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Abstract .  We use a computational fluid dynamics (CFD) solver to sim- 
ulate the flow of blood through the left ventricle (LV). Boundary condi- 
tions for the solver are derived from actual heart wall motion as measured 
by MRI-SPAMM. This novel approach allows for the first time a patient- 
specific LV blood flow simulation using exact boundary conditions. 

1 I n t r o d u c t i o n  
The development of a patient specific LV blood flow simulator is an open and 
challenging research problem. There are imaging techniques such as phase ve- 
locity MR which can indirectly measure velocity, but the resulting data  must be 
reconstructed and tends to be very noisy and requires significant post-processing 
to be of any use. A detailed description of these methods is beyond the scope of 
this paper. There has been a large body of work in the mechanical engineering 
literature over the past few decades related to the computational simulation of 
fluid dynamics (CFD). Some of the more approachable texts are those of Ferziger 
and Fetid [3], Fletcher [4], eatankar  [7], and Roache [11]. There have been many 
varieties of numerical methods developed for simulating different types of flu- 
ids (liquids a n d  gases) with various physical properties (density and viscosity) 
undergoing varying types of flows (laminar, turbulent, supersonic) in different 
types of physical environments (those with external temperature and chemical 
influences). While the general problem of CFD is one of the more challenging 
in computational science, good results have been obtained using techniques de- 
signed for specific problems. 

Several researchers have developed CFD techniques to simulate blood flow 
through the heart with varying degrees of realism, eeskin and McQueen [9][5] 
developed the immersed fiber method, in which the heart wall is modeled by a 
woven stand of fibers immersed in a viscous, incompressible fluid. The fibers are 
arranged in a shape which approximates that of the heart, and exert forces in 
the tangential direction. These forces are applied to the Navier-Stokes equations 
to induce motion in the fluid. The result is an effect similar to that  caused by 
the contracting heart wall. While the results are convincing from a computa- 
tional point of view, the fibers have no physical connection to the actual heart. 
Yoganathan et al. [15] later addressed the anatomical issue by constructing the 
fibers to represent the shape of the LV. Pelle et al. [8] used the Laplace equation 
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to simulate velocity in a cylindrical model of the LV, neglecting viscous effects 
and assuming irrotational flow. The Bernoulli equation computes pressure from 
velocity in a linked model. The velocity equations were augmented with terms to 
more closely approximate the local structure of the heart wall. Thomas and Wey- 
man [14] used a Navier-Stokes solver to simulate ventricular filling in a simplified 
geometrical model. Dubini et al. [2] used a Navier-Stokes solver to simulate the 
installation of a by-pass device in a simplified model of the right ventricle. Taylor 
et al. [13] used the shape of a digitized canine LV in a Navier-Stokes simulation. 
The motion of the wall was described by having it moved toward the center of 
the aortic outlet. 

While these contributions and others have allowed important  quantitative 
analysis of simplified models of hearts, none of them have used realistic data  
from actual patients. The goal of our work has been to address this shortcoming. 
In this paper, we adapt a computational fluid dynamics (CFD) solver to develop 
for the first time a patient specific blood flow simulator for the left ventricle (LV). 
Boundary conditions for the solver are derived from actual heart wall motion as 
measured by MRI-SPAMM. Visualization of preliminary results is presented. 

2 Boundary  Data  Extract ion 
The model of blood flow described in the next section uses as input boundary 
data  extracted from the LV's endocardium motion. The volumetric analysis of 
the LV from MRI-SPAMM data  was developed by Park et al.[6]. The method 
uses as input boundary and tagged data  to fit a volumetric deformable model 
with parameter functions that can capture the motion of the LV. These parame- 
ters capture the contraction and twist of the LV which are essential for modeling 
correctly the blood flow within the LV. In this paper we use the 3D time-varying 
position of points on the LV endocardium that are sampled from the volumet- 
ric LV model. These data  are used as boundary conditions in the blood flow 
simulation described next. 

3 M o d e l i n g  B l o o d  F l o w  
In this section we describe the equations that  govern the dynamics of our blood 
flow model. 

We use an Eulerian approach for the description of the flow field, in which the 
variables (pressure and velocity) of the fluid are solved for across the domain of 
interest. The Lagrangian formulation, in which variables of the fluid are tracked 
at the position of an object (such as a blood molecule) as it moves through the 
domain, or mixed Eulerian-Lagrangian formulation, are useful in other situations 
such as solid body dynamics or mixed media interfaces and will not be used here. 

