
Optimal Extension Fields for Fast Arithmetic in
Public-Key Algorithms

Daniel V. Bailey 1 and Christof Paar 2

1 Computer Science Department, Worcester Polytechnic Institute, Worcester, MA
01609 USA.

Emaih bailey@cs .wpi. edu
2 ECE Department, Worcester Polytechnic Institute, Worcester, MA 01609 USA.

Emaih christof~ece.wpi, edu

Abstract. This contribution introduces a class of Galois field used to
achieve fast finite field arithmetic Which we call an Optimal Extension
Field (OEF). This approach is well suited for implementation of public-
key cryptosystems based on elliptic and hyperelliptic curves. Whereas
previous reported optimizations focus on finite fields of the form GF(p)
and GF(2m), an OEF is the class of fields GF(pm), for p a prime of
special form and m a positive integer. Modern RISC workstation proces-
sors are optimized to perform integer arithmetic on integers of size up
to the word size of the processor. Our construction employs well-known
techniques for fast finite field arithmetic which fully exploit the fast in-
teger arithmetic found on these processors. In this paper, we describe
our methods to perform the arithmetic in an OEF and the methods to
construct OEFs. We provide a list of OEFs tailored for processors with
8, 16, 32, and 64 bit word sizes. We report on our application of this ap-
proach to construction of elliptic curve cryptosystems and demonstrate a
substantial performance improvement over all previous reported software
implementations of Galois field arithmetic for elliptic curves.

Keywords

finite fields, fast arithmetic, pseudo-Mersenne primes, Optimal Extension Fields,
OEF, binomials, modular reduction, hyperelliptic curves, elliptic curves, crypto-
graphic implementation

1 Introduction and Motivation

Arithmetic in finite fields is an integral part of many public-key algorithms,
including those based on the discrete logarithm problem in finite fields, elliptic
curve based schemes, and emerging applications of hyperelliptic curves. Our
ability to quickly perform arithmetic in the underlying finite field determines
the performance of these schemes. Finite fields are identified with the notation
GF(pm), where p is a prime and m is a positive integer. Essentially all previous
work in this area has focused on two types of finite fields: GF(p ~n) with m = 1,

473

p a prime; and p = 2, m some positive integer. In this paper, we consider the
use of extension fields of large characteristic with the characteristic p a prime of
special form, m some positive integer.

The case of p = 2 is especially attractive for hardware circuit design of finite
field multipliers, since the elements of the subfield GF(2) can conveniently be
represented by the logical signals "0" and "1." However, p = 2 does not offer
the same computational advantages in a software implementation, since modern
workstation microprocessors are designed to calculate results in units of data
known as words. Traditional software algorithms for multiplication in GF(2 rn)
have a complexity of c m ~ steps, where w is the processor's word length and c is
some constant greater than one. For the large values of m required for practical
public-key algorithms, multiplication in GF(2 m) can be very slow.

Similarly, prime fields GF(p) also have computational difficulties on standard
computers. For example, practical elliptic curve schemes fix p to be greater
than 2 xS~ Multiple machine words are required to represent elements from these
fields on general-purpose workstation microprocessors, since typical word sizes
are simply not large enough. This representation presents two computational
difficulties: carries between words must be accomodated, and reduction modulo
p must be performed with operands that span multiple machine words.

In this paper we define a special class of choices of p and m and show that
they can yield considerable computational advantages. Our primary motivation
in what follows is to exploit the very high performance that modern RISC pro-
cessors offer for integer arithmetic on single words, which alleviate many of the
difficulties found with GF(p) and GF(2m). Our focus in the present paper is on
elliptic curve cryptosystems as introduced in [7] and [13]. However, the arithmetic
introduced here can also be applied to hyperelliptic curve public-key systems as
introduced in [8].

