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A b s t r a c t .  Active cameras provide a mobile robot with the capability 
to fixate and track features over a wide field of view. However, their use 
emphasises serial attention focussing on a succession of scene features, 
raising the question of how this should be best achieved to provide local- 
isation information. This paper describes a fully automatic system, able 
to detect, store and track suitable landmark features during goal-directed 
navigation. The robot chooses which of the available set of landmarks to 
track at a certain time to best improve its position knowledge, and de- 
cides when it is time to search for new features. Localisation performance 
improves on that achieved using odometry alone and shows significant 
advantages over passive structure-from-motion techniques. Rigorous con- 
sideration is given to the propagation of uncertainty in the estimation of 
the positions of the robot and scene features as the robot moves, fixates 
and shifts fixation. The paper shows how the estimates of these quanti- 
ties are inherently coupled in any map-building system, and how features 
can reliably be re-found after periods of neglect, mitigating the "motion 
drift" problem often encountered in structure-from-motion algorithms. 

1 Introduction 

Active cameras potentially provide a navigating vehicle with the ability to fixate 
and track features over extended periods of time, and wide fields of view. While 
it is relatively straightforward to apply fixating vision to tactical, short-term 
navigation tasks such as servoing around obstacles where the fixation point does 
not change [6], the problem of using serial fixation on a succession of features to 
provide global localisation information for strategic navigation is more involved. 

In this paper, we demonstrate a system which is able to detect, store and 
track suitable landmark features during goal-directed navigation. The features 
used are arbitrary points of high contrast which are abundant in any typical 
environment. The robot chooses which of the available set of landmarks to track 
at a certain time to best improve its position knowledge, and decides when 
to change fixation point and when to search for new features with the aim of 
maintaining a useful 3D map. When suitable landmarks have been detected, the 
robot is able to refer to them at any time to calculate its position, or to track one 
of them during a movement to provide continuous information. The method has 
significant advantages over the passive structure-from-motion techniques used in 
a number of navigation systems [1-4]. Parts of our approach could be considered 
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as an transfer to the visual domain of methodology used in directable sonar work 
[5]. 

Navigating in unknown surroundings inherently couples the processes of 
building a map of the area and calculating the robot 's location relative to that  
map. With this in mind, a single filter is used to maintain estimates of all the 
quantities of interest and the covariances between them. This approach differs 
from many previous approaches to robot navigation and structure-from-motion 
(e.g. [3,4]) where separate filters are used for the robot position and that  of 
each of the features. In the work in this paper, the goal is to provide the robot 
with a sparse map of features which can be used for localisation over extended 
periods during which the same areas may be traversed many times and the same 
features will be observed. Only full uncertainty propagation will lead to the lo- 
calisation performance we should expect in these circumstances, as will be shown 
in the experiments described later. Our approach allows features to be re-found 
and re-registered reliably after periods of neglect. This alleviates the problem of 
"motion drift" often encountered in structure-from-motion, where, for instance, 
the start  and end points of a closed path are not recognised as such [3]. 

When deciding upon the exact form of the filter, the issue of coordinate 
frames and their significance was considered in detail. Consider navigation around 
a restricted area such as a room: certainly there is no need to know about position 
or orientation relative the world as a whole, but  just about the relative location 
of certain features of the room (walls, doors, etc.). This initially suggested a 
completely robot-centred approach to navigation, attractive as is minimises the 
problem of representation. However, such an approach cannot explicitly answer 
questions such as "how far has the robot moved between points A and B on 
its t rajectory?",  important  in goal-directed performance. Our approach explic- 
itly estimates the vehicle and feature positions relative to a world frame while 
maintaining covariances between all the estimates. This provides a way to an- 
swer these questions while retaining all the functionality of the robot-centred 
method, since it is possible at any stage to re-zero the coordinate frame to the 
robot,  as we will show in Section 3.6. The extra information held in the explicit 
robot state and its covariances with the feature estimates codes the registra- 
tion information between an arbitrary world coordinate frame or map and the 
structure of the feature map the robot has built itself. 