The fundamental laws to be considered in the description of fluid flow are 
the conservation of mass (continuity) and momentum, repeetively: 

dm d(mv) 
dt = 0  and d ~  - ~ f '  (1) 

where m is mass, t is time, v is velocity, and f are forces. 
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Our Eulerian approach deals not with parcels of matter, but rather with 
parcels of space known as control volumes. We therefore need to  convert the 
control mass-oriented conservation equations above into control volume-oriented 
forms. The amount of mass in a control mass CM can be defined as: 

= [ pd$?, (2) m 
J J ~  C M  

where DCM is the volume of the control mass and p is the density of the matter.  
Inserting this definition into Eq. 1 and applying Green's theorem yields the con- 
trol volume equation for mass conservation (for control volumes fixed in space): 

0s 0s /s ~-~ pdD = ~-~ pdl2 + pv .  ridS = 0, (3) 
C M  C V  C V  

where I-2cy is the volume of the control volume CV, Scv is the surface of the 
control volume, and n is the outward-facing normal to the surface. This equation 
states that  the rate of change of the amount of mass of a control volume is the rate 
of change within the volume plus the next flux of mass through the boundaries of 
the volume due to fluid motion (convection). For incompressible fluids (liquids) 
such as blood, density is constant and the first term in Eq. 3 disappears, leaving: 

L p v . n d S  = 0. (4) 

Applying a similar technique to the momentum equation yields the control 
volume form: 0/o L pvdf2 + p v v - r i d S  = Z f" (5) 

C V  C V  

The forces f in the momentum equation are surface forces such as pressure 
and stress and body forces such as buoyancy and gravity. The blood is treated as 
a Newtonian fluid, that  is, one in which stress is linearly dependent on velocity. 
The stress tensor, which represents the rate of transport of momentum, with 
constant viscosity is then: 

T = -p l  + p(gradv), (6) 

where # is the dynamic viscosity, [ is the unit tensor, and p is the static pressure. 
Ignoring body forces and utilizing Eq. 6 in Eq. 5 the momentum conservation 
equation becomes: 

~ i L 0--t pvdl2 + pvv �9 = T .  ndS. (7) 
cv dScv cv 

The continuity and momentum equations are collectively referred to as the 
Navier-Stokes equations. 

4 N u m e r i c a l  M e t h o d s  
We describe the technique we use to approximate the continuous equations of our 
mathematical  model with discrete versions suitable for solution on a computer. 
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4.1 Discre t iza t ion  
Any system of partial differential/integral equations such as those in our math- 
ematical model derived above must be approximated by algebraic equations for 
solution on a computer. This is done by defining a numerical grid, which sam- 
pies points in space with nodes. The original equations are approximated by a 
system of linear algebraic equations in which the values of the variables at the 
grid nodes are the unknowns. Each node provides one algebraic equation which 
relates variable values at that node with the values at neighboring nodes on the 
grid. This is assembled into a system of the form: 

apr + ~ a k r  - -  q p ,  (S) 
k 

where r represents the unknown, P denotes the node at which the equation is 
being solved, k spans the neighboring nodes involved in the approximations, the 
a are coefficients involving geometrical and fluid properties, and q contains the 
terms in which all variable values are known (source terms). The system can be 
written in matrix form as: 

Ar = q, (9) 

where A is the coefficient matrix, r is the vector containing the variables at 
the grid nods, and q is the vector containing the source terms. The solution 
of this system will be addressed below. For now we are only interested in its 
construction. 

There are several methods for discretizing partial differential equations. The 
finite difference method is the oldest and simplest to implement. The partial 
derivatives in the differential form of the conservation equations are replaced by 
approximations in terms of nodal values of the variables. A structured grid is 
used. In the finite element method, the domain of interest is divided into a set of 
discrete volumes, or elements, that may be unstructured. The equations in the 
mathematical model are multiplied by a weight function before being integrated 
over the domain. The weight function describes how the variable varies over an 
element. While this method provides the most accuracy in irregular geometric 
domains, the formulation of the element equations does not have an easy physical 
interpretation. 

