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Abstract. This contribution introduces a class of Galois field used to 
achieve fast finite field arithmetic Which we call an Optimal Extension 
Field (OEF). This approach is well suited for implementation of public- 
key cryptosystems based on elliptic and hyperelliptic curves. Whereas 
previous reported optimizations focus on finite fields of the form GF(p) 
and GF(2m), an OEF is the class of fields GF(pm), for p a prime of 
special form and m a positive integer. Modern RISC workstation proces- 
sors are optimized to perform integer arithmetic on integers of size up 
to the word size of the processor. Our construction employs well-known 
techniques for fast finite field arithmetic which fully exploit the fast in- 
teger arithmetic found on these processors. In this paper, we describe 
our methods to perform the arithmetic in an OEF and the methods to 
construct OEFs. We provide a list of OEFs tailored for processors with 
8, 16, 32, and 64 bit word sizes. We report on our application of this ap- 
proach to construction of elliptic curve cryptosystems and demonstrate a 
substantial performance improvement over all previous reported software 
implementations of Galois field arithmetic for elliptic curves. 
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1 Introduction and Motivation 

Arithmetic in finite fields is an integral part  of many public-key algorithms, 
including those based on the discrete logarithm problem in finite fields, elliptic 
curve based schemes, and emerging applications of hyperelliptic curves. Our 
ability to quickly perform arithmetic in the underlying finite field determines 
the performance of these schemes. Finite fields are identified with the notation 
GF(pm), where p is a prime and m is a positive integer. Essentially all previous 
work in this area has focused on two types of finite fields: GF(p ~n) with m = 1, 
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p a prime; and p = 2, m some positive integer. In this paper, we consider the 
use of extension fields of large characteristic with the characteristic p a prime of 
special form, m some positive integer. 

The case of p = 2 is especially attractive for hardware circuit design of finite 
field multipliers, since the elements of the subfield GF(2) can conveniently be 
represented by the logical signals "0" and "1." However, p = 2 does not offer 
the same computational advantages in a software implementation, since modern 
workstation microprocessors are designed to calculate results in units of data 
known as words. Traditional software algorithms for multiplication in GF(2 rn) 
have a complexity of c m ~  steps, where w is the processor's word length and c is 
some constant greater than one. For the large values of m required for practical 
public-key algorithms, multiplication in GF(2 m) can be very slow. 

Similarly, prime fields GF(p) also have computational difficulties on standard 
computers. For example, practical elliptic curve schemes fix p to be greater 
than 2 xS~ Multiple machine words are required to represent elements from these 
fields on general-purpose workstation microprocessors, since typical word sizes 
are simply not large enough. This representation presents two computational 
difficulties: carries between words must be accomodated, and reduction modulo 
p must be performed with operands that span multiple machine words. 

In this paper we define a special class of choices of p and m and show that 
they can yield considerable computational advantages. Our primary motivation 
in what follows is to exploit the very high performance that modern RISC pro- 
cessors offer for integer arithmetic on single words, which alleviate many of the 
difficulties found with GF(p) and GF(2m). Our focus in the present paper is on 
elliptic curve cryptosystems as introduced in [7] and [13]. However, the arithmetic 
introduced here can also be applied to hyperelliptic curve public-key systems as 
introduced in [8]. 

2 O u r  N e w  A p p r o a c h  

Our new approach is based on the observation that several well-known opti- 
mizations exist for software implementation of finite field arithmetic and that 
when they are used in conjunction they yield significant performance gains for 
implementation of elliptic and hypereUiptic curve cryptosystems. To optimize 
arithmetic in GF(p m) we stipulate the following properties on the choice of p 
and m: 

1. Choose p to be less than but close to the word size of the processor so that all 
subfield operations take advantage of the processor's fast integer arithmetic. 

2. Choose p to be a pseudo-Mersenne prime, that is, of the form 2n=}=c for some 
log 2 c _< �89 to allow for efficient subfield modular reduction. 

3. Choose m so that we have an irreducible binomial x m - w for efficient ex- 
tension field modular reduction. The extension degree m can be small if the 
processor word size allows for large values of p. 

