to the pose 
angle yaw=0 ~ pitch=0 ~ (b) Calibration parameters nominal values and sensitivity to 
C-arm orientation. The extrinsic parameters T and R are with respect to a coordinate 
frame on the center of the image intensifier. 

mined orientations.  We compute  dewarp maps  for the most  c o m m o n  poses, e.g., 
anterior-posterior and lateral views, and small angular  neighborhoods  around 
them, instead of  acquiring m a n y  maps  for different angular  segments and inter- 
polat ing between them [1, 3]. 

To quant i fy how sensitive the dewarp m a p  is to changes in C-a rm orien- 
tat ions,  and thus t o  determine how m a n y  predetermined orientat ions mus t  be 
captured,  we computed  distort ion maps  at different orientations.  Table l(a)  sum- 
marizes the results. We observe a significant point  center shift of  up to 4ram 
between extreme C-arm orientat ions and of  a lmost  l m m  for or ientat ion of 15 ~ 
apart .  To determine the accuracy of the dewarp m a p  function on new images, 
we acquired an image of the grid a t tached to the image intensifier cover at a 
fixed C-a rm orientat ion and computed  the dewarp map.  Then,  we detached the 
grid, placed it at an arb i t rary  angle on the cover, acquired a new image, and 
corrected it with the dewarp m a p  (Fig. 3). We located the image hole centers in 
the new dewarped image with the hole segmenta t ion routine, and computed  a 
worst case error bound  by taking the relative distances between pairs of  points  
tha t  are furthest  apart .  For 30 measurements ,  the mean  error was 0.104mm, 
with c~ = 0.060ram, r a i n  = 0.007mm, and m a x  = 0.198ram. Previous studies 
report  similar residual errors after correction. 

5 C a m e r a  ca l ibrat ion  

We use Tsai ' s  [15] 11 parameter  pinhole camera  model  and solution me thod  
to model  the fluoroscopic camera.  Since the parameters  are pose dependent ,  we 
compute  them for the same C-arm orientat ions as for dewarping. The  parameters  
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are the relative position T = T,,  Ty, Tz and orientation R = R~, Ry, tgz of the 
pinhole with respect to the imaging plane, the focal length f ,  the image center 
location C~:, Cy, and the image scaling and radial distortion coefficients, s and n. 
Because the images have been previously corrected, the radial image distortion 
assumption holds. We could set the parameters s = 1 and g = 0, but we compute 
them anyway to further verify the dewarping procedure. 

The set of equations relating the parameters are obtained by formulating 
the transformations from the world coordinate to the camera coordinates, trans- 
forming the 3D camera coordinates into 2D coordinates in an ideal undistorted 
image, and adding radial distortion, shifting, and scale. The equations can be 

:solved in two steps, based on the radial alignment constraint. Following the 
camera calibration procedure for single view non-coplanar points, the extrinsic 
parameters R and T, with the exception of T,, are found by solving a set of linear 
equations. Based on these values, the remaining parameters are derived. While 
this method requires at least seven points, we use the least squares method to 
incorporate more points. 

To determine the variation for the different C-arm orientations, we conducted 
measurements for six extreme orientations. Table l(b) summarizes the results. 
Note that the variation in Tz, which measures the distance between the cam- 
era pinhole and the image plane, is significant and confirms the deflection of 
the C-arm [6]. The small radial distortion and scaling deviations show that the 
dewarping procedure is very accurate. To quantitatively validate the accuracy 
of the calibration, we imaged the calibration object and computed the cali- 
bration parameters. We then constructed the projection matrix and used it to 
compute the geometric coordinates of the ball centers. For each ball, we com- 
puted the distance between the geometric and the image coordinate centers. 
The mean distance error for 78 measurements is 0.201mm with ~ = 0.089ram, 
min = 0.033mm, and max = 0.449mm. 

6 C o n t o u r  e x t r a c t i o n  

Reliably extracting bone contours in fluoroscopic images is difficult because the 
images are noisy, have limited resolution, exhibit non-uniform exposure variation 
across the field of view, and have varying contrast and exposure from shot to shot. 
The bone structures are surrounded by tissue, contain overlapping contours, and 
have internal contours. Since our ultimate goal is to register the images with 3D 
contour models, we aim at obtaining a sufficiently dense set of points, possibly 
disconnected, on the bone contour with the fewest possible number of outliers. 