The finite volume method, which we employ, divides the domain of interest 
into a finite number of small control volumes (cells), and places the numerical 
grid nodes at the center of the cells[3][7]. The grid is constructed such that 
adjacent cells share a face. The sum of the integral equations derived in the 
previous section for the individual cells is then equal to the global equation since 
surface integrals for adjacent cells cancel out. To obtain algebraic equations for 
each cell, the integrals must be approximated by quadrature formulae. A diagram 
of a 2D finite volume is shown in Fig. 1. 

In Cartesian coordinates, 3D cells have six faces, denoted e, w, n, s, t, and 
b. Net boundary flux through a cell is the sum of integrals over the faces: 
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Fig. 1.2D finite volume around node P, neighbors E, W, N, S, faces e, w, n, s 

where k spans the six faces and f is the component  of the convective or diffusive 
vector in the direction normal to the face k. The surface integral in the right 
side of Eq. 10 is approximated in terms of variable values at a finite number  
of locations on the face. The values on the face are approximated in terms of 
nodal values at the two cells which share the face. We use the midpoint  rule, 
a second-order accurate method in which the integral is approximated as the 
product of the variable value at the face center and the area of the face. For the 
face 'e '  we have: 

Fe = / _  f d S  ~ feS~. (11) 
d b "  e 

Since variables are solved for at nodes which lie in the center of cells, the value 
at the face centers must  be interpolated. These values must  be obtained with 
at least second-order accuracy to maintain that  of the midpoint  rule. Central 
differencing, described above, is a suitable approach. 

Approximat ion of volume integrals is performed similarly to that  of surface 
integrals; the volume integral is replaced by the product of the variable value at 
the center of the cell and the volume of the cell. 

4.2 Matrix System Construct ion 
For the unsteady te rm of Eq. 7, we use a second order three t ime level scheme. 
This leads to the approximation: 

(_~0 j puid~2)p ~ PAt2 (3u n. " ' - 4u~ + u~ - l )  = AtPun+li'P - Q~,~,t (12) 

where: 
pAY2 3pan and Q L -  (4u'  Atp - 2At 2At - u, ). (13) 

The index n refers to the t ime iteration step. 
We split the surface integrals in the convective, viscous, and pressure terms 

into six faces as described above. The nonlinear terms are approximated by the 
product  of an old value (from the preceding iteration) and a new value. The 
mass flux across the 'e '  face is: 

~s " u ' " - l S  (14) rh~ = pv �9 ndS  ~ ( p ) e  e, 
e 
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where m refers to the implicit solver iteration step. The convective flux of ui 
momentum is then: 

F"~ 1~ " (15) ~,e = flUiV �9 ~ m e U i , e  . 

The diffusive flux requires the stresses r ~ ,  7"y~, and rz~ at the face 'e'. Central 
difference approximations give: 

OU U E - -  U p  (16) (,-~)~ = ~(~)~ ~ # ~  _ ~------~, 

and similarly for (ru~)~ and ( ~ ) ~ .  
The pressure term is approximated by: 

QP = - ffs pi .  ndS  ~ - ( p ,  Se - pwS~) m-l ,  (17) 

which leads to the complete approximation for the momentum equation: 

Atpui,p + Fi ~ - Fi ~ = Q~ + QP, (18) 

where: 

F c = F { + F , ~  + F , ~ + F ~ + F ~ + F { ,  (19) 
F"= F[ + F~ + F~. + F~ + F / +  r[ .  (20) 

The complete algebraic system for the u momentum has the form: 

A~pup + E A'~uk = Q~ (21) 
k 

The coefficient AE in the A matrix is: 

A~ = min(rh~,0) #Se , (22) 
X E  - -  X p  

and the coefficients for the other faces are analogous. The Ap coefficient is: 

and the Q vector is: 

A~, = A}) - E A~, (23) 

Q~ = Qt  + Q{. (24) 

The construction of the system for the v and w equations are analogous. 

P r e s s u r e  C o r r e c t i o n  Because the solution for the momentum equations uses 
old values of pressure for the calculation of the pressure term (Eq. 17), the result 
does not in general satisfy the continuity equation. To resolve this problem, we 
use the SIMPLE algorithm first developed by Caretto et al. [1]. We first solve 
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the momentum equations as described above, and then gradually "correct" the 
pressure, and hence the velocity by way of the pressure term, until the continuity 
equation is satisfied to within some small numerical tolerance. 