A field that offers these arithmetic optimizations we call an Optimal Exten- 
sion Field (OEF). For a formal definition of OEF, see Section 7. We demonstrate 
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that  these optimizations can yield a substantial performance improvement over 
previous results as in [4,16,17, 3]. As an example, when a modern RISC work- 
station with a 64-bit architecture such as the DEC Alpha family is our target 
platform, we would choose a p near 264. This approach has the advantage of fully 
exploiting the RISC CPU's ability to quickly perform 64 bit • 64 bit integer 
multiplication, thus performing a subfield multiplication with a single multiply 
instruction followed by a modular reduction. Due to the special form of p, we 
may perform this reduction without executing a traditional division algorithm. 
In order to gain this sort of computational advantage for public-key algorithms 
with field orders of more than 264, we use a field extension m of moderate degree. 
For example, the choice of p -- 261 - 1  together with an extension degree of m = 3 
would result in an OEF with order approximately 2183. Such a field is desirable 
in the construction of cryptosystems based on the discrete logarithm problem 
in elliptic curve groups. In this paper we demonstrate efficient methods to con- 
struct such fields, strategies for fast arithmetic in an OEF, and implementation 
results for an application of this work to elliptic curve cryptosystems. 

3 P r e v i o u s  W o r k  

Previous work on optimization of software implementations of finite field arith- 
metic has often focused on a single cryptographic application, such as designing 
a fast implementation for one particular finite field. One popular optimization 
involves the use of subfields of characteristic two. A paper due to DeWin et 
al. [17] analyzes the use of GF((2'~)m), with a focus on n = 16, m = 11. This 
construction yields an extension field with 2 l~s elements. The subfield GF(216) 
has a Cayley table of sufficiently small size to fit in the memory of a worksta- 
tion. Optimizations for multiplication and inversion in such composite fields of 
characteristic two are described in [3]. 

Schroeppel et al. [16] report an implementation of an elliptic curve analogue of 
Diffie-Hellman key exchange over GF(2155) with an irreducible trinomial as the 
field polynomial. The arithmetic is based on a polynomial basis representation of 
the field elements. Elements of the field are each stored in three 64-bit registers. 

Much optimization work has been done in selection of Optimal Normal Bases 
(ONB) to speed computations in GF(2m). Draft standards such as [18] [19], and 
[9] suggest use of ONB for elliptic curve systems. 

Others have investigated use of pseudo-Mersenne primes to construct Galois 
fields GF(p) in connection with elliptic curve cryptography as found in [2], [14] 
and some patents have been issued on their use. 

Unlike the methods in [17, 3] which use Cayley tables to implement subfield 
arithmetic, our approach requires no additional memory and is therefore attrac- 
tive in memory-constrained applications. In addition, our system is faster in 
real-world tests as described in Section 8. 
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4 Optimal Extension Field Arithmetic 

This section describes the basic construction for arithmetic in fields G F ( p m ) ,  
of which an OEF is a special case. The subfield is G F ( p )  and the extension 
degree is denoted by m, so that the field can be denoted by G F ( p m ) .  This field 

m - - 1  is isomorphic to G F ( p ) [ x ] / ( P ( x ) ) ,  where P ( x )  = x 'n + ~'~i=o Pi x~,Pi e G F ( p ) ,  
is a monic irreducible polynomial of degree m over G F ( p ) .  In the following, a 
residue class will be identified with the polynomial of least degree in this class. 
We consider a standard (or polynomial or canonical) basis representation of a 
field element A �9 GF(pm): 

A ( x )  = a , ~ _ l x  m-1  + . . .  + a l x  + a0, (1) 

where ai E G F ( p ) .  Since we choose p to be less than the processor's word size, 
we can represent A ( x )  with m registers. 

All arithmetic operations are performed modulo the field polynomial. The 
choice of field polynomial determines the complexity of the operations required 
to perform the modular reduction. In this paper, we will only be concerned with 
the operations of addition, multiplication, and squaring. 

4.1 A d d i t i o n  a n d  S u b t r a c t i o n  

Addition and subtraction of two field elements is implemented in a straight- 
forward manner by adding or subtracting the coefficients of their polynomial 
representation and if necessary, performing a modular reduction by subtracting 
p once from the intermediate result. Previous implementations in GF(2 n) of- 
fer a slight computational advantage since addition or subtraction is simply an 
XOR that does not require modular reduction. When compared to the addition 
operation in G F ( p )  for large p, we observe that an OEF does not require carry 
between computer words in computing a sum while G F ( p )  does. This property 
results in a modest performance gain over G F ( p ) .  