2 O u r N e w A p p r o a c h

Our new approach is based on the observation that several well-known opti-
mizations exist for software implementation of finite field arithmetic and that
when they are used in conjunction they yield significant performance gains for
implementation of elliptic and hypereUiptic curve cryptosystems. To optimize
arithmetic in GF(p m) we stipulate the following properties on the choice of p
and m:

1. Choose p to be less than but close to the word size of the processor so that all
subfield operations take advantage of the processor's fast integer arithmetic.

2. Choose p to be a pseudo-Mersenne prime, that is, of the form 2n=}=c for some
log 2 c _< �89 to allow for efficient subfield modular reduction.

3. Choose m so that we have an irreducible binomial x m - w for efficient ex-
tension field modular reduction. The extension degree m can be small if the
processor word size allows for large values of p.

A field that offers these arithmetic optimizations we call an Optimal Exten-
sion Field (OEF). For a formal definition of OEF, see Section 7. We demonstrate

474

that these optimizations can yield a substantial performance improvement over
previous results as in [4,16,17, 3]. As an example, when a modern RISC work-
station with a 64-bit architecture such as the DEC Alpha family is our target
platform, we would choose a p near 264. This approach has the advantage of fully
exploiting the RISC CPU's ability to quickly perform 64 bit • 64 bit integer
multiplication, thus performing a subfield multiplication with a single multiply
instruction followed by a modular reduction. Due to the special form of p, we
may perform this reduction without executing a traditional division algorithm.
In order to gain this sort of computational advantage for public-key algorithms
with field orders of more than 264, we use a field extension m of moderate degree.
For example, the choice of p -- 261 - 1 together with an extension degree of m = 3
would result in an OEF with order approximately 2183. Such a field is desirable
in the construction of cryptosystems based on the discrete logarithm problem
in elliptic curve groups. In this paper we demonstrate efficient methods to con-
struct such fields, strategies for fast arithmetic in an OEF, and implementation
results for an application of this work to elliptic curve cryptosystems.

3 P r e v i o u s W o r k

Previous work on optimization of software implementations of finite field arith-
metic has often focused on a single cryptographic application, such as designing
a fast implementation for one particular finite field. One popular optimization
involves the use of subfields of characteristic two. A paper due to DeWin et
al. [17] analyzes the use of GF((2'~)m), with a focus on n = 16, m = 11. This
construction yields an extension field with 2 l~s elements. The subfield GF(216)
has a Cayley table of sufficiently small size to fit in the memory of a worksta-
tion. Optimizations for multiplication and inversion in such composite fields of
characteristic two are described in [3].

Schroeppel et al. [16] report an implementation of an elliptic curve analogue of
Diffie-Hellman key exchange over GF(2155) with an irreducible trinomial as the
field polynomial. The arithmetic is based on a polynomial basis representation of
the field elements. Elements of the field are each stored in three 64-bit registers.

Much optimization work has been done in selection of Optimal Normal Bases
(ONB) to speed computations in GF(2m). Draft standards such as [18] [19], and
[9] suggest use of ONB for elliptic curve systems.

Others have investigated use of pseudo-Mersenne primes to construct Galois
fields GF(p) in connection with elliptic curve cryptography as found in [2], [14]
and some patents have been issued on their use.

Unlike the methods in [17, 3] which use Cayley tables to implement subfield
arithmetic, our approach requires no additional memory and is therefore attrac-
tive in memory-constrained applications. In addition, our system is faster in
real-world tests as described in Section 8.

475

4 Optimal Extension Field Arithmetic

This section describes the basic construction for arithmetic in fields G F (p m) ,
of which an OEF is a special case. The subfield is G F (p) and the extension
degree is denoted by m, so that the field can be denoted by G F (p m) . This field

m - - 1 is isomorphic to G F (p) [x] / (P (x)) , where P (x) = x 'n + ~'~i=o Pi x~,Pi e G F (p) ,
is a monic irreducible polynomial of degree m over G F (p) . In the following, a
residue class will be identified with the polynomial of least degree in this class.
We consider a standard (or polynomial or canonical) basis representation of a
field element A �9 GF(pm):

A (x) = a , ~ _ l x m-1 + . . . + a l x + a0, (1)

where ai E G F (p) . Since we choose p to be less than the processor's word size,
we can represent A (x) with m registers.