For the continuity equation to be satisfied, the net mass flux through a cell 
must be zero. After solving the momentum equations above, the net mass flux 
is: 

A~np = m~ + inw + in~ + ~n, + ~ht +/rib. (25) 

The velocity corrections u', v', and w' will cause this term to become zero. 
The pressure correction p' is related to the velocity correction u' by: 

I u'~- EkA~u'k S~ (pE-p~). (26) 
Ap A~ 

Substituting this into the continuity equation leads to the pressure-correction 
equation: 

I 

APppP + E APkP'k = --Adnp, (27) 
k 

where the A coefficients are: 

P $2 , 

A ~ = - E A ~  and A k = - , ~ ) ~ ,  
k 

(28) 

and similarly for the other faces. 

4.3 Matrix System Solution 
The construction of our discrete approximation to the Navier-Stokes equations 
results in a matr ix  system in the form of Eq. 9. Many techniques have been 
devised to solve such systems, but  they vary greatly in their utility (see Press 
et al. [10] for an excellent overview). Direct methods are applicable to any type 
of matrix, but their poor performance prevents their use in most interesting 
engineering problems. Gauss elimination, the most basic method, reduces a ma- 
trix to an upper triangular form through a series of linear operations on rows 
or columns. A back substitution phase then computes the unknowns from the 
upper triangular matrix. LU decomposition improves on the Gauss technique by 
constructing the triangular matr ix  in a way that does not require the source vec- 
tor, resulting in considerable speedup for systems that  use the same coefficient 
matr ix  repeatedly. Structured matrices, in which non-zero coefficients occur in 
small, structured areas of the matr ix such as along the diagonal, reduce the com- 
putational and storage complexity of solvers for them substantially, but direct 
solvers are frequently still too slow for practical application. 

Iterative solvers start  out with an approximate solution to the system (for 
example, the solution at the previous time iteration), and add a residual to the 
solution until the unknown reaches zero (to within a small tolerance). Using large 
residuals allows the solver to complete faster, but too large a residual induces 
divergence, in which the solution error increases. Our numerical method uses the 
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algorithm of Stone's "strongly implicit solver" [12], an iterative solver specifi- 
cally designed for approximations to partial differential equations. The matrices 
resulting from these approximations are highly structured, with non-zero coef- 
ficients occuring only along the main diagonal and a few nearby neighboring 
diagonals (depending on the neighborhood used in the approximation of deriva- 
tives). An approximate LU decomposition is performed in which the resulting 
triangular matrices have a similar sparsity to the original matrix. Stone's method 
takes advantage of the smoothness of the PDEs being solved to greatly improve 
convergence. 

5 B o u n d a r y  C o n d i t i o n s  
In this section we describe the boundary condition requirements of our math- 
ematical model and numerical implementation, and how we derive them from 
MRI-SPAMM LV wall motion data. 

The Navier-Stokes equations require boundary conditions at all points on 
the boundary of the solution domain for uniqueness. These are either Dirichlet 
conditions, in which the velocity at a boundary point is specified, or Neumann 
conditions, in which the derivative of velocity at a boundary point is specified. 
In the latter case, velocity values at interior points adjacent to the boundary are 
extrapolated to satisfy the derivative condition. 

For our finite volume discretization, this means that the solution domain 
must be surrounded by boundary cells. We utilize three types of boundary cells: 
inlet (Dirichlet), outlet (Neumann), and wall (zero normal velocity). At walls, 
the convective flux in the normal direction and normal viscous stress are zero. 
At inlet boundaries, the velocity normal to the boundary (mass flux) is usually 
specified. This specification of velocity at wall and inlet boundaries means that 
the pressure correction across these boundaries should be zero. This is imple- 
mented by extrapolating pressure at the exterior cells along the boundary so 
that the pressure gradient across the interior boundary cells is zero. Outlet cells 
generally have a zero velocity gradient in the normal direction. These bound- 
aries are ignored in the momentum equations, and their values copied from the 
adjacent interior cells. Their mass flux is allowed to adjust during the pressure 
correction step to ensure continuity. 

We approximate sloped or curved boundaries by blocking off cells in our 
regular grid which lie outside the true boundary. While this introduces a dis- 
cretization error, good results can be obtained by using a sufficiently fine grid 
resolution. Alternative coordinate representations such as cylindrical can also 
reduce this error for appropriate shapes such as the LV. 

5.1 Heart Wall Boundary Condit ions  
Our goal in this work has been to simulate the flow through the LV of specific 
patients. The availability of MRI-SPAMM imaging tools provides us with a mo- 
tion model of the walls of the LV. We use the motion data computed for the 
inner wall as boundary conditions as we now describe. 