A l g o r i t h m  1 Optimal Extension Field Addition 

Require: A(x)  = a,~_lx "~-1 + . . .  + a l x  + ao ,B(x )  = b ,~- lx  m-1 + . . .  + blx  + 
bo, A(x) ,  B (x )  E GF(pm). 

Ensure: A(x)  + B(x )  =_ C(x)  E GF(p  m) 
f o r i + - - 0 t o m - 1  do 

c~ = a~ + bi 
if ci > p then 

ci +-- c~ - p 
end if 

end for 
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4.2 Multiplication 

Multiplication is performed in two stages. First, we perform an ordinary poly- 
nomial multiplication of two field elements A(x) and B(x), resulting in an inter- 
mediate product C~(x) of degree less than or equal to 2m - 2: 

C'(x)  A(x) x B(x)  ' 2m-  + = = e2m_2x + . . .  + ' e GF(p). (2) 

The schoolbook method to calculate the coefficients c~, i = 0, 1 , . . . ,  2rn - 2, 
requires m 2 multiplications and (m - 1) 2 additions in the subfield GF(p). 

Since field multiplication is the time critical task in many public-key algo- 
rithms this paper will deal extensively with fast multiplication methods, and later 
sections are devoted to aspects of this operation. In Section 4.4 we present an effi- 
cient method to calculate the residue C(x) = C'(x) mod P(x), C(x) e GF(pm). 
Section 5 gives a method to quickly perform the coefficient multiplication in 
GF(p). 

4.3 Squaring 

Squaring may be implemented using the method for general multiplication out- 
lined above. However, we observe that squaring a field element affords some 
additional computational efficiencies. For example, consider the field element 
A ( x )  = a2 x2 -'k azx + ao,A(x) E GF(p3). We compute the square of A(x) and 
obtain: 

(a2x 2 + alx + a0) 2 = a22x 4 + 2a2azx 3 + [2a2a0 + a~]x 2 + 2alaox + a 2 (3) 

Multiplication by two may be implemented in a computer as a left shift op- 
eration by one bit. On many computer architectures, a left shift is faster than an 
explicit integer multiplication. Thus instead of requiring m 2 multiplications, we 
need only m(m + 1)/2 explicit multiplications. The remainder may be performed 
as shifts. 

4.4 Extension Field Modular Reduction 

After performing a multiplication of field elements in a polynomial representa- 
tion, we obtain the intermediate result C~(x). In general the degree of C~(x) 
will be greater than or equal to m. In this case, we need to perform a modular 
reduction. The canonical method to carry out this calculation is long polyno- 
mial division with remainder by the field polynomial. We observe that we must 
perform subfield multiplications to implement the reduction, proportional to 
the number of terms in the field polynomial. However, if we construct a field 
polynomial with low coefficient weight, the modular reduction will require fewer 
subfield multiplications. 

Since monomials xm,m > 1 are obviously always reducible, we turn our 
attention to irreducible binomials. An OEF has by definition a field polynomial 
of the form: 

= - ( 4 )  
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The use of irreducible binomials as field polynomials yields major computational 
advantages as will be shown below. Observe that irreducible binomials do not 
exist over GF(2). 

In Section 6, we will demonstrate that such irreducible binomials can be 
constructed. Once such a binomial has been determined, modular reduction can 
be performed with the following complexity: 

T h e o r e m  1. Given a polynomial C'(x) over GF(p)  of degree less than or equal 
to 2 m -  2, C~(x) can be reduced modulo P(x )  = x m - w  requiring m -  1 multipli- 
cations by w and m - 1 additions, where both of these operations are performed 
in OF(p). 