All arithmetic operations are performed modulo the field polynomial. The
choice of field polynomial determines the complexity of the operations required
to perform the modular reduction. In this paper, we will only be concerned with
the operations of addition, multiplication, and squaring.

4.1 A d d i t i o n a n d S u b t r a c t i o n

Addition and subtraction of two field elements is implemented in a straight-
forward manner by adding or subtracting the coefficients of their polynomial
representation and if necessary, performing a modular reduction by subtracting
p once from the intermediate result. Previous implementations in GF(2 n) of-
fer a slight computational advantage since addition or subtraction is simply an
XOR that does not require modular reduction. When compared to the addition
operation in G F (p) for large p, we observe that an OEF does not require carry
between computer words in computing a sum while G F (p) does. This property
results in a modest performance gain over G F (p) .

A l g o r i t h m 1 Optimal Extension Field Addition

Require: A(x) = a,~_lx "~-1 + . . . + a l x + ao ,B(x) = b ,~- lx m-1 + . . . + blx +
bo, A(x) , B (x) E GF(pm).

Ensure: A(x) + B(x) =_ C(x) E GF(p m)
f o r i + - - 0 t o m - 1 do

c~ = a~ + bi
if ci > p then

ci +-- c~ - p
end if

end for

476

4.2 Multiplication

Multiplication is performed in two stages. First, we perform an ordinary poly-
nomial multiplication of two field elements A(x) and B(x), resulting in an inter-
mediate product C~(x) of degree less than or equal to 2m - 2:

C'(x) A(x) x B(x) ' 2m- + = = e2m_2x + . . . + ' e GF(p). (2)

The schoolbook method to calculate the coefficients c~, i = 0, 1 , . . . , 2rn - 2,
requires m 2 multiplications and (m - 1) 2 additions in the subfield GF(p).

Since field multiplication is the time critical task in many public-key algo-
rithms this paper will deal extensively with fast multiplication methods, and later
sections are devoted to aspects of this operation. In Section 4.4 we present an effi-
cient method to calculate the residue C(x) = C'(x) mod P(x), C(x) e GF(pm).
Section 5 gives a method to quickly perform the coefficient multiplication in
GF(p).

4.3 Squaring

Squaring may be implemented using the method for general multiplication out-
lined above. However, we observe that squaring a field element affords some
additional computational efficiencies. For example, consider the field element
A (x) = a2 x2 -'k azx + ao,A(x) E GF(p3). We compute the square of A(x) and
obtain:

(a2x 2 + alx + a0) 2 = a22x 4 + 2a2azx 3 + [2a2a0 + a~]x 2 + 2alaox + a 2 (3)

Multiplication by two may be implemented in a computer as a left shift op-
eration by one bit. On many computer architectures, a left shift is faster than an
explicit integer multiplication. Thus instead of requiring m 2 multiplications, we
need only m(m + 1)/2 explicit multiplications. The remainder may be performed
as shifts.

4.4 Extension Field Modular Reduction

After performing a multiplication of field elements in a polynomial representa-
tion, we obtain the intermediate result C~(x). In general the degree of C~(x)
will be greater than or equal to m. In this case, we need to perform a modular
reduction. The canonical method to carry out this calculation is long polyno-
mial division with remainder by the field polynomial. We observe that we must
perform subfield multiplications to implement the reduction, proportional to
the number of terms in the field polynomial. However, if we construct a field
polynomial with low coefficient weight, the modular reduction will require fewer
subfield multiplications.

Since monomials xm,m > 1 are obviously always reducible, we turn our
attention to irreducible binomials. An OEF has by definition a field polynomial
of the form:

= - (4)

477

The use of irreducible binomials as field polynomials yields major computational
advantages as will be shown below. Observe that irreducible binomials do not
exist over GF(2).