2 V e h i c l e  a n d  H e a d  G e o m e t r y  
2.1 Vehicle Geometry and Kinematics 

The robot used in this work (Figure 1) has three wheels: two run freely on a 
fixed transverse axis at the front, while the third, located centrally at the rear, 
is both steerable and driven. A high performance four-axis active stereo head [7] 
is mounted with its vertical pan axis directly above the point halfway between 
the front wheels. The fiduciary "head centre" is defined to lie where the pan axis 
intersects the horizontal plane containing the elevation axis. This point, fixed 
relative to the vehicle regardless of head movements, is used to define the vehicle's 
location relative to a world coordinate frame. The robot vehicle is assumed to 
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Fig. 1. Head and vehicle geometry. In (c) the vehicle's location in the world coordinate 
frame is specified with the coordinates (z, x, r The CO coordinate frame is carried 
with the vehicle. 

move at all times on the horizontal xz  ground-plane. Its position and orientation 
are specified by the coordinates (z, x, r r is the robot ' s  orientation relative to 
the world z-axis. The robot-centred frame CO is defined to have its origin on 
the ground plane directly under the head centre, with its z-axis pointing to the 
front of the robot,  x-axis to the left, and y-axis upwards. In normal operation, 
at the s tar t  of its motion the vehicle's location in the world frame is defined as 
z = 0, x = 0, r = 0, and the world and vehicle frames coincide. 

The control inputs determining the vehicle motion are the steering angle s 
and velocity v of the rear driving wheel. With  no slippage, setting a steering 
angle of s at the rear wheel means tha t  points on the vehicle will travel in 
circular paths centred on the centre of rotat ion at the intersection of the wheel 
axes, as shown in Figure l(d).  In particular, the head centre and rear driving 
wheel move in paths of radius R = L~ tan(s)  and Rd = L~ sin(s) respectively. 
During a period At in which both v and s are held constant,  the angle in radians 
through which the vehicle moves along its circular t ra jectory is K = vA t /Rd ,  
after which the new location of the head centre becomes 

z(t  + At) = z(t) + R(t) (cos r s i n K  + sin r K - 1)) 

x(t  + At) = x(t) + R(t) (sin r sin K - cos r K - 1)) 
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r + nt)  = r  + K .  

These are exact expressions and do n o t  require At to be small. (Note tha t  for 
straight line motion (s = 0, R and Rd infinite) a limiting form is used.) The robot  
will of course not move precisely in the way predicted by the equations due to 
factors including slipping of the wheels and the non-zero t ime taken to respond 
to commands.  This uncertainty is modelled as a Gaussian variation in v and s 
from the demanded values. The steering angle s, was given a constant s tandard 
deviation as of around 4 ~ and the velocity input v a s tandard deviation which 
was proport ional  to the velocity demand itself: av = afv ,  with a I ~ 0.10. 

Naming the est imated position vector fv and the control vector u, the co- 
variance matr ix  Q of fv can be calculated as 

f .  = i (t + , u = , Q = ~uU~uu , (1) 
\ r + nt) 

where U is the diagonal covariance matr ix  of u. 

2.2 H e a d  G e o m e t r y  

Fixating a feature with the active head provides a 3D measurement  of its loca- 
tion from stereo and knowledge of the head odometry (Figure l(b)) .  Locating 
a feature at position UL,V L in the left camera 's  image and uR,vR  in the right 
one, its 3D position h a  relative the the head centre can be calculated in the CO 
vehicle-centred frame. Using knowledge of the head's  joint angles, the vectors 
PL, CL, nL and p•, CR, nR are formed and summed to obtain the vector loca- 
tions of the two optic centres with respect to the head centre, h c  can then be 
expressed as either: 

h c  = PL + CL + IlL + hL or h a  = PR + cR + nR + hR �9 

Vectors hL and hR can be found up to scale in the vehicle-centred coordinate 
frame: 

hL cO OC MC~ (UL, VL, 1) T and h n  c~ c< MC~ z (UR, VR, 1) T , 

where M c~ and M c~ are the (known) rotation matrices transforming from the left 
and right camera-centred coordinate systems into the vehicle coordinate system, 
and CL,R a r e  the (known) camera calibration matrices. 

The feature position relative to the head centre, h a ,  is found by back- 
projecting the two rays defined by hL and hR and finding their intersection 
in 3D space - -  in the presence of noise, the midpoint of their mutual ly perpedic- 
ular bisector is used. 