Proof. By assumption, C'(z) has the form: 

C ' ( x )  = ~ r n _ 2  x 2 m - 2  -1- �9 �9 -I- ctm~ m q- C~_l :g  rn-1 -}- . . .  Jr" 4 x  dr- ~ (5) 

Only the terms din+ix ra+i, i > O, must be reduced modulo P(x). We observe that: 

d ~,m+i-- , imodP(x ) ;  i 0,1, m 2 (6) m . t _ i ~  .~- W C r n q _ i ~ 3  " ~  . . . ,  - -  

Since the degree of C'(x) < 2m - 2, we require at most m - 1 multiplications 
by w and m - 1 additions to combine the reduced terms. D 

A general expression for the reduced polynomial is given by: 

C t 3 :m- - I  j_[b.,C l _Let 13:m--2_L t C t bJ t t C(z )  - ,n-I Tt  2m-2 T ,n-lJ 1-'"+[Wer,+l+ 1]x+[ cm+co] mod P(z) 
(7) 

As an optimization, when possible we choose those fields with an irreducible 
binomial x m - 2, allowing us implement the multiplications as shifts. OEFs that 
offer this optimization are known as Type II. A method to search for these Type 
II OEFs is given in Section 7. 

5 Fast Subfield Multiplication 

As shown above, fast subfield multiplication is essential for fast multiplication in 
GF(p") .  Subfield arithmetic in GF(p)  is implemented with standard modular 
integer techniques, which are previously reported in the literature, see for exam- 
ple [12]. For actual implementation of OEF arithmetic, optimization of subfield 
arithmetic is critical to performance, so we include these remarks in this paper 
for completeness. 

We recall that  multiplication of two elements a, b E GF(p)  is performed by 
a x b - c mod p. Modem workstation CPUs are optimized to perform integer 
arithmetic on operands of size up to the width of their registers. An OEF takes 
advantage of this fact by constructing subfields whose elements may be repre- 
sented by integers in a single register. For example, on a workstation with 64-bit 
registers, the largest prime we may represent is 264 - 59. So we choose a prime 
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p < 264 - 59 as the field characteristic on this computer.  To this end, we recom- 
mend the use of Galois fields with subfields as large as possible while still within 
single-precision limits of our host CPU. 

We perform multiplication of two single-word integers and in general obtain 
a double-word integer result. In order to finish the calculation, we must  perform 
a modular  reduction. Obtaining a remainder after division of two integers is a 
well-studied problem [12]. Many methods such as Barre t t  Reduction exist which 
offer computat ional  advantages over tradit ional long division of integers. These 
methods,  however, are still slow when compared to multiplication of single-word 
integers. Our choice of p allows a far less complex modular  reduction operation. 

It  is well known that  fast modular  reduction is possible with moduli of the 
form 2 n • c, where c is a "small" integer. Integers of this form allow modular  
reduction without division. We present a form of such a modular  reduction al- 
gorithm, adapted  from [12]. In this paper  we consider only primes of the form 
2 n - c, al though a trivial change to the following algorithm allows the use of 
primes 2 n + c. The operators < < and > >  are taken to mean "left shift" and 
"right shift" respectively. 

A l g o r i t h m  2 Fast Subfield Modular  Reduction 

R e q u i r e :  p 2 n - c, log 2 c < 1 p~ = _ ~n, x < is the integer to reduce 
E n s u r e :  r = x m o d  p 

q o + . - x > > n  
ro +-- x - qo2 n 
r + - r o  
i + - O  
while qi > 0 do 

qi+~ 6.- qic > >  n 
ri+l +-- q~c - (qi+t > >  n) 
i + . - i + l  

r + - - r + r i  
end while 
while r > p do 

r + - - r - p  
end while 

Under these conditions, the algorithm terminates  after a max imum of two 
iterations of the while loop, so we require at the most  two multiplications by c, 
six shifts by n, and six additions and subtractions. In practice, this leads to a 
dramat ic  performance increase over performing explicit division with remainder.  
For example, when p = 232 - 5, m --- 5, and we implement subfield reduction by 
performing an explicit division with remainder on a 500 MHz DEC Alpha CPU, 
we require 7.74 #sec for a multiplication in G F ( f n ) .  When we perform modular  
reduction using this algorithm, we require only 1.35 #sec, a fivefold savings. 

If c = 1, this algorithm executes the first while loop only once. In addition, no 
multiplications are required for the modular  reduction and the entire operat ion 
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may be performed with 2 shifts and 2 adds if the intermediate result is contained 
in a single word, a substantial improvement over the c > 1 case. An OEF that  
offers this optimization is known as Type I. In our implementation as reported 
in Section 8, we have included p -- 261 - 1 for this reason. Our implementation 
takes advantage of its special form, making p = 261 - 1 the best performing 
choice of p we consider. 