In Section 6, we will demonstrate that such irreducible binomials can be
constructed. Once such a binomial has been determined, modular reduction can
be performed with the following complexity:

T h e o r e m 1. Given a polynomial C'(x) over GF(p) of degree less than or equal
to 2 m - 2, C~(x) can be reduced modulo P(x) = x m - w requiring m - 1 multipli-
cations by w and m - 1 additions, where both of these operations are performed
in OF(p).

Proof. By assumption, C'(z) has the form:

C ' (x) = ~ r n _ 2 x 2 m - 2 -1- �9 �9 -I- ctm~ m q- C~_l :g rn-1 -}- . . . Jr" 4 x dr- ~ (5)

Only the terms din+ix ra+i, i > O, must be reduced modulo P(x). We observe that:

d ~,m+i-- , imodP(x) ; i 0,1, m 2 (6) m . t _ i ~ .~- W C r n q _ i ~ 3 " ~ . . . , - -

Since the degree of C'(x) < 2m - 2, we require at most m - 1 multiplications
by w and m - 1 additions to combine the reduced terms. D

A general expression for the reduced polynomial is given by:

C t 3 :m- - I j_[b.,C l _Let 13:m--2_L t C t bJ t t C(z) - ,n-I Tt 2m-2 T ,n-lJ 1-'"+[Wer,+l+ 1]x+[cm+co] mod P(z)
(7)

As an optimization, when possible we choose those fields with an irreducible
binomial x m - 2, allowing us implement the multiplications as shifts. OEFs that
offer this optimization are known as Type II. A method to search for these Type
II OEFs is given in Section 7.

5 Fast Subfield Multiplication

As shown above, fast subfield multiplication is essential for fast multiplication in
GF(p") . Subfield arithmetic in GF(p) is implemented with standard modular
integer techniques, which are previously reported in the literature, see for exam-
ple [12]. For actual implementation of OEF arithmetic, optimization of subfield
arithmetic is critical to performance, so we include these remarks in this paper
for completeness.

We recall that multiplication of two elements a, b E GF(p) is performed by
a x b - c mod p. Modem workstation CPUs are optimized to perform integer
arithmetic on operands of size up to the width of their registers. An OEF takes
advantage of this fact by constructing subfields whose elements may be repre-
sented by integers in a single register. For example, on a workstation with 64-bit
registers, the largest prime we may represent is 264 - 59. So we choose a prime

478

p < 264 - 59 as the field characteristic on this computer. To this end, we recom-
mend the use of Galois fields with subfields as large as possible while still within
single-precision limits of our host CPU.

We perform multiplication of two single-word integers and in general obtain
a double-word integer result. In order to finish the calculation, we must perform
a modular reduction. Obtaining a remainder after division of two integers is a
well-studied problem [12]. Many methods such as Barre t t Reduction exist which
offer computat ional advantages over tradit ional long division of integers. These
methods, however, are still slow when compared to multiplication of single-word
integers. Our choice of p allows a far less complex modular reduction operation.

It is well known that fast modular reduction is possible with moduli of the
form 2 n • c, where c is a "small" integer. Integers of this form allow modular
reduction without division. We present a form of such a modular reduction al-
gorithm, adapted from [12]. In this paper we consider only primes of the form
2 n - c, al though a trivial change to the following algorithm allows the use of
primes 2 n + c. The operators < < and > > are taken to mean "left shift" and
"right shift" respectively.

A l g o r i t h m 2 Fast Subfield Modular Reduction

R e q u i r e : p 2 n - c, log 2 c < 1 p~ = _ ~n, x < is the integer to reduce
E n s u r e : r = x m o d p

q o + . - x > > n
ro +-- x - qo2 n
r + - r o
i + - O
while qi > 0 do

qi+~ 6.- qic > > n
ri+l +-- q~c - (qi+t > > n)
i + . - i + l

r + - - r + r i
end while
while r > p do

r + - - r - p
end while

Under these conditions, the algorithm terminates after a max imum of two
iterations of the while loop, so we require at the most two multiplications by c,
six shifts by n, and six additions and subtractions. In practice, this leads to a
dramat ic performance increase over performing explicit division with remainder.
For example, when p = 232 - 5, m --- 5, and we implement subfield reduction by
performing an explicit division with remainder on a 500 MHz DEC Alpha CPU,
we require 7.74 #sec for a multiplication in G F (f n) . When we perform modular
reduction using this algorithm, we require only 1.35 #sec, a fivefold savings.