3 T h e  M a p - B u i l d i n g  a n d  L o c a l i s a t i o n  A l g o r i t h m  

3.1 T h e  S t a t e  V e c t o r  a n d  i ts  C o v a r i a n c e  

Current  estimates of the locations of the vehicle and the scene features which 
are known about  are stored in the system state vector ~, and the uncertainty of 
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the estimates in the covariance matrix P. These are partitioned as follows: 

(i v ] Yl IPYlX Pylyl Pyly2 
:~ = 2 ' P =  P :2 Py2m Py2y: (2) 

has 3(n+ 1) elements, where n is the number of known features. P is symmetric, 
with size 3(n + 1) x 3(n + 1). ~v is the vehicle position estimate, and Sri the 
estimated 3D location of the i th  feature: 

~ = (2, ~, ~)~ , ~ = (2. ~, 20 �9 

3.2 Moving and Making Predictions 

The robot's motion is discretised into steps of time interval At, with an incre- 
menting label k affixed to each. A t  is set to be the smallest interval at which 
changes are made to the vehicle control inputs v and s, allowing the motion 
model of Section 2.1 to be used. After a step of movement, a new state estimate 
and covariance are produced: 

/'r~(x.(klk),u(k) ~ 
: ~ ( k + l ] k ) =  ( ~r2(klk). ) (3) 

[ oro p rklk~ of~ T 11 ] -5-~x P ~ u , ( k l k ) . . .  

] PY lx (k l k )~  T PylYl(k] k ) eylY2(k] ]i~) ,* 
P(k --}- 1,k) ~--- [ py2x (k[k) ~ m  py2yl(klk), py2y2(k,k) . ,(4) 

where fv and O(k) are as defined in Equation 1. This new covariance matrix is 

formulated from the usual EKF prediction rule P (k + l lk ) = or p r k lk~ of T + O (k), 
where or ~-~ is the full state transition Jacobian: 

1 
0!v 

0f  I 0 

Ox 0 I �9 

3.3 Updat ing the Sta t e  Vec tor  A f t e r  a Measurement 

When the location of a feature is measured, as described in Section 2.2 we obtain 
a measurement in the vehicle frame CO of the vector h a  from the head centre 
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to the feature. The function giving the predicted cartesian components of this 
measurement  is: 

= 

hciz \ s i n  r  - x) + cosr  z) 
(5) 

Before processing measurements,  however, they are t ransformed into an angular 
form: 

hi = (ai ei 7i)T = (tan_ 1 hci= , tan_  1 hciy tan_  1 I )T 
' ' hGiz hGip ' ~ ' 

(6) 

where hGi is the length of vector hc i  and h c i p =  x/hvi= 2 + hGiz 2 is its projection 
onto the xz plane. I is the inter-ocular separation of the active head. These 
angles represent the pan, elevation and vergence angles respectively of an ideal 
active head positioned at the head centre and fixating the feature, "ideal" here 
meaning a head tha t  does not have the offsets tha t  the real head has (in terms of 
Figure l (b)  this would mean that  vectors n and c would be zero, with p purely 
along the elevation axis). Now c~i, ei and Vi will be very close to the actual  pan, 
elevation and vergence angles of the real active head at fixation, but accuracy is 
gained by taking account of all the head offsets in this way. 

The reason for using an angular measurement  representation at all is tha t  
it allows measurement  noise to be represented as a constant, diagonal matrix.  
The largest error in measurements is in the accuracy with which features can be 
located in the image centre - -  the rule used is that  a successful fixation lock-on 
has been achived when the feature is located within a radius of two pixels from 
the principal point in both images. This represents an angular uncertainty of 
around 0.3 ~ and Gaussian errors of this s tandard deviation are assigned to a i ,  
ei and Vi- The angular errors in measurements from the head axis encoders are 
much smaller than  this and can be neglected. The measurement  noise covariance 
matr ix  is therefore: 

R = A e  2 (7) 
0 A~ 2 

With a diagonal R, measurements ai ,  ei and Vi are independent. This has two 
advantages: first, potential  problems with bias are removed from the filter up- 
date by representing measurements in a form where the noise can closely be 
modelled as Gaussian. Second, the measurement  vector hi can be decoupled, 
and scalar measurement  values used to update  the filter in sequence. This is 
computat ionally beneficial since it is now not necessary to invert any matrices 
in the update  calculation. For each scalar par t  of the measurement  hi (where hi 
is one of ai ,  ei, 7i for the current feature of interest), the Jacobian 

ah.___.~ .~. ( Oh~ Dhl ) 
OX ~x~ O'"0-5~Y' O""  
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is formed. This row matr ix has non-zero elements only at locations corresponding 
to the state of the vehicle and the feature in question, since hi = hi(xv, Yi)- The 
scalar innovation variance S is calculated as: 

Ohi Ohi T Oh~ OhiT _ Ohi Ohi T Oh~ Oh~T+R 
S -  ~xP---~x +R = OxvPxxoxv +2~xvPxy, Oy i +Oy--~Py~y~Oyi , 