The output of the MRI-SPAMM tracking algorithm is a 4D time-series of the 
positions of fixed points on the LV wall throughout the cardiac cycle. Dividing 
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the displacement of point positions by the time period computed from the pulse 
rate gives us the velocity at a finite number of positions on the wall. Unfor- 
tunately, these points are irregularly sampled, so we must interpolate them at 
regular intervals corresponding to our numerical grid. We do this by connecting 
the points on the wall to form a surface using splines or line segments. This 
wall surface is then intersected with planes which cut through the numerical 
grid at regular intervals along a specified axis. This intersection gives us a 2D 
cross section of the wall surface. The intersection plane is then divided into cells 
corresponding to the spacing of our numerical grid along the other two axes. 
A series of point-in-polygon tests is used to compute the grid cells which the 
wall surface intersects. The union of the intersection cells across all cut planes 
through the dataset provides us with the boundary cells required to solve the 
mathematical  model. Because the boundary cells correspond to points on the 
walt surface, and the MRI-SPAMM data provides us with the velocity of these 
points, the boundary cells are of the inlet type. Recalling that  "inlet" refers to 
the Dirichlet condition, the fact that  the wall may be expanding at these points 
does not present a problem - the term inlet merely indicates a specified velocity 
and not the direction of fluid flow. Because the velocities at the boundary cells 
are interpolated from the irregularly sampled MRI-SPAMM data  points, the ve- 
locities on the numerical grid boundaries are scaled to yield the same total flux 
across the wall. 

The "outlet" (Neumann) boundaries are more complex. Because the MRI- 
SPAMM method does not track the base of the LV containing the valve, our 
input model is "open-ended." The results presented here treated the entire open 
area as an outlet area, but any valve model is straightforward to implement. 
Different valve configurations can be simulated by reconfiguring the boundary 
cells at the base, or improved MRI techniques in the future which image the 
base will be handled automatically by our method. 

6 R e s u l t s  
We show the results of our method on a sample MRI-SPAMM dataset from a 
normal subject of a half cardiac cycle from end diastole to end systole. 

Figure 2 shows a visualization of the blood flow in three frames of a half 
cardiac cycle. A small number of points was seeded across a plane perpendicular 
to the long axis and integrated in both time directions with the velocity field. 
The lines indicate the paths of the points, and the cones indicate the direction 
of motion. Speed is indicated by color. A 40x20x20 numerical grid was used with 
40 slices perpendicular to the long axis of the LV. Approximately 1500 boundary 
points (depending on the frame) were interpolated from 91 MRI-SPAMM data  
points. Figure 2(a) is at end diastole, as the LV starts to contract. We see that  
the velocity shows a strong outflow pattern to the center of the base. Flow along 
the walls is toward the apex, which is consistent with the contraction of the 
walls. Figure 2(b) is a bot tom view (from the apex) of the flow at end diastole. 
Here we can clearly see the rotational pattern induced in the blood flow by 
the twisting motion of the endocardium. The flat side of the cones indicates 
the outward (toward the base) motion of the flow in the interior region, while 
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Fig. 2. Visualization o[ blood flow: (st) <rid diastole, (b) end diastole from apex, (c) 
mid systole, (d) end systole 

the rno~ion along the walls is in the opposiW~ direction. Figure 2(c) is midway 
through systole, and we see the outflow pattern beginning to diminish as the LV 
approaches full contraction. The shorter lines indicate reduced speed as the flow 
begins to change direction. Figure 2(d) is at end systole, as the LV is beginning 
to expand again. Here we see the flow pattern from the base reversed, as; blood 
begins to rush in again. Flow along the walls is directed away from the apex, 
consistent with the wall motion as the LV begins to expand. 

7 C o n c l u s i o n s  
In this paper  we have described a novel approach to the patient-specific sim- 
ulation of blood flow within the left ventricle. By utilizing MRI-SPAMM data  
as boundary conditions to a NaviebStokes based CFD solver, we are able to 
produce convincing results which capture the full 3D contraction and twist of 
endocardial motion. Results from a sample dataset qualitatively consistent with 
clinical experience are presented. Ongoing work focuses on the application of 
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our method to various types of cardiac disease and the extraction of relevant 
quantitative information. 
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