6 I r r e d u c i b l e  B i n o m i a l s  

In Section 4.4 we showed that  irreducible binomials allow modular reduction 
with low complexity. The following theorem from [11] describes the cases when 
an irreducible binomial exists: 

T h e o r e m  2. Let m > 2 be an integer and w E GF(p) .  Then the binomial x m - w  
is irreducible in GF(p)  if  and only if  the following two conditions are satisfied: 
(i) each prime factor of m divides the order e of w in GF(p) ,  but not (p - 1)/e; 
(ii) p ~ I mod 4 i] m - 0 rood 4. 

An important  corollary is given in [5]: 

C o r o l l a r y  1. Let w be a primitive element ]or GF(p)  and let m be a divisor of 
p - 1. Then x m - w is an irreducible polynomial of order (p - 1)m over GF(p) .  

We present the following new corollary which follows directly from the above, 
since p - 1 is always an even number: 

C o r o l l a r y  2. Let w be a primitive element for GF~p). Then x 2 - w  is irreducible 
over GF(p) .  

An extension degree of 2 is especially attractive for the implementation of 
cryptosystems based on hyperelliptic curves, since the field orders required are in 
the range 40-120 bits [15]. On a 32-bit or 64-bit architecture, the use of an OEF 
with m = 2 can form the basis for a very fast hyperelliptic curve implementation. 

Irreducible binomials do not exist over GF(2) .  Thus, previous approaches 
to this problem focusing on GF(2  m) have been unable to use binomials. For 
an OEF, however, we require p and m such that  an irreducible binomial can be 
constructed. An algorithm to find such choices o fp  and m is described in Section 
7. 

7 O p t i m a l  E x t e n s i o n  F i e l d s  

In the following, we define a new class of finite field, which we call an Optimal 
Extension Field (OEF). To simplify matters,  we introduce a new name for a 
class of prime numbers: 

D e f i n i t i o n  1. A pseudo-Mersenne prime is a prime number of the form 2 n 
c, log 2 c _< �89 
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We now define an OEF: 

Defini t ion 2. A n  Optimal  Extension Field is a f in i te  f ield G F ( p  m) such that: 

1. p is a pseudo-Mersenne  pr ime,  
2. A n  irreducible binomial  P ( x )  = x m - w exists  over G F ( p ) .  

We observe tha t  there are two special cases of OEF  which yield additional 
ar i thmetic  advantages, which we call Type  I and Type  II. 

D e f i n i t i o n  3. A Type I O E F  has p = 2 n -~ 1. 

A Type  I OEF allows for subfield modular  reduction with very low complex- 
ity, as described in Section 5. 

D e f i n i t i o n  4. A Type H O E F  has an irreducible binomial  x m - 2. 

A Type  I I  OEF allows for speedups in extension field modular  reduction since 
the multiplications by w in Theorem 1 can be implemented using shifts instead 
of explicit multiplications. 

The choice of m depends on the factorization of p - 1 due to Theorem 2 
and Corollary 1. In the following we describe an efficient construction method 
for OEFs. From a very high level, this method consists of three main steps: We 
choose a pseudo-Mersenne prime p first, then factor p -  1, and then finally select 
an extension degree m.  Since p _< 264 due to current common processor word 
lengths, it is sufficient to use trial division to quickly factor p -  1. This procedure 
does not exhaustively list all OEFs, ra ther  it is designed to quickly locate a Type  
I I  OEF for a desired field order and machine word size. Further,  this procedure 
considers only those primes 2 n - c, al though a prime 2 n + c is a valid choice for 
OEFs. 

A high-level outline of our field construction algorithm, which is based on 
Corollary 1 is given as Algorithm 3. 

There are other possible values for the order of w tha t  would lead to a greater  
number  of fields tha t  meet  our criteria according to Theorem 2. However, the 
inclusion of these additional fields comes at  the expense of an increase in com- 
plexity of our algorithm. 