(s) 
where P~x, Pxy~ and Py, y, are 3 x 3 blocks of the current state covariance matr ix 
P, and R is the scalar measurement noise variance (Aa  e, Ae 2 or AV e) of the 
measurement. The Kalman gain W can then be calculated and the filter update 
performed in the usual way: 

W = O--x-xP0his-1 = S-1 | P i : : |  k ) '~xvi)hi +S-1 |PP:I:: k" OyiOhi (9) 

Xnew = Xold "k W(z i -- hi) (10) 

Pnew = Pold -- w S w T  �9 (11) 

zi is the actual measurement of the quantity obtained from the head, and hi is 
the prediction. This update is carried out sequentially for each scalar element of 
the measurement. 

3 . 4  I n i t i a l i s i n g  a N e w  F e a t u r e  

When an unknown feature is observed for the first time, a vector measurement 
hG is obtained of its position relative to the head centre, and its state is initialised 
to 

Yi = H + haiy ] (12) 
- hGi~ sin r + hGiz cos r / 

Jacobians Oy~ and ~ are calculated and used to update the total state vector Gxv o n G  
and covariance (assuming for example's sake that  two features are known and 

Xv 

= y l  (13 )  Xnew Y2 

Yi 

Pxx Pxyl Pxy2 - Oyl i "1 Fxx Ox,, I 
-- cgy~ T [ 

Pylx Pylyl  Pyly2 FYlX 0x~ / (14) 
Pnew = D Oyi T I 

Py2x Py2yl Py2y2 -y2x Ox~" | 
Oy, ~Pxy ,  ~,,Pxy2 0_~, O..@_.i_i_ Oy, ~, Oy~ T I 
-~x Pxx . Ox, r'XX Ox~, "1- "b'-~ar~L ohc .J 

where RL is the measurement noise l~ transformed into cartesian measurement 
space. 

the new one becomes the third): 
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3.5 D e l e t i n g  a F e a t u r e  

A similar Jacobian calculation shows that  that  deleting a feature from the state 
vector and covariance matrix is a simple case of removing the rows and columns 
which contain it. An example in a system where the second of three known 
features is deleted: 

Yl Xv ' ipyl. pyly. pyly2 pyly31 -+ l P''" 
Y2 ~ Yl /Py2~ Py2y~ Py2y2 Py2y3| PY~Y~ " 
Y3 Y3 kPy3x Py3yx Py3y2 Py3y3 _] kPyax Py~yl Py3y3.1 

(15) 

3.6 Z e r o i n g  t h e  C o o r d i n a t e  F r a m e  

As mentioned in the introduction, it is possible to re-zero the world coordinate 
frame at the current vehicle position�9 The new state becomes: 

x~e~ = / Y l ~ e ~ l  = 
/ h G 2  .+ (16) ty.._) .", 

where hvi  is the current vector from the head centre to feature i as given in 
Equation 5, and H is the constant vector describing the vertical offset from the 
ground plane to the head centre�9 To calculate the new state covariance we form 
the sparse Jacobian matrix: 

l o o !] 
OhG10hal 0 

OXne w | Ox,, Oyl 
OXol~--|O.~..q_2_O 0hC20y2 ' (17) 

and calculate Pnew - Oxn~w p Oxn~w 3- -- Oxold old Oxold 

4 I m p l e m e n t a t i o n  

All visual processing and the localisation filter are implemented in C + +  on a 
100 MHz Pentium PC operating under Linux. The PC hosts a Matrox Meteor 
for stereo image capture, a Delta-Tau PMAC controller to direct the head, and 
a proprietary Transputer controller to drive the vehicle�9 

As the robot drives at speeds of up to 20cms -1, a feature may be tracked 
at fixation at a frequency of 5Hz: the system predicts, moves the active head 
to fixation, obtains a measurement and incorporates it into the filter in a time 
less than 0.2s. Alternatively, the robot may stop and make sequential measure- 
ments of several features. The main factor limiting speed of operation is the 
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time required to carry out expensive correlation searches (see Section 5.2) on 
this general purpose hardware. If the robot 's position is very uncertain (possibly 
after failed measurements), search regions become large, search times long, and 
the robot velocity and the frequency of measurements are automatically reduced 
accordingly. 

Maintaining the large state vector and covariance becomes comparably com- 
putationally costly only with a large number (~  25) of features. We have devel- 
oped a method (not described here) whereby execution speed is not compromised 
by this, even with very large numbers of features, by postponing the full, but  
exact, update of the whole state until the robot has stopped moving and has 
some unutilised processing time. 