If c = 1, this algorithm executes the first while loop only once. In addition, no
multiplications are required for the modular reduction and the entire operat ion

479

may be performed with 2 shifts and 2 adds if the intermediate result is contained
in a single word, a substantial improvement over the c > 1 case. An OEF that
offers this optimization is known as Type I. In our implementation as reported
in Section 8, we have included p -- 261 - 1 for this reason. Our implementation
takes advantage of its special form, making p = 261 - 1 the best performing
choice of p we consider.

6 I r r e d u c i b l e B i n o m i a l s

In Section 4.4 we showed that irreducible binomials allow modular reduction
with low complexity. The following theorem from [11] describes the cases when
an irreducible binomial exists:

T h e o r e m 2. Let m > 2 be an integer and w E GF(p) . Then the binomial x m - w
is irreducible in GF(p) if and only if the following two conditions are satisfied:
(i) each prime factor of m divides the order e of w in GF(p) , but not (p - 1)/e;
(ii) p ~ I mod 4 i] m - 0 rood 4.

An important corollary is given in [5]:

C o r o l l a r y 1. Let w be a primitive element]or GF(p) and let m be a divisor of
p - 1. Then x m - w is an irreducible polynomial of order (p - 1)m over GF(p) .

We present the following new corollary which follows directly from the above,
since p - 1 is always an even number:

C o r o l l a r y 2. Let w be a primitive element for GF~p). Then x 2 - w is irreducible
over GF(p) .

An extension degree of 2 is especially attractive for the implementation of
cryptosystems based on hyperelliptic curves, since the field orders required are in
the range 40-120 bits [15]. On a 32-bit or 64-bit architecture, the use of an OEF
with m = 2 can form the basis for a very fast hyperelliptic curve implementation.

Irreducible binomials do not exist over GF(2) . Thus, previous approaches
to this problem focusing on GF(2 m) have been unable to use binomials. For
an OEF, however, we require p and m such that an irreducible binomial can be
constructed. An algorithm to find such choices o fp and m is described in Section
7.

7 O p t i m a l E x t e n s i o n F i e l d s

In the following, we define a new class of finite field, which we call an Optimal
Extension Field (OEF). To simplify matters, we introduce a new name for a
class of prime numbers:

D e f i n i t i o n 1. A pseudo-Mersenne prime is a prime number of the form 2 n
c, log 2 c _< �89

480

We now define an OEF:

Defini t ion 2. A n Optimal Extension Field is a f in i te f ield G F (p m) such that:

1. p is a pseudo-Mersenne pr ime,
2. A n irreducible binomial P (x) = x m - w exists over G F (p) .

We observe tha t there are two special cases of OEF which yield additional
ar i thmetic advantages, which we call Type I and Type II.

D e f i n i t i o n 3. A Type I O E F has p = 2 n -~ 1.

A Type I OEF allows for subfield modular reduction with very low complex-
ity, as described in Section 5.

D e f i n i t i o n 4. A Type H O E F has an irreducible binomial x m - 2.

A Type I I OEF allows for speedups in extension field modular reduction since
the multiplications by w in Theorem 1 can be implemented using shifts instead
of explicit multiplications.