We found tha t  even with the restriction of w a primitive element on our 
search for fields, there are still enough Type  I I  OEFs to construct fields for 
any application. Our computat ional  experiments indicate tha t  for n = 32 and 
n = 64 there are hundreds of fields tha t  satisfy these criteria. Tables of OEFs 
for all 7 < n < 63 are found in [1]. 

For example,  suppose we wish to construct a field for use on a modern  work- 
s tat ion with 64-bit integer ari thmetic for use in an elliptic curve key exchange 
algorithm. We set n +-- 63, c +-- 1, law +- 120, h igh  +-- 260. Then we apply 
a probabili tstic primali ty test  for the integers 2 n - c, incrementing c by 2 un- 
til we locate a prime. Using this method,  we discover tha t  p -- 263 - 259 is 
prime. At this point, we factor p - 1 using trial division to obtain the factor- 
ization 22 x 32 x 7 x 107 x 342062455008707 = 9223372036854775548. Given 
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A l g o r i t h m  3 Fast Type II Optimal Extension Field Construction Procedure 
Require: n bitlength of desired p; low, high bounds on bit length of field order 
Ensure: p, m define a Type II Optimal Extension Field with field order between 2 ~~ 

and 2 h lgh  . 

c+--1 
for c +-- 1 to �89 do 

p+-- 2'~ - c  
if  p is prime t hen  

factor p - 1 
if 2 is primitive in GF(p) t hen  

for m +- low to high do 
if m [ ( p -  1) t hen  

return p, m 
end  if 

end  for 
end  if 

end if 
end for 

this factorization we can easily perform a primitivity check and find that  2 is 
a primitive element. Algorithms to compute the order of a group element are 
well known, see [12]. It  remains only to select an extension degree. By trial di- 
vision, we observe that  2, 3, and 4 all divide p - 1 and thus x 2 - 2, x 3 - 2, and 
x 4 - 2 are all irreducible binomials over GF(p) .  These binomials yield the fields 
GF((263 -259)2 ) ,GF( (263  -259)3 ) ,  and GF((263 - 2 5 9 ) 4 ) ,  respectively. The 
approximate orders of these fields are 2126 , 2189 , and 2252 , respectively. 

8 Implementat ion  Results  

8.1 A p p l i c a t i o n  t o  E l l ip t i c  C u r v e  C r y p t o g r a p h y  

One of the most important  applications of our technique is in elliptic curve 
cryptosystems, where Galois field arithmetic performance is critical to the per- 
formance of the entire system. We show that  an OEF yields substantially faster 
software finite field arithmetic than those previous reported in the literature. 

We implemented our algorithms on a 500 MHz DEC Alpha workstation in 
optimized C, only resorting to assembly to perform 64 bit x 64 bit multiplica- 
tions, since these operations are not directly supported by Digital's C compiler. 
We executed the Type II OEF construction procedure to find Type II OEFs 
for the word sizes 8, 16, 32, and 63. These word sizes are representative of the 
CPUs found in typical applications, although OEFs may be constructed for any 
arbi t rary word size. For each word size we at tempted to construct an OEF with 
approximately 160, 190, and 240 bit length, as such fields are suggested for 
the implementation of practical elliptic curve systems [18] [19]. The OEF con- 
struction algorithm from Section 7 found the fields shown in Table 1 with the 
exception of fields for an 8-bit word size, and the field with p = 261 - 1. In 
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both cases, w = 2 is not primitive in GF(p). We constructed these cases using 
Theorem 2. In order to obtain accurate timings, we executed field multiplication 
in GF(p m) one million times, observed the execution time, and computed the 
average. Table 1 shows the result of our field construction and subsequent timing 
measurements. 

For each of our example OEFs, Table 1 lists nm, which is the approximate 
bit length of the field order, the prime p, the irreducible binomial, and the time 
in microseconds to perform the GF(p m) multiplication. In addition, we provide 
estimated time in milliseconds for a single elliptic curve group operation, elliptic 
curve point doubling, and estimated time for a full point multiplication, using 
the following assumptions. 

The elliptic curve addition operation in projective coordinates may be per- 
formed with 15 multiplications in GF(pm), while doubling requires 12 multi- 
plications [10]. Then we estimate the time required for an elliptic curve point 
multiplication as required in the elliptic curve analogue of Diffie-Hellman key 
exchange, assuming an implementation using the k-ary window method [6] with 
k = 4 to speed the repeated doubling and add operations. Note that in the es- 
timations we ignored time required to perform additions in the finite field, but 
also did not employ better point multiplication algorithms such as signed-digit 
methods [10] and addition chains. 