5 F e a t u r e s  

5.1 Detecting and Initialising Features 

Visual landmarks should be stationary, point features which are easily distin- 
guishable from their surroundings. In this work we use the operator of Shi and 
Tomasi [8] to selects regions of high interest, and represent the features as 15 • 15 
pixel patches. Typical features found in this way are shown in Figures 2(a) and 
Figure 5. 

To initialise a new feature, the patch operator is applied in the left camera 
image. For the best patch found, an epipolar line is generated in the right im- 
age (using knowledge of the head geometry), and the nearby region searched. 
If a good stereo match is found, the two pairs of image coordinates (UL,VL) 
and (uR, vR) allow the feature's 3D location in the vehicle-centred coordinate 
frame to be calculated. The head is driven to fixate the feature, (with symmet- 
ric left and right head vergence angles enforced to remove redundancy),  and 
re-measured, being easily found now near the centre of the images. Making all 
measurements at fixation reduces the need for accurate knowledge of the camera 
focal lengths. The feature is then initialised in the map as detailed in Section 3.4. 

Typical indoor environments provide many features which are suitable for 
tracking, as well as some which, because of partial occlusion or reflection, are 
not. While no a t tempt  is made to discern these bad features at the initialisation 
stage, they can be rejected later because they will not be tracked under the 
constraints of the filter (see Section 5.3). 

5.2 Measuring and Tracking Features 

The Kalman Filter approach means that  a prediction is available of any mea- 
surement to be made, and a prediction covariance. When measuring a known 
feature with the active head, use of the prediction is essential to drive the cam- 
eras to the expected fixation angles to make the feature visible. The prediction 
covariance is then used to produce search areas in the two images within which 
the feature must lie with a high probability. 

Having calculated hG~, the predicted vector from the head centre to the 
feature, as in Equation 5, along with its covariance, the system drives the head 
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to fixation and calculates in camera centred coordinates the vectors hL and hn  
from the camera optic centres to the feature and their covariances PhL and PhR- 

Both of these vectors will have zero x and y components since at fixation the 
z-axis-defining optic axes pass through the feature, Considering the left camera, 
image projection is defined by the the usual equations: 

U L  : - -  f k u ( h L x / h L z )  + Uo and V L  : - -  f k v ( h L y / h L z )  + vo . (18) 

The covariance matrix of the image vector Un = (UL VL) T is given by UL = 

au_m~n 0uL T The value of the Jacobian at hLz = hLy = 0 is CghL r h L  ~ " 

~ h L z  

OhL 0 ~ " hLz 

Specifying a number of standard deviations (typically 3), UL defines an ellipse 
in the left image which is searched for the feature patch using normalized cross- 
correlation The same procedure is followed in the right image. Limiting our 
search for feature patches to these areas not only maximises computational ef- 
ficiency but also minimises the chance of obtaining mismatches. Figure 2(b,c) 
shows examples of the elliptical search regions, and (d-g) shows a feature tracked 
by the head over a large robot motion. 

Fig. 2. (a) Typical features detected using Shi and Tomasi. (b,c) Examples of image 
search ellipses with large and small uncertainty. (d-g) Continuous fixation of a feature 
by the head. 

5.3 Se l ec t i ng  Between  Features a n d  M a i n t a i n i n g  the Map 

As discussed in the introduction, when moving through an unfamiliar world the 
visual system needs to perform the joint roles of building a useful map and telling 
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the robot where it is on that  map. A strategy is needed to direct at tention to 
where it is most needed, since during its motion the robot is able to track just 
one feature at a time. Three issues need to be considered, viz: 
1. Which of the current set of known features should be tracked? 
2. Is it t ime to label any features as not useful and abandon them? 
3. Is it t ime to look for new features? 

Since the features are simple image patches, they are not expected to be 
recognisable from all viewpoints. The expected visibility of a feature is defined 
based on the difference in angle and distance between the robot ' s  current es- 
t imated viewpoint and the viewpoint from which it first identified the feature 
(angle differences of up to 45 ~ and distance ratios of up to 1.4 being tolerated). 
Using different types of feature, different visibility criteria would be appropr ia te  
(we are currently investigating using 3D planar patches as features). 