The choice of m depends on the factorization of p - 1 due to Theorem 2
and Corollary 1. In the following we describe an efficient construction method
for OEFs. From a very high level, this method consists of three main steps: We
choose a pseudo-Mersenne prime p first, then factor p - 1, and then finally select
an extension degree m. Since p _< 264 due to current common processor word
lengths, it is sufficient to use trial division to quickly factor p - 1. This procedure
does not exhaustively list all OEFs, ra ther it is designed to quickly locate a Type
I I OEF for a desired field order and machine word size. Further, this procedure
considers only those primes 2 n - c, al though a prime 2 n + c is a valid choice for
OEFs.

A high-level outline of our field construction algorithm, which is based on
Corollary 1 is given as Algorithm 3.

There are other possible values for the order of w tha t would lead to a greater
number of fields tha t meet our criteria according to Theorem 2. However, the
inclusion of these additional fields comes at the expense of an increase in com-
plexity of our algorithm.

We found tha t even with the restriction of w a primitive element on our
search for fields, there are still enough Type I I OEFs to construct fields for
any application. Our computat ional experiments indicate tha t for n = 32 and
n = 64 there are hundreds of fields tha t satisfy these criteria. Tables of OEFs
for all 7 < n < 63 are found in [1].

For example, suppose we wish to construct a field for use on a modern work-
s tat ion with 64-bit integer ari thmetic for use in an elliptic curve key exchange
algorithm. We set n +-- 63, c +-- 1, law +- 120, h igh +-- 260. Then we apply
a probabili tstic primali ty test for the integers 2 n - c, incrementing c by 2 un-
til we locate a prime. Using this method, we discover tha t p -- 263 - 259 is
prime. At this point, we factor p - 1 using trial division to obtain the factor-
ization 22 x 32 x 7 x 107 x 342062455008707 = 9223372036854775548. Given

481

A l g o r i t h m 3 Fast Type II Optimal Extension Field Construction Procedure
Require: n bitlength of desired p; low, high bounds on bit length of field order
Ensure: p, m define a Type II Optimal Extension Field with field order between 2 ~~

and 2 h lgh .

c+--1
for c +-- 1 to �89 do

p+-- 2'~ - c
if p is prime t hen

factor p - 1
if 2 is primitive in GF(p) t hen

for m +- low to high do
if m [(p - 1) t hen

return p, m
end if

end for
end if

end if
end for

this factorization we can easily perform a primitivity check and find that 2 is
a primitive element. Algorithms to compute the order of a group element are
well known, see [12]. It remains only to select an extension degree. By trial di-
vision, we observe that 2, 3, and 4 all divide p - 1 and thus x 2 - 2, x 3 - 2, and
x 4 - 2 are all irreducible binomials over GF(p) . These binomials yield the fields
GF((263 -259)2) ,GF((263 -259)3) , and GF((263 - 2 5 9) 4) , respectively. The
approximate orders of these fields are 2126 , 2189 , and 2252 , respectively.

8 Implementat ion Results

8.1 A p p l i c a t i o n t o E l l ip t i c C u r v e C r y p t o g r a p h y

One of the most important applications of our technique is in elliptic curve
cryptosystems, where Galois field arithmetic performance is critical to the per-
formance of the entire system. We show that an OEF yields substantially faster
software finite field arithmetic than those previous reported in the literature.

We implemented our algorithms on a 500 MHz DEC Alpha workstation in
optimized C, only resorting to assembly to perform 64 bit x 64 bit multiplica-
tions, since these operations are not directly supported by Digital's C compiler.
We executed the Type II OEF construction procedure to find Type II OEFs
for the word sizes 8, 16, 32, and 63. These word sizes are representative of the
CPUs found in typical applications, although OEFs may be constructed for any
arbi t rary word size. For each word size we at tempted to construct an OEF with
approximately 160, 190, and 240 bit length, as such fields are suggested for
the implementation of practical elliptic curve systems [18] [19]. The OEF con-
struction algorithm from Section 7 found the fields shown in Table 1 with the
exception of fields for an 8-bit word size, and the field with p = 261 - 1. In

482

both cases, w = 2 is not primitive in GF(p). We constructed these cases using
Theorem 2. In order to obtain accurate timings, we executed field multiplication
in GF(p m) one million times, observed the execution time, and computed the
average. Table 1 shows the result of our field construction and subsequent timing
measurements.