Most fields included here are Type II with the exception of the 8-bit fields 
and the field GF((261 -1)3), which is Type I. This accounts for its very high per- 
formance: a field multiplication is performed in 0.52 microseconds. When applied 
to elliptic curve cryptosystems, this field results in a very fast implementation, 
requiring only 1.58 milliseconds for a full point multiplication. 

8.2 Compar i son  

We also compared our implementation with three previously reported approaches. 
For ease in comparison, we report our timing results as measured on a 150 MHz 
DEC Alpha. Results are found in Table 2. 

For each implementation, we give the timing for a field multiplication. It can 
be seen that our OEF GF((261 - 1) 3) yields field multiplication speeds which 
are more than twice as fast as the best previously reported approach. This is 
true even though our field has an order of 2 is3, whereas the field in [16] has an 
order of 2155 and their workstation has a slightly higher clock rate. 
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T a b l e  1. O E F  ar i thmet ic  t imings on a 500 MHz D E C  Alpha  

n m  

160 
200 
240 

160 
192 
240 

160 
192 
224 

183 
189 
252 

p = 2 n - c  

28 - 15  

28 - 5 

28 - 15 

216 - 165 
216 - 243 
216 - 165 

2 3 2  - -  5 

232 - 387 
232 - 1053 

2 6 1  - -  1 

263 - 259 
2 6 3  - -  259 

b i n o m i a l  
X m - -  OJ 

X 20 - -  7 

x 25 - 6 

x 3~ - 7 

x 1~ - 2 
x 12 - 2 
x 15 - 2 

G F  m u l t  

(,see) 

x 3 - 37 
x 3 - 2 
x 4 - 2 

E C  a d d  

(#sec )  
( e s t . )  

E C  d o u -  
b l e  
(# sec )  
( e s t . )  

~ P  
( m s e c )  
( e s t . )  

i48.3 725 580 130 
70.1 1050 841 231 
100 1500 1200 392 

13.8 207 166 37.1 
16.9 253 203 53.7 
28.0 420 336 110 

x 5 - 2 1.35 20 16.2 3.62 
x 6 - 2 2.13 32 26 6.85 
x 7 - 2 3.00 45 36 11.0 

0.52 7.8 6.24 1.58 
0.87 13 10 2.64 
1.49 18 22 6.12 

T a b l e  2. Compar ison  of ar i thmet ic  per formance  

M e t h o d  F i e l d  S ize  F i e l d  T y p e  P l a t f o r m  GF m u l t  

DeWin  [17] 176 bits GF((2n) m) 133 MHz Pen-  62.7 
t ium 

G u a j a r d o - P a a r  176 bits GF((2n) m) 175 MHz D E C  38.6 
[3] Alpha  
Schroeppel  [16] 155 bits GF(2 m) 175 MHz D E C  7.1 

Alpha  
O E F  183 bits GF(p m) 150 MHz D E C  3.3 

Alpha  

9 C o n c l u s i o n  

In  this paper  we have in t roduced a class of finite fields, known as Opt imal  Ex-  
tension Fields, which take advantage  of well-known opt imizat ions  for finite field 
ar i thmet ic  on microprocessors  commonly  found in workstat ions.  O E F s  are es- 
pecially a t t rac t ive  for use in elliptic curve and hyperell iptic curve systems. The  
ar i thmet ic  speedups are due to  the inherent  propert ies  of  an OEF.  An  O E F  
m a y  be cons t ruc ted  with a subfield close to  the  size of  the  host  CPU.  The  field 
character is t ic  of  an O E F  is a pseudo-Mersenne prime, t h a t  is, of  the form 2 n -l- c 
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for small c, allowing fast subfield modular reduction. The extension degree of an 
OEF always allows for an irreducible binomial. Finally, the field polynomial of 
an 0~EF is chosen to have a constant term equal to 2. In real-world demonstra- 
tions, we have shown that  an OEF yields a considerable speed advantage over 
previous software implementations of Galois field arithmetic for elliptic curve 
cryptography. 
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