In answer to Question 3 then, the robot uses the heuristic tha t  new fea- 
tures should be found if less than two are currently visible. The system a t tempts  
to initialise three widely-spaced new features by examining regions to the left, 
right and straight ahead. More purposive approaches to finding new features 
in optimal  positions have been considered, but in most  environments the crit- 
ical factor is finding reliable features at all. There may not be anything to see 
in an "optimal" position. Once features have been found, an intelligent choice 
can be made about  which is best to observe from an information point-of-view. 
To answer Question 2, a feature is abandoned if, after at least 10 a t t empted  
measurements  from viewpoints from which it should be visible, more than  half 
have failed. Features not corresponding to true point features, having very low 
viewpoint-invariance, or which are frequently occluded, are quickly rejected and 
deleted from the map. 

To tackle Question 1, the principle of making a measurement  where the 
ability to predict is least, as discussed in recent work by Whaite and Ferrie [9], 
is used. Given a choice of measurements in a system where the uncertainty in 
estimates of the parameters  of interest is known, it makes sense to make the one 
where we are least certain of the result, since this will in a sense "squash" the 
total  uncertainty, viewed as a multi-dimensional ellipsoid, along the longest axis 
available. 

Whenever the robot is to make a measurement  of a feature, a predicted 
measurement  h is formed and the innovation covariance matr ix  S is calculated. 
This matr ix  describes how much the actual measurement  is expected to vary 
from the prediction. To produce scalar numbers to use as the basis for decisions 
about  which feature to observe, the volume Vs in (a, e, V) space of the ellipsoid 
represented by S at the 3a level can be calculated for each visible feature. Tha t  
having the highest Vs is chosen for tracking. The highest possible integrity in 
the whole map  / robot estimation is retained in this way. 

The most  striking result of this criterion seen in experiments is tha t  it de- 
mands frequent changes of tracked feature. Once one or two measurements  have 
been made of a feature, the criterion tells us tha t  there is not much more in- 
formation to be gleaned from it at the current time, and it is best to switch 
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Fig. 3. (a) The laboratory used in experiments. (b) The corridor-like bay where ground- 
truth measurements could be referenced to a 20cm grid (not used by the vision system). 
(c) The set of regularly-spaced reference features used in the ground-truth experiment. 

at tention to another. This is a result of the way that  tracking one point feature, 
even with perfect measurements,  does not fully constrain the robot ' s  motion - -  
uncertainty is always growing in some direction. 

6 E x p e r i m e n t s  

6.1 C o m p a r i s o n  w i t h  G r o u n d  T r u t h  

To evaluate the localisation and map-building accuracy of the system, a corridor- 
like area of a large laboratory was laid with a grid and a set of features in known 
positions was set up in a regularly-spaced line (see Figure 3). Starting from the 
grid origin, the robot was driven forward in a nominally straight line. Every 
second feature in the line was initialised and tracked for a short while on this 
outward journey, the robot stopping at frequent intervals so that  ground-truth 
measurements  could be made of its position relative to the grid, and orientation 
using an on-board laser pointer. The robot then reversed back down the corridor, 
tracking the features it had not previously seen. Once it had returned to near its 
start ing position, it drove forward again, now at tempt ing to re-measure features 
found early on, thus completing the loop on the motion and establishing that  a 
reliable map had been formed. I t  will be shown how much bet ter  the single filter 
approach performs than the multiple-filters methods seen in the literature. 

Results directly generated by the full system are shown in Figure 4 super- 
imposed on the measured ground truth. The robot 's  position was tracked well 
by the filter as it moved forward and back, but  it can be seen that  drift s tar ted 
to occur; in particular by the 4th picture, when the robot was close again to 
its start ing position, the filter estimated the robot 's  position as z = -0 .11m,  
x = 0.26m, r -- -0.0Brad when the true position was z = 0.01m, x -- 0.02m, 
r = 0.02rad. This discrepancy is to be expected, since the robot had continually 
been tracking new features without referring to previously known ones (motion 
drift). However, the filter had correctly monti tored this uncertainty: in the next 
step (5th picture), measurements had been made of feature 0. This, the very 
first feature measured, had a position which was very well known in the world 
coordinate frame since the robot ' s  position had been very certain at this time. 
Making these measurements therefore locked down the vehicle uncertainty and a 
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Fig. 4. Experiment with regularly-spaced landmarks: estimated positions of the robot 
(~v) and features (:~) in grey, along with 3a ellipses for the point covariances Pyly~, 
are shown superimposed on the true positions (from manual measurement) in black 
as the robot moved forward and back. The feature spacing was 40cm, and the robot 
moved about 5m from its origin. Feature labels show the order they were tracked in. 