For each of our example OEFs, Table 1 lists nm, which is the approximate
bit length of the field order, the prime p, the irreducible binomial, and the time
in microseconds to perform the GF(p m) multiplication. In addition, we provide
estimated time in milliseconds for a single elliptic curve group operation, elliptic
curve point doubling, and estimated time for a full point multiplication, using
the following assumptions.

The elliptic curve addition operation in projective coordinates may be per-
formed with 15 multiplications in GF(pm), while doubling requires 12 multi-
plications [10]. Then we estimate the time required for an elliptic curve point
multiplication as required in the elliptic curve analogue of Diffie-Hellman key
exchange, assuming an implementation using the k-ary window method [6] with
k = 4 to speed the repeated doubling and add operations. Note that in the es-
timations we ignored time required to perform additions in the finite field, but
also did not employ better point multiplication algorithms such as signed-digit
methods [10] and addition chains.

Most fields included here are Type II with the exception of the 8-bit fields
and the field GF((261 -1)3), which is Type I. This accounts for its very high per-
formance: a field multiplication is performed in 0.52 microseconds. When applied
to elliptic curve cryptosystems, this field results in a very fast implementation,
requiring only 1.58 milliseconds for a full point multiplication.

8.2 Compar i son

We also compared our implementation with three previously reported approaches.
For ease in comparison, we report our timing results as measured on a 150 MHz
DEC Alpha. Results are found in Table 2.

For each implementation, we give the timing for a field multiplication. It can
be seen that our OEF GF((261 - 1) 3) yields field multiplication speeds which
are more than twice as fast as the best previously reported approach. This is
true even though our field has an order of 2 is3, whereas the field in [16] has an
order of 2155 and their workstation has a slightly higher clock rate.

483

T a b l e 1. O E F ar i thmet ic t imings on a 500 MHz D E C Alpha

n m

160
200
240

160
192
240

160
192
224

183
189
252

p = 2 n - c

28 - 15

28 - 5

28 - 15

216 - 165
216 - 243
216 - 165

2 3 2 - - 5

232 - 387
232 - 1053

2 6 1 - - 1

263 - 259
2 6 3 - - 259

b i n o m i a l
X m - - OJ

X 20 - - 7

x 25 - 6

x 3~ - 7

x 1~ - 2
x 12 - 2
x 15 - 2

G F m u l t

(,see)

x 3 - 37
x 3 - 2
x 4 - 2

E C a d d

(#sec)
(e s t .)

E C d o u -
b l e
(# sec)
(e s t .)

~ P
(m s e c)
(e s t .)

i48.3 725 580 130
70.1 1050 841 231
100 1500 1200 392

13.8 207 166 37.1
16.9 253 203 53.7
28.0 420 336 110

x 5 - 2 1.35 20 16.2 3.62
x 6 - 2 2.13 32 26 6.85
x 7 - 2 3.00 45 36 11.0

0.52 7.8 6.24 1.58
0.87 13 10 2.64
1.49 18 22 6.12

T a b l e 2. Compar ison of ar i thmet ic per formance

M e t h o d F i e l d S ize F i e l d T y p e P l a t f o r m GF m u l t

DeWin [17] 176 bits GF((2n) m) 133 MHz Pen- 62.7
t ium

G u a j a r d o - P a a r 176 bits GF((2n) m) 175 MHz D E C 38.6
[3] Alpha
Schroeppel [16] 155 bits GF(2 m) 175 MHz D E C 7.1

Alpha
O E F 183 bits GF(p m) 150 MHz D E C 3.3

Alpha

9 C o n c l u s i o n

In this paper we have in t roduced a class of finite fields, known as Opt imal Ex-
tension Fields, which take advantage of well-known opt imizat ions for finite field
ar i thmet ic on microprocessors commonly found in workstat ions. O E F s are es-
pecially a t t rac t ive for use in elliptic curve and hyperell iptic curve systems. The
ar i thmet ic speedups are due to the inherent propert ies of an OEF. An O E F
m a y be cons t ruc ted with a subfield close to the size of the host CPU. The field
character is t ic of an O E F is a pseudo-Mersenne prime, t h a t is, of the form 2 n -l- c