We ruled out top-down model-based segmentation methods because they are 
difficult to use for anatomical structures. We considered the three main bottom- 
up approaches to contour segmentation: edge detection, active contours, and 
region growing [17]. Our experiments with standard edge detection techniques 
on actual fluoroscopic images showed that the Marr-Hilderth edge operator is 
overly sensitive to noise and non-uniform image exposure, producing too many 
false contours. The Canny edge detector yielded better results but required ex- 
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tensive threshold adjustments for every image, with frequent over and under 
segmentation. We ruled out the active contours techniques because they can- 
not detect overlapping contours require an initial guess near the target, and are 
computationally expensive [1]. The region growing methods yielded better re- 
sults but created many spurious boundaries because of the non-uniform exposure 
across the field of view. 

We developed a new bone contour segmentation algorithm based on robust 
image region statistics computation [4]. Its main advantage is that  it adaptively 
sets local segmentation thresholds from a robust statistical analysis of image con- 
tent. Working on the gradient image, it starts from global threshold setting and 
performs region growing based on adaptive local thresholds and zero-crossings 
filtering. Because the algorithm uses both global and local thresholds, it is less 
sensitive to the exposure variations across the field of view. Pixels are classified 
into one of three categories, bone, candidate, or background, according to the 
number of pixels above a predefined percentile, and not according to a prespeci- 
fled absolute value. The percentile indicates the number of pixels in the gradient 
image histogram with gray values below (background) or above (bone), with 
candidate pixels in between. Initial region classification is obtained with global 
percentile thresholds. To overcome the non-uniform exposure, the classification 
is adaptively updated with local percentile thresholds over a fixed size window. 
Filtering the result with the original image zero crossings localizes the contour 
inside the region. The contour segmentation inputs global and local, upper and 
lower percentile thresholds, and a window size. It finds edge pixels in four steps: 

1. Initial global classification 
Compute the gradient image and its histogram. Set the global threshold val- 
ues according to the given global image percentiles. The gradient image pixels 
are classified according to the global thresholds as background (below the lower 
threshold), bone (above the upper threshold), or candidate (between the lower 
and upper thresholds). 

2. Revised local classification 
For each candidate pixel in the gradient image, place a local window of pre- 
specified size centered at the pixel and compute the local thresholds from its 
histogram. The pixel label is modified according to the local threshold values. 

3. Region growing and small components elimination 
Recursively relabel as bone all pixels labeled candidate with one or more neigh- 
boring bone pixels (either the four or eight neighboring scheme can be used). 
Next, remove all connected bone pixel components with too few pixels (e.g., less 
than 50) by relabeling them as background. They are most likely noise. 

4. Filtering with zero-crossings image 
Compute the binary zero-crossings image of the original image and perform an 
AND operation with the binary labeled gradient image. The labeled gradient 
image is converted to a binary image by setting bone pixels to 1 and background 
pixels to O. The result are the pixels on the bone contours. 
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Fig. 4. Extracted pixel contours of the fluorosocopic images in Fig. 1. The contours of 
the metal tools were also segmented because metal density is higher than bone density. 

We conducted a preliminary evaluation of the contour extraction algorithm 
on three sets of fluoroscopic images taken from actual surgeries. The  global and 
local gradient image threshold percentiles (lower=60%, upper=94.7%, |ower=60%, 
upper=99%), window size (13x13 pixels2), and number of neighbors (n = 4) were 
kept constant for all images in a session. Fig. 4 shows typical results. Note that 
there are very few outliers, which can be removed with a simple model-based 
scheme or by combining segmentation and registration, as in [5]. 

7 Conclusion 

We have presented a practical approach to fluoroscopic image processing con- 
sisting of image dewarping, camera calibration, and bone contour extraction. We 
report experimental results quantifying the accuracy of our setup and methods. 
We found an intrinsic system accuracy of 0.04mm, average dewarping accuracy 
of 0. l m m  and always below 0.2mm, and average calibration error of 0.2ram and 
always below 0.45mm. We found significant dependence on the C-arm orien- 
tation, with dewarp variations of up to l m m  for angles of 10 ~ or more, and 
as much as 4mm between extreme orientations. Changes in the C-arm deflec- 
tion have also a significant effect on the calibration parameters. These results 
match those of previous studies and suggest that submillimetric spatial position- 
ing accuracy is achievable with standard equipment. Preliminary results of the 
contour segmentation algorithm show good contour tracing and very few out- 
liers. Our current work focuses on registering the extracted bone contours with 
surface bone models obtained from preoperative CT images and on designing 
experiments to establish the overall accuracy of our method. 
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