much better estimate was produced: estimated position z = 0.31m, x = 0.04m, 
r = -0.0Brad, true position z = 0.39m, x = 0.02m, r = 0.00rad. The covariance 
matrices of the robot state before and after the measurements were: 

0.0039-0.0095 0.0036" [ 0.0016-0.0004 0.0016] 
P~x(4)= -0.0095 0.0461-0.0134 , P~(5)---- L-0.0004 0.0002-0.0004| 

0.0036 -0.0134 0.0051 0.0016 -0.0004 0.0018J 

The estimates of the locations of all the other features were also immediately 
improved. The remaining discrepancy in the z and r estimates reflects the fact 
that  measuring one feature does not fully constrain the robot location: it can 
be seen that these estimates improved when the robot had re-measured more 
features by the 6th picture. The 7th picture shows the state from the 6th picture 
zeroed with respect to the robot as in Section 3.6 and displayed at an angle to 
show the three-dimensionality of the map generated. 

In the 8th picture, results are shown from a repeat of the experiment demon- 
strating the failure of methods using separate filters for the robot and feature 
states to achieve re-registration with original features. With our implementation, 
these methods are simulated by simply zeroing all off-diagonal blocks of the to- 
tal covariance matrix P after each prediction and update (this can be shown to 
be equivalent to the most sensible approach using multiple filters). The picture 
shows the state once the robot had returned to near its starting position, and 
it can be seen that while similar drift was observed in the robot and feature 
estimates as above, correct account was not taken of this and the covariances 
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were underestimated (the feature uncertainty ellipses being too small to see). An 
at tempt  to re-measure feature 0 from this position failed because it did not lie 
within the image search ellipse generated. The method has no ability to recover 
from this situation. 

6.2 A Ful ly  A u t o m a t i c  E x p e r i m e n t  

We present results from a fully automatic run where the robot drove up and down 
the corridor-like bay with no initial knowledge of the world. The instructions 
given to the robot were to head in sequence from its starting point at (z, x) = 
(0, 0) to the waypoints (6, 0.4), (6, 0), and finally (0, 0) again (in metre units). 
When heading for a particular waypoint, the robot continuously controls its 
steering angle s according to a simple law described in [6]. A particular waypoint 
is said to have been reached when the robot 's estimated position is within 30cm 
of it, and the robot starts to steer for the next one. 

The robot 's  progress is shown in frames cut from a video in Figure 5, along 
with saved views of the first 16 features detected and initialised into the map as 
in Section 5.3. The output  of the filter appears in Figure 6, where those features 
are annotated. Some of these features did not survive very long before being 
abandoned as not useful (numbers 4 and 5 in particular not surviving past very 
early measurement at tempts and not being displayed in Figure 6). Others, such 
as 0, 12 and 14 proved to be very durable, being easy to see and match from all 
positions from which they are expected to be visible. It can be seen that  many 
of the best features found lie near the ends of the corridor, particularly the large 
number found near the cluttered back wall (11-15, etc.). The active approach 
really comes into its own during sharp turns such as that  being carried out in the 
5th picture, where features such as these could be tracked continuously, using 
the full range of movement of the neck axis, while the robot made a turn of 180 ~ 
The angle of turn can be estimated accurately at a time when odometry data  is 
unreliable. 

O u t w a r d  J o u r n e y :  the sequence of features selected to be tracked in the 
early stages of the run (up to the 3rd picture in Figure 6)) was 0, 2, 1, 0, 2, 1, 
3, 5, 4, 7, 6, 8, 3, 6, 8, 7, 3, 7, 8, 3, 9 - -  we see frequent switching between a 
certain set of features until some go out of visibility and it is necessary to find 
new ones. 

Return to Origin: in the 6th picture of Figure 6, the robot had reached 
its goal, the final waypoint being a return to its starting point. The robot had 
successfully refound original features on its return journey, in particular feature 
0 whose position was very well known. The choice of feature criterion described 
in Section 5.3 had demanded re-measurement of these features as soon as they 
became visible again, reflecting the drift occurring between the robot position 
estimate and the world coordinate frame. The robot's true position relative to the 
grid was measured here, being z ~ 0.06m, x = -0.12m, r -- 3.05rad, compared 
to the estimated position z = 0.15m, x -- -0.03m, r -- 2.99rad. 