484

for small c, allowing fast subfield modular reduction. The extension degree of an
OEF always allows for an irreducible binomial. Finally, the field polynomial of
an 0~EF is chosen to have a constant term equal to 2. In real-world demonstra-
tions, we have shown that an OEF yields a considerable speed advantage over
previous software implementations of Galois field arithmetic for elliptic curve
cryptography.

References

1. Daniel V. Bailey. Optimal extension fields. Major Qualifying Project (Senior
Thesis), 1998. Computer Science Department, Worcester Polytechnic Institute,
Worcester, MA, USA.

2. Richard E. Crandall. Method and apparatus for public key exchange in a crypto-
graphic system. US Patent 5463690, 1995.

3. Jorge Guajardo and Christof Paar. Efficient algorithms for elliptic curve cryptosys-
terns. In Advances in Cryptology - - Crypto '97, pages 342-356. Springer Lecture
Notes in Computer Science, August 1997.

4. G. Harper, A. Menezes, and S. Vanstone. Public-key cryptosystems with very small
key lengths. In Advances in Cryptology - - EUROCRYPT '92, pages 163-173, May
1992.

5. D. Jungnickel. Finite Fields. B.I.-Wissenschaftsverlag, Mannheim, Leipzig, Wien,
Ziirich, 1993.

6. D.E. Knuth. The Art of Computer Programming. Volume 2: Seminumerical Algo.
rithms. Addison-Wesley, Reading, Massachusetts, 2nd edition, 1981.

7. N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation, 48:203-
209, 1987.

8. N. Koblitz. Hyperelliptic cryptosystems. Journal o] Cryptology, 1(3):129-150,
1989.

9. J. Koeller, A. Menezes, M. Qu, and S. Vanstone. Elliptic Curve Systems. Draft 8,
IEEE P1363 Standard for RSA, Diffie-HeIIman and Related Public-Key Cryptog-
raphy, May 1996. working document.

10. Kenji Koyama and Yukio Tsuruoka. Speeding up elliptic cryptosystems by using a
signed binary window method. In Crypto '92. Springer Lecture Notes in Computer
Science, 1992.

11. R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathe-
matics and its Applications. Addison-Wesley, Reading, Massachusetts, 1983.

12. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

13. V. Miller. Uses of elliptic curves in cryptography. In Lecture Notes in Computer
Science 218: Advances in Cryptology - - CRYPTO '85, pages 417-426. Springer-
Verlag, Berlin, 1986.

14. Atsuko Miyaji and Makoto Tatebayashi. Method for generating and verifying
electronic signatures and privacy communication using elliptic curves. US Patent
5442707, 1995.

15. S. Paulus. Ein Algorithmus zur Berechnun 9 der Klassengrnppe quadratischer Ord-
nungen fiber Hauptidcalringen. PhD thesis, Institute for Experimental Mathemat-
ics, University of Essen, Essen, Germany, June 1996.

16. R. Schroeppel, H. Orman, S. O'Malley, and O. Spatscheck. Fast key exchange with
elliptic curve systems. Advances in Cryptology - - CRYPTO '95, pages 43-56, 1995.

485

17. E. De Win, A. Bosselaers, S. Vandenberghe, P. De Gersem, and J. Vandewalle. A
fast software implementation for arithmetic operations in GF(2'*). In Asiacrypt
'96. Springer Lecture Notes in Computer Science, 1996.

18. ANSI X9.62-199x. The Elliptic Curve Digital Signature Algorithm. Draft, January
1998. working document.

19. ANSI X9.63-199x. Elliptic Curve Key Agreement and Key Transport Protocols.
Draft, January 1998. working document.