Repeat Journey: the experiment was continued by commanding the robot 
back out to (z, x) -- (6, 0), then home again to (0, 0). In these further runs, the 



8 2 3  

F ig .  5. The robot navigating autonomously up and down the corridor. The lower four 
images are example fixated views of four of the features initialised as landmarks. Their 
numbering corresponds with that  used in Figure 6. 
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Fig .  6. The map built in autonomous navigation up and down a corridor. Grey shows 
the est imated locations of the vehicle and features, and black (where measured) the 
true vehicle position. The furthest features lie at z ~ 8m. 

sys t em needed  to  do far less m a p - b u i l d i n g  since a large n u m b e r  of fea tu res  was 
a l r e ady  known a b o u t  a long the  t r a j ec to ry .  At  (6, 0), shown in the  7th  p ic ture ,  
the  r o b o t ' s  t rue  pos i t ion  was z = 5.68m, x = 0.12m, r = 0.02rad,  and  e s t i m a t e d  
s t a t e  was z = 5.83m, x = 0.00m, r = - 0 . 0 2 r a d .  At  (0, 0) again ,  shown in 
the  8 th  p ic ture ,  the  t rue  pos i t ion  of z = 0.17m, x = - 0 . 0 7 m ,  r = - 3 . 0 3 r a d  
c o m p a r e d  wi th  the  e s t ima te  z = 0.18m, x = 0.00m, r = - 3 . 0 6 r a d .  Th is  is very  
impress ive  loca l i sa t ion  pe r fo rmance  consider ing t h a t  the  r o b o t  had  t r ave l l ed  a 
t o t a l  d i s t ance  of some 24m by this  s tage.  
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Fig. 7. The estimated trajectory and frames cut from a video as the robot navigated 
autonomously around two known landmarks and out of the laboratory door. 

6.3 Incorporating Prior Map Knowledge 
In a real application of an autonomous robot, it is likely that  some prior knowl- 
edge about the world will be provided, or indeed that  this will be necessary to the 
robot 's ability to perform a useful task. In particular, our system as described 
does not give the robot the capability to detect obstacles along a requested route. 
It is not intended that the map of features used as landmarks be dense enough 
to use as a basis for obstacle avoidance. 

Prior knowledge of a feature can be incorporated into the map by initialising 
its location into the state vector at the start of motion, and providing the system 
with the feature description (i.e. an image patch). If the feature location is 
precisely known, this is correctly managed by the filter by simply setting all 
covariance elements relating to that feature to zero - -  otherwise, some non-zero 
measurement uncertainty could be initialised. No special treatment needs to be 
accorded to the feature after this. Having perfect features in the scene means 
that  the robot is able to remain true to the world coordinate frame over a wider 
area than otherwise. 

In addition, extra labels can be attached to features initialised in this way 
to aid navigation, as we demonstrate in experiment here. The locations of two 
features lying on the corners of a zig-zag path were given to the robot as prior 
knowledge, along with instructions to steer to the left of the first and to the right 
of the second on its way to a final location at (z, x) = (9, - 3.5). This is infor- 
mation that  could be assigned to automatically detected features by additional 
visual modules such as a free-space detector. 

Figure 7 shows the locations of the known features 0 and 1, the map of other 
features which was formed, and the estimated robot trajectory as it negotiated 
the corners to pass out of the laboratory door. Steering around the known fea- 



825 

tures was accomplished with a similar steering law to that  used to steer to a 
waypoint,  but with the aim of avoidance by a safe radius of l m  [6]. It  can be 
seen that  features detected in the vicinity of the known ones (especially 1) are 
also well known. Small "kinks" in the trajectory are noticeable where the robot 
first made successful measurements of the known features and made relatively 
large re-registration adjustments to its position estimates. 

7 Conclusions 
This paper  has shown how a robot can use active vision to provide continuous 
and accurate global localisation information by serially fixating its cameras on 
arbi trary features in the scene. A map  of landmarks is automatical ly built and 
maintained, and extended periods of navigation are permit ted by the robot ' s  
ability to identify the same features again and again, mit igat ing the problem of 
motion drift. 

The system provides a framework into which goal-directed visual capabilities 
can be inserted, as demonstrated in experiments. In future work, it is planned to 
add modules which enable a wide variety of purposive manoeuvres,  such as au- 
tomat ic  free-space detection to permit  obstacle avoidance, or target recognition 
to provide goals automatically. 

Potential  improvements to the localisation system itself are chiefly concerned 
with allowing different sorts of scene feature to be used as landmarks: the addi- 
tional use of line segments or planar patch features would extend robustness by 
making reliable landmarks easy to find and track in any environment. 
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